
electronics

Article

Efficient Approximate Adders for
FPGA-Based Data-Paths

Stefania Perri 1 , Fanny Spagnolo 2, Fabio Frustaci 2 and Pasquale Corsonello 2,*
1 Department of Mechanical, Energy and Management Engineering, University of Calabria,

87036 Rende, Italy; stefania.perri@unical.it
2 Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria,

87036 Rende, Italy; f.spagnolo@dimes.unical.it (F.S.); f.frustaci@dimes.unical.it (F.F.)
* Correspondence: p.corsonello@unical.it; Tel.: +39-0984494708

Received: 13 August 2020; Accepted: 17 September 2020; Published: 18 September 2020
����������
�������

Abstract: Approximate computing represents a powerful technique to reduce energy consumption and
computational delay in error-resilient applications, such as multimedia processing, machine learning,
and many others. In these contexts, designing efficient digital data-paths is a crucial concern.
For this reason, the addition operation has received a great deal of attention. However, most of
the approximate adders proposed in the literature are oriented to Application Specific Integrated
Circuits (ASICs), and their deployment on different devices, such as Field Programmable Gate Arrays
(FPGAs), appears to be unfeasible (or at least ineffective). This paper presents a novel approximate
addition technique thought to efficiently exploit the configurable resources available within an FPGA
device. The proposed approximation strategy sums the k least significant bits two-by-two by using
4-input Look-up-Tables (LUTs), each performing a precise 2-bit addition with the zeroed carry-in.
In comparison with several FPGA-based approximate adders in the existing literature, the novel
adder achieves markedly improved error characteristics without compromising either the power
consumption or the delay. As an example, when implemented within the Artix-7 xc7a100tcsg324-3
chip, the 32-bit adder designed as proposed here with k = 8 performs as fast as its competitors and
reduces the Mean Error Distance (MED) by up to 72% over the state-of-the-art approximate adders,
with an energy penalty of just 8% in the worst scenario. The integration of the new approximate
adder within a more complex application, such as the 2D digital image filtering, has shown even
better results. In such a case, the MED is reduced by up to 97% with respect to the FPGA-based
counterparts proposed in the literature.

Keywords: approximate adders; digital data-paths; Field Programmable Gate Array (FPGA);
low power designs

1. Introduction

Modern digital electronics design must operate in energy efficient, low-cost, and resource-constrained
environments. Unfortunately, the conventional approaches known in the literature to save power
consumption [1,2], although acting at the algorithm as well as at the architecture, circuit, and transistor levels,
may not be effective enough in such contexts, unless renouncing to very high speeds. In fact, in many cases,
state-of-the-art digital circuits are required to accelerate emerging applications, such as data mining and
recognition, data analytics, multimedia processing, machine learning, and the Internet of Things (IoT), just to
name few [3,4], which demand impressive computational capabilities and very high performance levels
to process huge amounts of data. However, the error-resilient feature of these applications has afforded
promising opportunities to achieve new and even more efficient low-power design approaches. As an
example, the approximate computing is known as a powerful technique that relaxes the constraint of an

Electronics 2020, 9, 1529; doi:10.3390/electronics9091529 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-1363-9201
https://orcid.org/0000-0002-9528-1110
http://dx.doi.org/10.3390/electronics9091529
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/9/1529?type=check_update&version=3

Electronics 2020, 9, 1529 2 of 19

exact computation, in order to trade the quality of the result with speed, area, and energy consumption [5–7].
As recently demonstrated in a plethora of papers [5–18], employing approximate arithmetic data-paths
obviously introduces errors in the performed computations, but allows the computational time, the energy
consumption, and the resources requirements to be reduced, thus ensuring a good quality-energy trade-off
to be achieved.

As it is well known, additions and multiplications are the basic operations in almost all digital
data-paths. Therefore, it is not surprising that the design of approximate adders and multipliers have
received a great deal of attention. However, the vast majority of the existing architectures are oriented to
the design of Application Specific Integrated Circuits (ASICs) that efficiently exploit low-level techniques
based on the gate- and transistor-level circuit modifications [5–15]. Unfortunately, these techniques
cannot be applied directly to circuit designs based on Field Programmable Gate Arrays (FPGAs).
In fact, the unique structure of FPGA devices, consisting of a reduced set of hardware primitives,
such as Look-Up Tables (LUTs), dedicated interconnections, Blocks of Random Access Memories
(BRAMs), and Digital Signal Processors (DSPs), makes impossible (or at least inefficient) to replicate an
ASIC-based approximate arithmetic circuit on an FPGA device [16]. On the other hand, giving up the
approximate computing on FPGA devices would be a pity. Indeed, due to their flexibility, run-time
reconfigurability, and short time-to-market, FPGA devices are widely recognized as efficient realization
platforms for all the above-cited emerging applications. For this reason, researchers have recently
focused their attention on specific design techniques aimed to efficiently exploit the approximate
computing within FPGA devices [16–18].

This paper describes a new approximate addition technique that is able to efficiently exploit
the configurable resources available within an FPGA device. An n-bit approximate adder typically
consists of two portions: the inexact sub-adder, which processes the k least significant bits (LSBs)
of the operands, and the precise sub-adder that instead adds the n − k most significant bits (MSBs)
of the operands. In the inexact adder designed proposed here, the k LSBs are summed two-by-two
by using 4-input LUTs, each performing a precise 2-bit addition with the zeroed carry-in. In this
way, each LUT provides two consecutive sum bits. The inexact addition also provides the carry-in
to the subsequent precise sub-adder. In contrast to the approximate adders existing in the literature
and suitable for FPGA-based designs, here referenced as the competitors [13,16–18], each couple of
consecutive sum bits are computed taking their internal intermediate carry signal into account in an
efficient way. As demonstrated in the following, due to this, the novel addition technique introduces
computation errors that are significantly lower than those of its counterparts.

Several approximate adders designed as proposed here were characterized, at different levels of
approximation, in terms of resources requirements, energy consumption, and computational delay.
For the purposes of comparison with state-of-the-art competitors, the minimum and the maximum
errors, the Average Error (AE), the Mean Error Distance (MED), also known as the Mean Absolute
Error (MAE), and the Root Mean Square Error (RMSE) were also evaluated as the error metrics.
The comparison results demonstrate that the novel technique achieves significantly improved error
characteristics without compromising either the resources requirement or the power consumption.
Moreover, the errors distribution analysis, performed with various values of k and assuming the
uniform distribution of the operands, shows that the proposed approach always allows the occurrences
of the zero error to be maximized.

In order to validate the new approximate addition technique, it was applied to the 2D digital image
filtering. Similar experiments were conducted adopting the competitors’ approximation strategies.
More specifically, Laplacian, Gaussian Blur, and Sobel filters were referenced in the case studies and
comparisons were performed referring to different benchmark images in terms of the MED, the Mean
Squared Error (MSE) and the Peak Signal-to-Noise Ratio (PSNR). All the performed tests confirmed
the superiority of the novel approximate addition.

The main contributions and novelties provided in this work can be summarized as follows:

Electronics 2020, 9, 1529 3 of 19

1. An innovative inexact addition logic that improves the accuracy of approximate adders is
presented. Novel approximate addition circuits, described using the Very High-Speed Integrated
Circuits Hardware Description Language (VHDL) and parametric constructs, are synthesized
and implemented within state-of-the-art FPGA devices;

2. The logic design has been performed to efficiently exploit the specific resources available in the
latest FPGA platforms of major vendors;

3. The hardware implementations of novel approximate adders based on the proposed approach are
characterized referring to different operands word-lengths and various levels of approximation;
moreover, they are compared to several state-of-the-art competitors in terms of both circuit level
characteristics and accuracy;

4. The proposed approximate addition logic has been finally applied to the design of 2D digital
image filters and its impact on the overall accuracy and energy consumption has been evaluated.

The rest of the paper is organized as follows. Section 2 provides a brief background and a short
literature review; the proposed approximate addition strategy is introduced in Section 3, which also
presents the results obtained by the comparison with state-of-the-art counterparts; Section 4 shows
how the novel approximate addition and its competitors affect the accuracy of the 2D digital image
filtering; finally, the conclusions are drawn in Section 5.

2. Background and Related Works

Typically, conventional approximate addition techniques split the n-bit operands A(n − 1:0) = A(n − 1)
. . . A(0) and B(n − 1:0) = B(n − 1) . . . B(0) into the sub-words AMSB = A(n − 1) . . . A(k), ALSB = A(k − 1)
. . . A(0), BMSB = B(n − 1) . . . B(k), and BLSB = B(k − 1) . . . B(0). As schematized in Figure 1a, while the
k-bit sub-words ALSB and BLSB are summed through an Inaccurate Adder (IA), AMSB and BMSB are
inputted to a (n − k)-bit Precise Adder (PA). Having assumed to receive 2′s complement operands as
inputs, the latter can perform its computation by exploiting (n − k) cascaded Full-Adders (FAs) and an
auxiliary logic module to manage the eventual overflows (OVF). In some approximation schemes, the PA
receives the carry-in signal ck from the IA, whereas other approaches set ck to a constant value. Anyway,
the greater k the higher the error introduced on the final (n + 1)-bit result S(n:0).

When designed for the ASIC implementations, such an approximation strategy can be efficiently
exploited by several addition structures, like the Ripple-Carry (RCA), the Carry-Look-Ahead
(CLA), the Parallel-Prefix (PPA), and so on. Indeed, ASIC designs use the logic gates as the
basic building blocks to achieve the desired circuit structure. Conversely, when the FPGAs are
the target implementation platforms, the desired computational logic is generated using LUTs, DSPs,
and dedicated interconnections. As it is widely known [16,17], the carry-propagate architecture makes
the best use of the dedicated resources available within current FPGA devices for the implementation
of fast carry chains [19,20]. For this reason, the approximate adders presented in [13,16,17] and suitable
for FPGA-based designs exploit the circuit topology schematized in Figure 1a and they mainly differ
from each other for the logic adopted within the sub-adder IA.

The example reported in Figure 1b shows how two 16-bit signed operands are summed by the
Lower-part OR Adder (LOA) presented in [13], when k = 8. As illustrated in the schematic and also
depicted in Figure 1b, the k LSBs of the input data are just OR-ed to compute the sub-word S(k − 1:0).
In this case, the carry signal ck is also computed as the logic AND between the bits A(k − 1) and B(k − 1)
to be then used in computing the sum bits S(n), . . . , S(k).

The design methodology presented in [16] allows different topologies of approximate adders to
be built in FPGA-based systems. There, the LUT primitives are directly instantiated by specifying their
logic functions through the INIT attribute [19]. Among the designs validated in [16], the most accurate
Approximate Adder-6 (AA6) is referenced in Figure 1c. The INIT values used for the LUT3 and the
LUT5 primitives employed in the sub-adder IA are ‘8E’ and ‘E080FEF8’, respectively [16], which are
equivalent to the Karnaugh maps also reported in Figure 1c. The latter finally shows that, for the

Electronics 2020, 9, 1529 4 of 19

referred example of 16-bit addition, the result produced by such an approximate adder differs from
that furnished by the LOA. Obviously, this is due to the different logic adopted by the IA sub-adder.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 19

from that furnished by the LOA. Obviously, this is due to the different logic adopted by the IA sub-
adder.

(a)

(b)

(c)

Figure 1. Existing approximate adders: (a) the top-level architecture; (b) Lower-part OR Adder (LOA)
[13]; (c) AA6 [16].

The Hardware Optimized and Error Reduced Approximate Adder (HOERAA) presented in [17]
provides another different result. As depicted in Figure 2a, such an adder sets the k − 2 LSBs of the
sum to a constant 1 (i.e., Vdd), whereas the two most significant sum bits of the sub-adder IA are
computed by a simple multiplexing logic. It can be seen that, for the referred example, the result
furnished by HOERAA differs from that generated by the LOA for the sum bit S(k − 1). Conversely, it
differs from the sum produced by AA6 for all the even bit positions of the inaccurate portion of the
output.

The embedded processor recently proposed in [18] adopts a quite different strategy to design a
32-bit Approximate Sklansky Parallel-Prefix Adder. The latter computes, for each bit position i of the
operands, with i = n − 1, …, 0, the propagate (P(i) = A(i) ⊕ B(i)) and the generate (G(i) = A(i)⋅B(i)) signals

Figure 1. Existing approximate adders: (a) the top-level architecture; (b) Lower-part OR Adder
(LOA) [13]; (c) AA6 [16].

The Hardware Optimized and Error Reduced Approximate Adder (HOERAA) presented in [17]
provides another different result. As depicted in Figure 2a, such an adder sets the k − 2 LSBs of the sum
to a constant 1 (i.e., Vdd), whereas the two most significant sum bits of the sub-adder IA are computed
by a simple multiplexing logic. It can be seen that, for the referred example, the result furnished by
HOERAA differs from that generated by the LOA for the sum bit S(k − 1). Conversely, it differs from
the sum produced by AA6 for all the even bit positions of the inaccurate portion of the output.

Electronics 2020, 9, 1529 5 of 19

Electronics 2020, 9, x FOR PEER REVIEW 5 of 19

that are then grouped through the classical DOT2 logic function to form the carry chains. As evident
from Figure 2b, five levels of DOT2 are necessary to furnish all the carry signals. The generic carry cj,
with j = 31, …, 1, is then XORed with the signal P(j) to produce the sum bit S(j). With the carry-in of
the adder being assumed equal to zero, the least significant sum bit is equal to P(0). Finally, the most
significant sum bit is obtained by XORing the carry c32 with the propagate signal P(31), as required
to manage the eventual overflows. As explained in [18], three different levels of approximation can
be achieved by omitting the DOT2 cells enclosed within the colored areas L1, L2, and L3 visible in
Figure 2b. Also, for this architecture, the most accurate condition is referred in the following. It occurs
when only the DOTs within the L1 area are omitted.

(a)

(b)

Figure 2. Existing approximate adders: (a) Hardware Optimized and Error Reduced Approximate
Adder (HOERAA) [17]; (b) Sklansky [18].

3. The Novel Approximation Strategy

In line with most of the prior works described in the previous section, the approximation scheme
here presented makes use of a k-bit IA and a (n − k)-bit PA, with k being the number of inaccurate
LSBs introduced in the resulting sum. The main idea consists in splitting the k LSBs of the operands
into 2 2-bit groups that are summed independently of each other. Obviously, many addition
logics could be implemented to this aim. Anyway, in order to achieve the most accurate approximate
results, the 2- and the 3-bit numbers closest to the correct 3-bit results obtained by summing 2-bit
operands, with and without generating the carry-out signal, were examined.

The addition functions able to compute the most accurate 2- and 3-bit inexact attainable results
are named ADD and ADDwc, respectively. Table 1 compares these functions to the correct results
produced when the generic 2-bit addition A(i + 1:i) + B(i + 1:i) is performed with ci being the incoming
carry. It must be noted that both the approximate functions ADD and ADDwc assume the zero-
incoming carry. Moreover, the former furnishes only the two sum bits S(i + 1) and S(i), whereas the
latter generates the carry-out ci + 2 as well. By implementing the approximations reported in Table 1,
the computational capability of the LUT primitives available within modern FPGAs can be efficiently
exploited to perform the generic 2-bit addition taking the intermediate carry signal into account.

Figure 2. Existing approximate adders: (a) Hardware Optimized and Error Reduced Approximate
Adder (HOERAA) [17]; (b) Sklansky [18].

The embedded processor recently proposed in [18] adopts a quite different strategy to design a
32-bit Approximate Sklansky Parallel-Prefix Adder. The latter computes, for each bit position i of the
operands, with i = n− 1, . . . , 0, the propagate (P(i) = A(i)⊕ B(i)) and the generate (G(i) = A(i)·B(i)) signals
that are then grouped through the classical DOT2 logic function to form the carry chains. As evident
from Figure 2b, five levels of DOT2 are necessary to furnish all the carry signals. The generic carry cj,
with j = 31, . . . , 1, is then XORed with the signal P(j) to produce the sum bit S(j). With the carry-in of
the adder being assumed equal to zero, the least significant sum bit is equal to P(0). Finally, the most
significant sum bit is obtained by XORing the carry c32 with the propagate signal P(31), as required
to manage the eventual overflows. As explained in [18], three different levels of approximation can
be achieved by omitting the DOT2 cells enclosed within the colored areas L1, L2, and L3 visible in
Figure 2b. Also, for this architecture, the most accurate condition is referred in the following. It occurs
when only the DOTs within the L1 area are omitted.

3. The Novel Approximation Strategy

In line with most of the prior works described in the previous section, the approximation scheme
here presented makes use of a k-bit IA and a (n − k)-bit PA, with k being the number of inaccurate LSBs
introduced in the resulting sum. The main idea consists in splitting the k LSBs of the operands into

⌈
k
2

⌉
2-bit groups that are summed independently of each other. Obviously, many addition logics could be
implemented to this aim. Anyway, in order to achieve the most accurate approximate results, the 2-
and the 3-bit numbers closest to the correct 3-bit results obtained by summing 2-bit operands, with and
without generating the carry-out signal, were examined.

The addition functions able to compute the most accurate 2- and 3-bit inexact attainable results are
named ADD and ADDwc, respectively. Table 1 compares these functions to the correct results produced
when the generic 2-bit addition A(i + 1:i) + B(i + 1:i) is performed with ci being the incoming carry.
It must be noted that both the approximate functions ADD and ADDwc assume the zero-incoming carry.

Electronics 2020, 9, 1529 6 of 19

Moreover, the former furnishes only the two sum bits S(i + 1) and S(i), whereas the latter generates the
carry-out ci + 2 as well. By implementing the approximations reported in Table 1, the computational
capability of the LUT primitives available within modern FPGAs can be efficiently exploited to perform
the generic 2-bit addition taking the intermediate carry signal into account. Indeed, as it is well known,
both Xilinx and Intel devices [19,20] provide fracturable LUTs that can support multiple logic functions.
As an example, the generic LUT primitive can be configured to perform two 5-input logic functions.
This means that the basic ADD function referred in Table 1 requires only one LUT to provide the 2-bit
sum S(i + 1:i). Conversely, to furnish its three outputs ci + 2, S(i + 1) and S(i), the function ADDwc
must employ two LUTs.

Table 1. The basic logic of the proposed approximation scheme.

A(i + 1:i) B(i + 1:i) Correct with ci = 0
ci + 2 S(i + 1:i)

Correct with ci = 1
ci + 2 S(i + 1:i)

ADD
S(i + 1:i)

ADDwc
ci + 2 S(i + 1:i)

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1 1 1 0 0 1 0
0 0 1 1 0 1 1 1 0 0 1 1 0 1 1
0 1 0 0 0 0 1 0 1 0 0 1 0 0 1
0 1 0 1 0 1 0 0 1 1 1 0 0 1 0
0 1 1 0 0 1 1 1 0 0 1 1 0 1 1
0 1 1 1 1 0 0 1 0 1 1 1 1 0 0
1 0 0 0 0 1 0 0 1 1 1 0 0 1 0
1 0 0 1 0 1 1 1 0 0 1 1 0 1 1
1 0 1 0 1 0 0 1 0 1 1 1 1 0 0
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
1 1 0 0 0 1 1 1 0 0 1 1 0 1 1
1 1 0 1 1 0 0 1 0 1 1 1 1 0 0
1 1 1 0 1 0 1 1 1 0 1 1 1 0 1
1 1 1 1 1 1 0 1 1 1 1 1 1 1 0

Figure 3a illustrates the top-level architecture of the k-bit inaccurate adder based on the proposed
approach. It can be seen that the sub-adder IA employs

⌈
k
2

⌉
− 1 instances of the module ADD,

each summing two adjacent bits of the operands A and B, and the module ADDwc, which computes
the two most significant inaccurate sum bits, S(k − 1) and S(k − 2), and the carry signal ck then inputted
to the PA. Figure 3a also reports an example of approximate addition performed by the proposed
adder, whereas Figure 3b,c illustrate, respectively, the gate-level structures of the modules ADD and
ADDwc adopted here.

Several versions of the novel approximate adder have been implemented using the Artix-7
xc7a100tcsg324-3 device. In order to do this, parametric VHDL constructs were purposely written,
and the Vivado Design Suite has been used to perform simulations, synthesis and implementations.
Then, all the compared circuits were characterized in terms of resources requirements, computational
delay, and energy consumption, assuming that, as typically happens in any digital data-path, inputs
and outputs are registered. Preliminarily, post-layout validation tests were performed on 32-bit signed
adders with k = 2, . . . , 16. In order to avoid sparse and ineffective placements, the geometrical
constraints reported in Figure 4a have been adopted to implement all the characterized adders.
Such constraints not only allow the employed LUTs, FFs, and 4-bit carry chains (CARRY4) resources to
be mapped within a specific delimited rectangular area, but they ensure also that the clock distribution
equally affects the energy consumption and the computational delay of all the implementations.
Figure 4b–d illustrate some of the laid out 32-bit designs, including the Full-Precision (FP) counterpart.
It can be seen that the occupied resources (highlighted in red) are arranged in columns to fully
exploit the dedicated carry-chain interconnections available on-chip [19]. It is worth noting that the

Electronics 2020, 9, 1529 7 of 19

approximate adders New and AA6 [16] of Figure 4c,d span over carry chains shorter than the FP adder,
thus using a reduced number of LUTs and CARRY4 primitives.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 19

Indeed, as it is well known, both Xilinx and Intel devices [19,20] provide fracturable LUTs that can
support multiple logic functions. As an example, the generic LUT primitive can be configured to
perform two 5-input logic functions. This means that the basic ADD function referred in Table 1
requires only one LUT to provide the 2-bit sum S(i + 1:i). Conversely, to furnish its three outputs ci +
2, S(i + 1) and S(i), the function ADDwc must employ two LUTs.

Table 1. The basic logic of the proposed approximation scheme.

A(i + 1:i) B(i + 1:i)
Correct with ci = 0
ci + 2 S(i + 1:i)

Correct with ci = 1
ci + 2 S(i + 1:i)

ADD
S(i + 1:i)

ADDwc
ci + 2 S(i + 1:i)

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1 1 1 0 0 1 0
0 0 1 1 0 1 1 1 0 0 1 1 0 1 1
0 1 0 0 0 0 1 0 1 0 0 1 0 0 1
0 1 0 1 0 1 0 0 1 1 1 0 0 1 0
0 1 1 0 0 1 1 1 0 0 1 1 0 1 1
0 1 1 1 1 0 0 1 0 1 1 1 1 0 0
1 0 0 0 0 1 0 0 1 1 1 0 0 1 0
1 0 0 1 0 1 1 1 0 0 1 1 0 1 1
1 0 1 0 1 0 0 1 0 1 1 1 1 0 0
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
1 1 0 0 0 1 1 1 0 0 1 1 0 1 1
1 1 0 1 1 0 0 1 0 1 1 1 1 0 0
1 1 1 0 1 0 1 1 1 0 1 1 1 0 1
1 1 1 1 1 1 0 1 1 1 1 1 1 1 0

Figure 3a illustrates the top-level architecture of the k-bit inaccurate adder based on the proposed
approach. It can be seen that the sub-adder IA employs 2 − 1 instances of the module ADD, each
summing two adjacent bits of the operands A and B, and the module ADDwc, which computes the
two most significant inaccurate sum bits, S(k − 1) and S(k − 2), and the carry signal ck then inputted
to the PA. Figure 3a also reports an example of approximate addition performed by the proposed
adder, whereas Figure 3b,c illustrate, respectively, the gate-level structures of the modules ADD and
ADDwc adopted here.

(a)

(b)

(c)

Figure 3. The proposed approximate adder: (a) the top-level structure; (b) the ADD module; (c) the
ADDwc module.

Electronics 2020, 9, x FOR PEER REVIEW 7 of 19

Several versions of the novel approximate adder have been implemented using the Artix-7

xc7a100tcsg324-3 device. In order to do this, parametric VHDL constructs were purposely written,

and the Vivado Design Suite has been used to perform simulations, synthesis and implementations.

Then, all the compared circuits were characterized in terms of resources requirements, computational

delay, and energy consumption, assuming that, as typically happens in any digital data-path, inputs

and outputs are registered. Preliminarily, post-layout validation tests were performed on 32-bit

signed adders with k = 2, …, 16. In order to avoid sparse and ineffective placements, the geometrical

constraints reported in Figure 4a have been adopted to implement all the characterized adders. Such

constraints not only allow the employed LUTs, FFs, and 4-bit carry chains (CARRY4) resources to be

mapped within a specific delimited rectangular area, but they ensure also that the clock distribution

equally affects the energy consumption and the computational delay of all the implementations.

Figure 4b–d illustrate some of the laid out 32-bit designs, including the Full-Precision (FP)

counterpart. It can be seen that the occupied resources (highlighted in red) are arranged in columns

to fully exploit the dedicated carry-chain interconnections available on-chip [19]. It is worth noting

that the approximate adders New and AA6 [16] of Figure 4c,d span over carry chains shorter than

the FP adder, thus using a reduced number of LUTs and CARRY4 primitives.

(a)

 (b) (c) (d)

Figure 4. Some layouts of 32-bit adders: (a) constraints used; (b) FP; (c) New; (d) AA6 [16].

A sketch of the comparison results obtained for k = 8 is reported in Table 2. The latter includes

the 32-bit FP Ripple-Carry Adder and the Sklansky Parallel-Prefix Adder presented in [18] operating

with the approximation level L1. It is worth highlighting that also the competitors were implemented

by using the available LUTs as efficiently as possible. Post-placement, post-routing, and timing

reports, automatically generated for each analyzed adder by the development tool, provided the

number of used LUTs and FFs, as well as the minimum clock period. Moreover, the Vivado Report

Figure 4. Some layouts of 32-bit adders: (a) constraints used; (b) FP; (c) New; (d) AA6 [16].

Electronics 2020, 9, 1529 8 of 19

A sketch of the comparison results obtained for k = 8 is reported in Table 2. The latter includes the
32-bit FP Ripple-Carry Adder and the Sklansky Parallel-Prefix Adder presented in [18] operating with
the approximation level L1. It is worth highlighting that also the competitors were implemented by
using the available LUTs as efficiently as possible. Post-placement, post-routing, and timing reports,
automatically generated for each analyzed adder by the development tool, provided the number of
used LUTs and FFs, as well as the minimum clock period. Moreover, the Vivado Report Power Tool
has been used to estimate the power consumption of each adder based on the actual switching activity
of the circuit internal nodes. The latter has been obtained by a post-implementation timing simulation
by feeding the adder under analysis with 2000 couples of random input operands at its maximum
clock frequency. It is worth noting that Table 2 shows only the dynamic energy consumption of the
adders: indeed, the static energy contribution depends only on the total number of hardware resources
available on the chosen FPGA chip.

Table 2. Post-layout characterization results and error metrics of 32-bit signed adders for k = 8.

Adder #LUTs #FFs Tclk
(ns)

Energy
(pJ) AE MED RMSE L(n,k) F(n,k)

FP 32 97 2.15 17.78 0 0 0 n 3n + 1
New 28 97 1.9 16.93 −13.125 13.125 20.17 n− k +

⌈
k
2

⌉
3n + 1

LOA [13] 28 97 1.9 16.62 0.25 47.875 64 n− k +
⌈

k
2

⌉
3n + 1

HOERAA [17] 25 79 1.9 15.64 −8 31.996 41.299 n − k + 1 3(n − k + 2) + 1
AA6 [16] 28 97 1.9 17.06 0 47.11 66.1 n− k +

⌈
k
2

⌉
3n + 1

SklanskyL1 [18] 66 97 3.6 30.24 −18.8235 18.8235 23.2834 - -

From Table 2, it can be seen that, HOERAA excepted, all the compared architectures use the
same number of Flip-Flops (FFs) to register inputs and outputs. Moreover, it must be noted that,
as expected, the Sklansky adder is the most expensive in terms of occupied LUTs and the most energy
hungry, whereas HOERAA is the cheapest and the less energy consuming architecture. This is due to
its approximation strategy that, independently of the operands, always sets the k LSBs of the output
to 1, thus allowing both the resources and the energy dissipation required to compute them to be
saved. Table 2 also provides the parameters L(n,k) and F(n,k) that are the number of required LUTs
and FFs, respectively, depending on the operands word-length n and the number of inaccurate LSBs k.
Unfortunately, such a prediction is not as easy for the Sklansky adder.

In terms of the minimum clock period Tclk, it is interesting to note that while LOA [13],
HOERAA [17], AA6 [16], and the new adder, due to their approximate operating modes, are faster
than the FP implementation, the Sklansky adder [18] is ~67% slower. This is due to its inefficient way
of using the dedicated resources available within the referred FPGA device for the implementation of
fast carry chains.

Finally, Table 2 reports the Average Error (AE), the Mean Error Distance (MED), and the Root
Mean Square Error (RMSE) obtained by exhaustively simulating all the examined addition circuits.
It can be seen that, in terms of MED and RMSE, the novel approximation scheme exhibits the best
behavior. However, errors characteristics of the compared approximate adders are examined and
discussed in more detail in the following sub-section.

In order to show how the hardware complexity of the novel approximate adder scales with n and
k, post-layout characterization results obtained for n = 64 and k ranging from 8 to 32 are reported in
Table 3. As expected, the advantages achieved over the FP counterpart are even more evident: the
energy consumption, the minimum clock period and the amount of occupied LUTs are reduced by up
to 25%, 26%, and 14.4%, respectively.

Electronics 2020, 9, 1529 9 of 19

Table 3. Post-layout characterization results of 64-bit adders.

Adder #LUTs #FFs Tclk (ns) Energy (pJ)

FP 64 193 2.89 30.5
New k = 8 60 193 2.7 29

New k = 12 58 193 2.68 27.4
New k = 16 56 193 2.47 26.9
New k = 24 52 193 2.23 26.8
New k = 32 48 193 2.14 26.1

Error Characteristics and Energy-Delay-Accuracy Tradeoff

As explained above, both the ADD and ADDwc modules employed in the novel approximate
adder have been designed not only to reduce the number of cases in which an error is introduced
on the performed additions, but also to drop the errors values, with respect to the competitors.
In order to show that the approximation logic adopted here fulfills these features, let us analyze the
errors introduced by the modules ADD and ADDwc in the cases above referenced in Table 1 and
summarized in Tables 4 and 5, respectively. The errors introduced by the approximation schemes
adopted in LOA [13], AA6 [16], and HOERAA [17] are also reported to show that the proposed logic
actually reduces both the number of cases in which an error is introduced and the errors values. It is
worth noting that, for the adder AA6, two different conditions are referenced depending on the bits
A(i − 1) and A(k − 3) that, as schematized in Figure 1c, are used as the carry-in of the 2-bit additions
performed to compute, respectively, the 2-bit sums S(i + 1:i) and S(k − 1:k − 2) [16]. Table 5 also
shows that, with respect to the correct results obtained with ck − 2 = 0, only the approximation logic
exploited here to process the most significant bit positions of the IA sub-adder does not introduce
errors. Conversely, when ck − 2 = 1, the ADDwc module introduces the constant error −1. As shown
in the following, the behavior of the basic modules ADD and ADDwc allows the error characteristics
of the n-bit approximate adder designed as proposed here to be significantly improved with respect to
the existing architectures.

Table 4. Errors introduced by inexact 2-bit addition schemes.

Operation: A(i + 1:i) + B(i + 1:i) with ci = 0 Operation: A(i + 1:i) + B(i + 1:i) with ci = 1

New
LOA
[13]

AA6 [16] HOERAA
[17] New

LOA
[13]

AA6 [16] HOERAA
[17]A(i−1) = 0 A(i−1) = 1 A(i−1) = 0 A(i−1) = 1

0 0 0 1 3 −1 −1 −1 0 2
0 0 0 2 2 −1 −1 −1 1 1
0 0 0 1 1 −1 −1 −1 0 0
0 0 0 0 0 −1 −1 −1 −1 −1
0 0 −1 1 2 −1 −1 −2 0 1
0 −1 0 1 1 −1 −2 −1 0 0
0 0 −1 −1 0 −1 −1 −2 −2 −1
−1 −1 −2 −1 −1 −2 −2 −3 −2 −2
0 0 2 3 1 −1 −1 1 2 0
0 0 2 2 0 −1 −1 1 1 −1
−1 −2 0 1 −1 −2 −3 −1 0 −2
−2 −2 0 2 −2 −3 −3 −1 1 −3
0 0 1 1 0 −1 −1 0 0 −1
−1 −1 0 1 −1 −2 −2 −1 0 −2
−2 −2 −1 1 −2 −3 −3 −2 0 −3
−3 −3 0 1 −3 −4 −4 −1 0 −4

Electronics 2020, 9, 1529 10 of 19

Table 5. Errors introduced on the 2 MSBs of the inexact adders.

Operation: A(k − 1:k − 2) + B(k − 1:k − 2) with ck − 2 = 0 Operation: A(k − 1:k − 2) + B(k − 1:k − 2) with ck − 2 = 1

New
LOA
[13]

AA6 [16] HOERAA
[17] New

LOA
[13]

AA6 [16] HOERAA
[17]A(i−1) = 0 A(i−1) = 1 A(k−3) = 0 A(k−3) = 1

0 0 0 1 0 −1 −1 −1 0 −1
0 0 0 2 0 −1 −1 −1 1 −1
0 0 0 1 0 −1 −1 −1 0 −1
0 0 0 0 0 −1 −1 −1 −1 −1
0 0 −1 1 0 −1 −1 −2 0 −1
0 −1 0 1 −1 −1 −2 −1 0 −2
0 0 −1 −1 0 −1 −1 −2 −2 −1
0 −1 −2 −1 −1 −1 −2 −3 −2 −2
0 0 2 3 0 −1 −1 1 2 −1
0 0 2 2 0 −1 −1 1 1 −1
0 2 0 1 0 −1 1 −1 0 −1
0 2 0 2 0 −1 1 −1 1 −1
0 0 1 1 0 −1 −1 0 0 −1
0 −1 0 1 −1 −1 −2 −1 0 −2
0 2 −1 1 0 −1 1 −2 0 −1
0 1 0 1 1 −1 0 −1 0 0

In order to examine the accuracy behavior of the proposed approximation scheme, its errors
distributions have been analyzed assuming the uniform distribution of two n-bit signed operands A
and B and considering values of k ranging from 2 to 16. A similar analysis has been conducted for the
competitors LOA [13], AA6 [16], and HOERAA [17]. Some of the obtained errors distributions are
plotted in Figure 5. The latter shows that, as expected, the novel approximate adder maximizes the
occurrence of the zero error, and it does not introduce positive errors. This behavior has been observed
in all the examined cases. Such an analysis has been useful also to evaluate the error ranges of the
compared adders. Table 6 clearly shows the better behavior of the novel adder over its counterparts in
terms of both the minimum and the maximum errors even in comparison with the Sklansky adder
presented in [18].

Electronics 2020, 9, x FOR PEER REVIEW 10 of 19

0 −1 0 1 −1 −1 −2 −1 0 −2
0 0 −1 −1 0 −1 −1 −2 −2 −1
0 −1 −2 −1 −1 −1 −2 −3 −2 −2
0 0 2 3 0 −1 −1 1 2 −1
0 0 2 2 0 −1 −1 1 1 −1
0 2 0 1 0 −1 1 −1 0 −1
0 2 0 2 0 −1 1 −1 1 −1
0 0 1 1 0 −1 −1 0 0 −1
0 −1 0 1 −1 −1 −2 −1 0 −2
0 2 −1 1 0 −1 1 −2 0 −1
0 1 0 1 1 −1 0 −1 0 0

In order to examine the accuracy behavior of the proposed approximation scheme, its errors
distributions have been analyzed assuming the uniform distribution of two n-bit signed operands A and
B and considering values of k ranging from 2 to 16. A similar analysis has been conducted for the
competitors LOA [13], AA6 [16], and HOERAA [17]. Some of the obtained errors distributions are plotted
in Figure 5. The latter shows that, as expected, the novel approximate adder maximizes the occurrence of
the zero error, and it does not introduce positive errors. This behavior has been observed in all the
examined cases. Such an analysis has been useful also to evaluate the error ranges of the compared adders.
Table 6 clearly shows the better behavior of the novel adder over its counterparts in terms of both the
minimum and the maximum errors even in comparison with the Sklansky adder presented in [18].

(a)

-10 -8 -6 -4 -2 0 2 4 6 8 10

Error distributions k=4

New

LOA

HOERAA

AA6
40

60

50

30

20

10

0

O
cc

ur
re

nc
es

Error value
-10 -8 -6 -4 -2 0 2 4 6 8 10

Error distributions for k=4

New

LOA [13]
HOERAA [17]

AA6 [16]

Figure 5. Cont.

Electronics 2020, 9, 1529 11 of 19Electronics 2020, 9, x FOR PEER REVIEW 11 of 19

(b)

Figure 5. Error distributions related to: (a) k = 4; (b) k = 6.

Table 6. Minimum and maximum errors.

Adder Minimum Maximum
Full-Precision 0 0

New −2 + 1 0
LOA [13] −2 + 1 2

HOERAA [17] −2 + 1 2 − 1

AA6 [16] −2 + 2 + 2 2 − 2 − 2

SklanskyL1 * [18] −40 0
* Data is related to the 32-bit implementation.

Many error metrics have been evaluated through C++ software routines purpose-written to
perform the exhaustive simulations for the cases in which n-bit signed additions are executed with k
ranging from 2 to 16. Figure 6 plots the AE, the MED, and the RMSE obtained, as defined in [6], for
all the compared approximate adders.

As visible in Figure 6a, the approximation schemes LOA [13] and AA6 [16] keep their AE constant,
respectively, to 0.25 and 0, independently of k. Conversely, the AEs related to HOERAA [17] and to the
proposed adder decrease as the value of k increases and the new approximate adder seems to perform
worse than its counterparts. Anyway, it must be noted that in contrast to its competitors, the
proposed adder does not introduce positive errors that compensate for the negative ones, with the
obvious effect on the AE. Moreover, as deeply discussed in [6], the RMSE and the MED are more
effective error metrics to establish which approximate adder introduces lower errors. Results plotted
in Figure 6b,c demonstrate the much better behavior of the new approximation scheme that, at a
parity of k, exhibits RMSE values ∼49% lower than HOERAA and ∼70% better than LOA and AA6.
Even better results are obtained in terms of MED, which is reduced by ∼58% with respect to HOERAA
and by ∼72% with respect to LOA and AA6.

-42 -36 -30 -24 -18 -12 -6 0 6 12 18 24 30 36 42

Error distributions k=6

New
LOA
HOERAA
AA6

35

40

30

0

20

25

15

10

5

Error value
-42 -36 -30 -24 -18 -12 -6 0 6 12 18 24 30 36 42

O
cc

ur
re

nc
es

Error distributions for k=6

New

LOA [13]
HOERAA [17]
AA6 [16]

Figure 5. Error distributions related to: (a) k = 4; (b) k = 6.

Table 6. Minimum and maximum errors.

Adder Minimum Maximum

Full-Precision 0 0
New −2k−2 + 1 0

LOA [13] −2k−1 + 1 2k−1

HOERAA [17] −2k−1 + 1 2k−1
− 1

AA6 [16] −2k +
2∑

i=k−2
2i + 2 2k

−

2∑
i=k−2

2i
− 2

SklanskyL1 * [18] −40 0

* Data is related to the 32-bit implementation.

Many error metrics have been evaluated through C++ software routines purpose-written to
perform the exhaustive simulations for the cases in which n-bit signed additions are executed with k
ranging from 2 to 16. Figure 6 plots the AE, the MED, and the RMSE obtained, as defined in [6], for all
the compared approximate adders.

As visible in Figure 6a, the approximation schemes LOA [13] and AA6 [16] keep their AE constant,
respectively, to 0.25 and 0, independently of k. Conversely, the AEs related to HOERAA [17] and to
the proposed adder decrease as the value of k increases and the new approximate adder seems to
perform worse than its counterparts. Anyway, it must be noted that in contrast to its competitors,
the proposed adder does not introduce positive errors that compensate for the negative ones, with the
obvious effect on the AE. Moreover, as deeply discussed in [6], the RMSE and the MED are more
effective error metrics to establish which approximate adder introduces lower errors. Results plotted in
Figure 6b,c demonstrate the much better behavior of the new approximation scheme that, at a parity of
k, exhibits RMSE values ~49% lower than HOERAA and ~70% better than LOA and AA6. Even better
results are obtained in terms of MED, which is reduced by ~58% with respect to HOERAA and by
~72% with respect to LOA and AA6.

The new approximate adder has also been compared to its counterparts in terms of
energy-delay-accuracy tradeoff. In order to do this, the energy-delay product (EDP) was evaluated
versus the MED and RMSE error metrics. The design spaces reported in Figure 7 clearly demonstrate
that a 32-bit adder designed as proposed here exhibits the best EDP-accuracy tradeoff in all the
examined cases. Indeed, at a given k, it can achieve accuracy values that cannot be reached by any

Electronics 2020, 9, 1529 12 of 19

other competitor. Moreover, the novel approximate adder configured for k = 2 does not introduce any
error and exhibits an EDP ~4% lower than the FP counterpart. In comparison with AA6 at any given k,
the new adder, thanks to its less complex combinatorial logic and the lower number of interconnections,
also offers a better EDP. Conversely, when k ≤ 8, the adders HOERAA and LOA reach slightly lower
EDPs, due to their simplified strategies adopted to approximate the k LSBs, which clearly affect both
the MED and the RMSE. As expected, this effect is more evident in HOERAA for higher k values.
However, it is worth noting that when k ≥ 12 the approximation strategy adopted in HOERAA achieves
a ~17% lower EDP, but with the MED and the RMSE almost doubled with respect to the novel scheme.
Electronics 2020, 9, x FOR PEER REVIEW 12 of 19

(a) (b)

(c)

Figure 6. Error metrics versus k: (a) the Average Error (AE); (b) the Root Mean Square Error (RMSE);
(c) the Mean Error Distance (MED).

The new approximate adder has also been compared to its counterparts in terms of energy-
delay-accuracy tradeoff. In order to do this, the energy-delay product (EDP) was evaluated versus
the MED and RMSE error metrics. The design spaces reported in Figure 7 clearly demonstrate that a
32-bit adder designed as proposed here exhibits the best EDP-accuracy tradeoff in all the examined
cases. Indeed, at a given k, it can achieve accuracy values that cannot be reached by any other
competitor. Moreover, the novel approximate adder configured for k = 2 does not introduce any error
and exhibits an EDP ∼4% lower than the FP counterpart. In comparison with AA6 at any given k, the
new adder, thanks to its less complex combinatorial logic and the lower number of interconnections,
also offers a better EDP. Conversely, when k ≤ 8, the adders HOERAA and LOA reach slightly lower
EDPs, due to their simplified strategies adopted to approximate the k LSBs, which clearly affect both
the MED and the RMSE. As expected, this effect is more evident in HOERAA for higher k values.
However, it is worth noting that when k ≥ 12 the approximation strategy adopted in HOERAA
achieves a ∼17% lower EDP, but with the MED and the RMSE almost doubled with respect to the
novel scheme.

(a)

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

A
E

k

New
LOA [13]
HOERAA [17]
AA6 [16]

0 2 4 6 8 10 12 14 16

0

2000

4000

6000

8000

10,000

12,000

14,000

16,000

R
M

SE
k

New
LOA [13]
HOERAA [17]
AA6 [16]

0 2 4 6 8 10 12 14 16

0

2000

4000

6000

8000

10,000

12,000

M
ED

k

New
LOA [13]
HOERAA [17]
AA6 [16]

0 2 4 6 8 10 12 14 16

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 0.2 0.4 0.6 0.8 1

No
rm

ali
ze

d E
DP

Normalized MED

LOA [13]New
AA6 [16]

k=2
k=4
k=6
k=8

k=12

k=16

FP
k=2

k=4
k=6

k=8
k=12

k=16

HOERAA [17]
k=2

k=4

k=6

k=8

k=12

k=16

k=2k=4
k=6
k=8

k=12
k=16

Figure 6. Error metrics versus k: (a) the Average Error (AE); (b) the Root Mean Square Error (RMSE);
(c) the Mean Error Distance (MED).

Electronics 2020, 9, x FOR PEER REVIEW 12 of 19

(a) (b)

(c)

Figure 6. Error metrics versus k: (a) the Average Error (AE); (b) the Root Mean Square Error (RMSE);
(c) the Mean Error Distance (MED).

The new approximate adder has also been compared to its counterparts in terms of energy-
delay-accuracy tradeoff. In order to do this, the energy-delay product (EDP) was evaluated versus
the MED and RMSE error metrics. The design spaces reported in Figure 7 clearly demonstrate that a
32-bit adder designed as proposed here exhibits the best EDP-accuracy tradeoff in all the examined
cases. Indeed, at a given k, it can achieve accuracy values that cannot be reached by any other
competitor. Moreover, the novel approximate adder configured for k = 2 does not introduce any error
and exhibits an EDP ∼4% lower than the FP counterpart. In comparison with AA6 at any given k, the
new adder, thanks to its less complex combinatorial logic and the lower number of interconnections,
also offers a better EDP. Conversely, when k ≤ 8, the adders HOERAA and LOA reach slightly lower
EDPs, due to their simplified strategies adopted to approximate the k LSBs, which clearly affect both
the MED and the RMSE. As expected, this effect is more evident in HOERAA for higher k values.
However, it is worth noting that when k ≥ 12 the approximation strategy adopted in HOERAA
achieves a ∼17% lower EDP, but with the MED and the RMSE almost doubled with respect to the
novel scheme.

(a)

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

A
E

k

New
LOA [13]
HOERAA [17]
AA6 [16]

0 2 4 6 8 10 12 14 16

0

2000

4000

6000

8000

10000

12000

14000

16000

R
M

SE

k

New
LOA [13]
HOERAA [17]
AA6 [16]

0 2 4 6 8 10 12 14 16

0

2000

4000

6000

8000

10000

12000

M
ED

k

New
LOA [13]
HOERAA [17]
AA6 [16]

0 2 4 6 8 10 12 14 16

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 0.2 0.4 0.6 0.8 1

No
rm

ali
ze

d E
DP

Normalized MED

LOA [13]New
AA6 [16]

k=2
k=4
k=6
k=8

k=12

k=16

FP
k=2

k=4
k=6

k=8
k=12

k=16

HOERAA [17]
k=2

k=4

k=6

k=8

k=12

k=16

k=2k=4
k=6
k=8

k=12
k=16

Figure 7. Cont.

Electronics 2020, 9, 1529 13 of 19Electronics 2020, 9, x FOR PEER REVIEW 13 of 19

(b)

Figure 7. Normalized Energy-Delay-Quality trade-off: (a) EDP versus MED; (b) EDP versus RMSE.

4. The 2D Digital Image Filtering as a Case Study

To ascertain how the novel approximate adder affects the accuracy of more complex computations,
it has been applied to approximate the 2D digital image filtering. The latter processes an H × W input
digital image by convolving each x-bit pixel IP(h,w) of the image, with h = 0, …, H − 1 and w = 0, …, W
− 1, by the chosen g × g filter. In order to do this, a g × g neighborhood is windowed around IP(h,w).
Then, the pixels and the coefficients located at the homologous positions in the neighborhood and in
the filter are multiplied by each other. To compute the multiplication between the generic x-bit pixel IP
and its homologous y-bit coefficient C, y partial products PPj (with j = 0, …, y − 1) are computed, one
for each bit of the multiplier C. They are then aligned with each other, by left shifting each PPj by j bit
positions; and finally, the partial products are summed to generate the (x + y)-bit result.

Among the various possible choices to introduce the approximate addition in the computation
of the generic multiplication, as depicted in Figure 8a, the solution chosen in the case study adds the
partial products through y − 1 cascaded approximate adders. In particular, for each PPj, with j > 1, an
approximate addition is performed with j + 1 inaccurate LSBs to take into account that, due the
aligning left shifts, PPj has j LSBs equal to zero. The g × g approximate products PRp (with p ranging
between 0 and g × g − 1) obtained in this way are then accumulated through an adder tree structure
that, as illustrated in Figure 8b, consists of log levels of two operands additions, all
performed by introducing k inaccurate LSBs. The accumulation furnishes the + +log -bit filtered pixel OP(h,w).

(a)

(b)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 0.2 0.4 0.6 0.8 1

No
rm

al
ize

d
ED

P

Normalized RMSE

LOA [13]
New AA6 [16]

k=2
k=4
k=6
k=8
k=12
k=16

FP
k=2 k=4

k=6
k=8

k=12

k=16

HOERAA [17]
k=2

k=4

k=6

k=8

k=12

k=16

k=2
k=4
k=6
k=8

k=12

k=16

Figure 7. Normalized Energy-Delay-Quality trade-off: (a) EDP versus MED; (b) EDP versus RMSE.

4. The 2D Digital Image Filtering as a Case Study

To ascertain how the novel approximate adder affects the accuracy of more complex computations,
it has been applied to approximate the 2D digital image filtering. The latter processes an H ×W input
digital image by convolving each x-bit pixel IP(h,w) of the image, with h = 0, . . . , H − 1 and w = 0, . . . ,
W − 1, by the chosen g × g filter. In order to do this, a g × g neighborhood is windowed around IP(h,w).
Then, the pixels and the coefficients located at the homologous positions in the neighborhood and in
the filter are multiplied by each other. To compute the multiplication between the generic x-bit pixel IP
and its homologous y-bit coefficient C, y partial products PPj (with j = 0, . . . , y − 1) are computed,
one for each bit of the multiplier C. They are then aligned with each other, by left shifting each PPj by j
bit positions; and finally, the partial products are summed to generate the (x + y)-bit result.

Among the various possible choices to introduce the approximate addition in the computation of
the generic multiplication, as depicted in Figure 8a, the solution chosen in the case study adds the
partial products through y − 1 cascaded approximate adders. In particular, for each PPj, with j > 1,
an approximate addition is performed with j + 1 inaccurate LSBs to take into account that, due the
aligning left shifts, PPj has j LSBs equal to zero. The g × g approximate products PRp (with p ranging
between 0 and g × g − 1) obtained in this way are then accumulated through an adder tree structure
that, as illustrated in Figure 8b, consists of

⌈
log2(g× g)

⌉
levels of two operands additions, all performed

by introducing k inaccurate LSBs. The accumulation furnishes the
(
(x + y) +

⌈
log2(g× g)

⌉)
-bit filtered

pixel OP(h,w).
The accuracy achieved by the above described approximate filtering when the 256 × 256 pixels

greyscale benchmark images Lena, Cameraman, and Peppers are filtered using the 3 × 3 Laplacian,
Gaussian Blur, and Sobel kernels has been deeply evaluated. The MED, the Mean Squared Error (MSE),
and the Peak Signal-to-Noise Ratio (PSNR) have been measured with k varying from 2 to 8. For the
purposes of comparison, the effects introduced in the same operating conditions by the approximate
adders LOA [13], HOERAA [17], and AA6 [16] have also been evaluated. The results obtained for each
testbench image in terms of MED, MSE, and PSNR, and averaged over the used filters, are plotted in
Figures 9–11.

The latter demonstrate that, independently of the processed image, the approximate filter based
on the inaccurate addition here proposed always minimizes both the MED and the MSE and ensures
the highest PSNR to be reached. As an example, referring to the Lena benchmark image, with k = 6,
the new approximation scheme leads to an average MED 80%, 77%, and 82% lower than those obtained
with the LOA, HOERAA, and AA6 approximation logics, respectively. Moreover, it allows an average
MSE ~39×, ~17× and ~2000× lower to be achieved over the competitors, with an average PSNR
improved by ~17%, ~18% and ~22%.

Electronics 2020, 9, 1529 14 of 19

Electronics 2020, 9, x FOR PEER REVIEW 13 of 19

(b)

Figure 7. Normalized Energy-Delay-Quality trade-off: (a) EDP versus MED; (b) EDP versus RMSE.

4. The 2D Digital Image Filtering as a Case Study

To ascertain how the novel approximate adder affects the accuracy of more complex computations,
it has been applied to approximate the 2D digital image filtering. The latter processes an H × W input
digital image by convolving each x-bit pixel IP(h,w) of the image, with h = 0, …, H − 1 and w = 0, …, W
− 1, by the chosen g × g filter. In order to do this, a g × g neighborhood is windowed around IP(h,w).
Then, the pixels and the coefficients located at the homologous positions in the neighborhood and in
the filter are multiplied by each other. To compute the multiplication between the generic x-bit pixel IP
and its homologous y-bit coefficient C, y partial products PPj (with j = 0, …, y − 1) are computed, one
for each bit of the multiplier C. They are then aligned with each other, by left shifting each PPj by j bit
positions; and finally, the partial products are summed to generate the (x + y)-bit result.

Among the various possible choices to introduce the approximate addition in the computation
of the generic multiplication, as depicted in Figure 8a, the solution chosen in the case study adds the
partial products through y − 1 cascaded approximate adders. In particular, for each PPj, with j > 1, an
approximate addition is performed with j + 1 inaccurate LSBs to take into account that, due the
aligning left shifts, PPj has j LSBs equal to zero. The g × g approximate products PRp (with p ranging
between 0 and g × g − 1) obtained in this way are then accumulated through an adder tree structure
that, as illustrated in Figure 8b, consists of log levels of two operands additions, all
performed by introducing k inaccurate LSBs. The accumulation furnishes the + +log -bit filtered pixel OP(h,w).

(a)

(b)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 0.2 0.4 0.6 0.8 1

No
rm

al
ize

d
ED

P

Normalized RMSE

LOA [13]
New AA6 [16]

k=2
k=4
k=6
k=8
k=12
k=16

FP
k=2 k=4

k=6
k=8

k=12

k=16

HOERAA [17]
k=2

k=4

k=6

k=8

k=12

k=16

k=2
k=4
k=6
k=8

k=12

k=16

Figure 8. The 2D digital filter adopted in the case study: (a) the approximate multiplier; (b) the
approximate adder tree.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 19

Figure 8. The 2D digital filter adopted in the case study: (a) the approximate multiplier; (b) the
approximate adder tree.

The accuracy achieved by the above described approximate filtering when the 256 × 256 pixels
greyscale benchmark images Lena, Cameraman, and Peppers are filtered using the 3 × 3 Laplacian,
Gaussian Blur, and Sobel kernels has been deeply evaluated. The MED, the Mean Squared Error
(MSE), and the Peak Signal-to-Noise Ratio (PSNR) have been measured with k varying from 2 to 8.
For the purposes of comparison, the effects introduced in the same operating conditions by the
approximate adders LOA [13], HOERAA [17], and AA6 [16] have also been evaluated. The results
obtained for each testbench image in terms of MED, MSE, and PSNR, and averaged over the used
filters, are plotted in Figures 9–11.

(a) (b)

(c)

Figure 9. Accuracy results obtained for the Lena benchmark in terms of: (a) MED; (b) Mean Squared
Error (MSE); (c) Peak Signal-to-Noise Ratio (PSNR).

(a) (b)

0

50

100

150

200

250

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

M
ED

Number of inexact bits
k=2 k=4 k=6 k=8

1

10

100

1000

10,000

100,000

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

M
SE

 lo
g

sc
al

e

Number of inexact bits
k=2 k=4 k=6 k=8

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

PS
NR

Number of inexact bits
k=2 k=4 k=6 k=8

0

50

100

150

200

250

300

1 2 3 4

New
LOA[13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

M
ED

Number of inexact bits
k=2 k=4 k=6 k=8

1

10

100

1000

10000

100000

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

M
SE

 lo
g

sc
al

e

Number of inexact bits
k=2 k=4 k=6 k=8

Figure 9. Accuracy results obtained for the Lena benchmark in terms of: (a) MED; (b) Mean Squared
Error (MSE); (c) Peak Signal-to-Noise Ratio (PSNR).

Electronics 2020, 9, 1529 15 of 19

Electronics 2020, 9, x FOR PEER REVIEW 14 of 19

Figure 8. The 2D digital filter adopted in the case study: (a) the approximate multiplier; (b) the
approximate adder tree.

The accuracy achieved by the above described approximate filtering when the 256 × 256 pixels
greyscale benchmark images Lena, Cameraman, and Peppers are filtered using the 3 × 3 Laplacian,
Gaussian Blur, and Sobel kernels has been deeply evaluated. The MED, the Mean Squared Error
(MSE), and the Peak Signal-to-Noise Ratio (PSNR) have been measured with k varying from 2 to 8.
For the purposes of comparison, the effects introduced in the same operating conditions by the
approximate adders LOA [13], HOERAA [17], and AA6 [16] have also been evaluated. The results
obtained for each testbench image in terms of MED, MSE, and PSNR, and averaged over the used
filters, are plotted in Figures 9–11.

(a) (b)

(c)

Figure 9. Accuracy results obtained for the Lena benchmark in terms of: (a) MED; (b) Mean Squared
Error (MSE); (c) Peak Signal-to-Noise Ratio (PSNR).

(a) (b)

0

50

100

150

200

250

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

M
ED

Number of inexact bits
k=2 k=4 k=6 k=8

1

10

100

1000

10000

100000

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

M
SE

 lo
g

sc
al

e

Number of inexact bits
k=2 k=4 k=6 k=8

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

PS
NR

Number of inexact bits
k=2 k=4 k=6 k=8

0

50

100

150

200

250

300

1 2 3 4

New
LOA[13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

M
ED

Number of inexact bits
k=2 k=4 k=6 k=8

1

10

100

1000

10,000

100,000

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

M
SE

 lo
g

sc
al

e

Number of inexact bits
k=2 k=4 k=6 k=8

Electronics 2020, 9, x FOR PEER REVIEW 15 of 19

(c)

Figure 10. Accuracy results obtained for the Cameraman benchmark in terms of: (a) MED; (b) MSE;
(c) PSNR.

(a) (b)

(c)

Figure 11. Accuracy results obtained for the Peppers benchmark in terms of: (a) MED; (b) MSE; (c)
PSNR.

The latter demonstrate that, independently of the processed image, the approximate filter based
on the inaccurate addition here proposed always minimizes both the MED and the MSE and ensures
the highest PSNR to be reached. As an example, referring to the Lena benchmark image, with k = 6,
the new approximation scheme leads to an average MED 80%, 77%, and 82% lower than those
obtained with the LOA, HOERAA, and AA6 approximation logics, respectively. Moreover, it allows
an average MSE ∼39×, ∼17× and ∼2000× lower to be achieved over the competitors, with an average
PSNR improved by ∼17%, ∼18% and ∼22%.

The VHDL description of the approximate 2D digital filter architecture above analyzed in terms
of accuracy has also been implemented and characterized in terms of energy consumption,
computational delay, and resource requirements. To this aim, the 3 × 3 Laplacian filtering on 256 ×
256 greyscale images has been chosen as a case study. As illustrated in Figure 12, the input pixels are
stored within an on-chip auxiliary memory block. Then, they are transferred to an appropriate data
buffer. The latter exploits two 253 depth First In First Out (FIFO) local memories and 3 × 3 8-bit

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

PS
NR

Number of inexact bits
k=2 k=4 k=6 k=8

INF

0

50

100

150

200

250

300

350

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

M
ED

Number of inexact bits
k=2 k=4 k=6 k=8

1

10

100

1000

10000

100000

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

M
SE

 lo
g

sc
al

e

Number of inexact bits
k=2 k=4 k=6 k=8

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Number of inexact bits
k=2 k=4 k=6 k=8

INF

Av
er

ag
e

PS
NR

Figure 10. Accuracy results obtained for the Cameraman benchmark in terms of: (a) MED; (b) MSE;
(c) PSNR.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 19

(c)

Figure 10. Accuracy results obtained for the Cameraman benchmark in terms of: (a) MED; (b) MSE;
(c) PSNR.

(a) (b)

(c)

Figure 11. Accuracy results obtained for the Peppers benchmark in terms of: (a) MED; (b) MSE; (c)
PSNR.

The latter demonstrate that, independently of the processed image, the approximate filter based
on the inaccurate addition here proposed always minimizes both the MED and the MSE and ensures
the highest PSNR to be reached. As an example, referring to the Lena benchmark image, with k = 6,
the new approximation scheme leads to an average MED 80%, 77%, and 82% lower than those
obtained with the LOA, HOERAA, and AA6 approximation logics, respectively. Moreover, it allows
an average MSE ∼39×, ∼17× and ∼2000× lower to be achieved over the competitors, with an average
PSNR improved by ∼17%, ∼18% and ∼22%.

The VHDL description of the approximate 2D digital filter architecture above analyzed in terms
of accuracy has also been implemented and characterized in terms of energy consumption,
computational delay, and resource requirements. To this aim, the 3 × 3 Laplacian filtering on 256 ×
256 greyscale images has been chosen as a case study. As illustrated in Figure 12, the input pixels are
stored within an on-chip auxiliary memory block. Then, they are transferred to an appropriate data
buffer. The latter exploits two 253 depth First In First Out (FIFO) local memories and 3 × 3 8-bit

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

PS
NR

Number of inexact bits
k=2 k=4 k=6 k=8

INF

0

50

100

150

200

250

300

350

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

M
ED

Number of inexact bits
k=2 k=4 k=6 k=8

1

10

100

1000

10,000

100,000

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Av
er

ag
e

M
SE

 lo
g

sc
al

e

Number of inexact bits
k=2 k=4 k=6 k=8

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4

New
LOA [13]
HOERAA [17]
AA6 [16]

Number of inexact bits
k=2 k=4 k=6 k=8

INF

Av
er

ag
e

PS
NR

Figure 11. Accuracy results obtained for the Peppers benchmark in terms of: (a) MED; (b) MSE;
(c) PSNR.

Electronics 2020, 9, 1529 16 of 19

The VHDL description of the approximate 2D digital filter architecture above analyzed in terms of
accuracy has also been implemented and characterized in terms of energy consumption, computational
delay, and resource requirements. To this aim, the 3 × 3 Laplacian filtering on 256 × 256 greyscale
images has been chosen as a case study. As illustrated in Figure 12, the input pixels are stored
within an on-chip auxiliary memory block. Then, they are transferred to an appropriate data buffer.
The latter exploits two 253 depth First In First Out (FIFO) local memories and 3 × 3 8-bit registers (R)
to accommodate the 3 × 3 windows of pixels that are then sent to the approximate 2D digital filter,
which receives also the kernel coefficients stored in dedicated registers. The approximate 2D digital
filter uses nine multipliers and an adder tree structured as above shown in Figure 8a,b, respectively.
For the generic window of pixels centered at IP(h,w), the approximate filter computes the required
nine products and accumulates them, thus furnishing the filtered pixel OP(h,w).

Electronics 2020, 9, x FOR PEER REVIEW 16 of 19

registers (R) to accommodate the 3 × 3 windows of pixels that are then sent to the approximate 2D
digital filter, which receives also the kernel coefficients stored in dedicated registers. The approximate
2D digital filter uses nine multipliers and an adder tree structured as above shown in Figure 8a,b,
respectively. For the generic window of pixels centered at IP(h,w), the approximate filter computes
the required nine products and accumulates them, thus furnishing the filtered pixel OP(h,w).

Figure 12. The examined real application.

Table 7 summarizes the post-implementation results obtained for several values of k adopted in
the adder tree of Figure 8b. The FP counterpart implementation is also reported as a reference. It can
be seen that the adopted approximation strategy allows the dynamic energy dissipation due to the
clock distribution (Eclk), the switching activity of the internal signals (Esignals), and the used logic
resources (Elogic) to be reduced by up to ∼15.4%, ∼35%, and ∼29.9%, respectively. Obviously, the
energy contribution due to the BRAM accesses (EBRAM) does not benefit from the approximate
technique. However, an overall energy consumption (Etot) up to 18.7% lower than the FP counterpart
is achieved.

Table 7. Post-layout characterization results of the 3 × 3 digital Laplacian filters running @100 MHz.

2D Filter #LUTs #FFs #BRAMs Eclk (pJ) EBRAM
(pJ)

Esignals
(pJ)

Elogic
(pJ)

Etot
(pJ)

FP 854 686 16 64.7 213.9 159 140.2 577.8
New k = 2 833 682 16 51.3 213.9 103 110.8 479
New k = 4 825 682 16 51.3 213.9 106.4 101.1 472.7
New k = 6 817 682 16 54.7 213.9 102.9 99.6 471.1
New k = 8 809 682 16 54.2 213.9 103.1 98.3 469.5

To evaluate the drawbacks of the novel approach, a further analysis is reported in Figure 13,
showing the quality gain attainable with respect to the competitors versus the energy penalty. For
the sake of conciseness, plots show average results obtained for the filters implementations referring
to the above-mentioned image benchmarks. More in detail, the points labelled as New-LOA, New-
HOERAA, and New-AA6 plot the quality gained by the 2D filter based on the new approximation
strategy over those based on the approximate adders LOA [13], HOERAA [17], and AA6 [16] versus
the penalty paid in terms of energy. These results show that the quality improvement, in terms of
MED (Figure 13a), MSE (Figure 13b), and PSNR (Figure 13c), achieved by exploiting the new
approximate adders at a parity of k, is obtained at an expense of an additional energy quota that is
several times smaller, and in most cases one order of magnitude lower than the advantage in terms
of computational precision.

Figure 12. The examined real application.

Table 7 summarizes the post-implementation results obtained for several values of k adopted
in the adder tree of Figure 8b. The FP counterpart implementation is also reported as a reference.
It can be seen that the adopted approximation strategy allows the dynamic energy dissipation due
to the clock distribution (Eclk), the switching activity of the internal signals (Esignals), and the used
logic resources (Elogic) to be reduced by up to ~15.4%, ~35%, and ~29.9%, respectively. Obviously,
the energy contribution due to the BRAM accesses (EBRAM) does not benefit from the approximate
technique. However, an overall energy consumption (Etot) up to 18.7% lower than the FP counterpart
is achieved.

Table 7. Post-layout characterization results of the 3 × 3 digital Laplacian filters running @100 MHz.

2D Filter #LUTs #FFs #BRAMs Eclk (pJ) EBRAM
(pJ)

Esignals
(pJ)

Elogic
(pJ) Etot (pJ)

FP 854 686 16 64.7 213.9 159 140.2 577.8
New k = 2 833 682 16 51.3 213.9 103 110.8 479
New k = 4 825 682 16 51.3 213.9 106.4 101.1 472.7
New k = 6 817 682 16 54.7 213.9 102.9 99.6 471.1
New k = 8 809 682 16 54.2 213.9 103.1 98.3 469.5

To evaluate the drawbacks of the novel approach, a further analysis is reported in Figure 13,
showing the quality gain attainable with respect to the competitors versus the energy penalty. For the
sake of conciseness, plots show average results obtained for the filters implementations referring to the

Electronics 2020, 9, 1529 17 of 19

above-mentioned image benchmarks. More in detail, the points labelled as New-LOA, New-HOERAA,
and New-AA6 plot the quality gained by the 2D filter based on the new approximation strategy over
those based on the approximate adders LOA [13], HOERAA [17], and AA6 [16] versus the penalty paid
in terms of energy. These results show that the quality improvement, in terms of MED (Figure 13a),
MSE (Figure 13b), and PSNR (Figure 13c), achieved by exploiting the new approximate adders at a
parity of k, is obtained at an expense of an additional energy quota that is several times smaller, and in
most cases one order of magnitude lower than the advantage in terms of computational precision.Electronics 2020, 9, x FOR PEER REVIEW 17 of 19

(a) (b)

(c)

Figure 13. Quality gain versus the energy penalty in terms of: (a) MED; (b) MSE; (c) PSNR.

5. Conclusions

This research work has presented a novel approximation technique to design fast and low-power
adders suitable for FPGA devices. The proposed strategy efficiently exploits the configurable
resources available within FPGAs to significantly improve the quality over the state-of-the-art
approximate adders, while exhibiting similar computational delays and energy consumptions. In
particular, the approximate adder presented here computes each couple of consecutive sum bits by
taking into account the internal intermediate carry signal, which is properly generated to correct both
the bit positions, thus minimizing the error introduced on the generic 2-bit addition.

For the purposes of comparison with state-of-the-art competitors, several implementations of
the novel approximate adder have been characterized in terms of resources requirements, energy
consumption, computational delay, and standard error metrics. For the 32-bit configuration, varying
the number of inaccurate LSBs k from 2 to 16, the proposed design always demonstrates the best EDP-
accuracy tradeoff.

Finally, the 2D digital image filtering has been chosen as a case study to compare the
performances offered by the novel approximation technique with the ones obtained by the
competitors in more complex elaborations. The proposed approximate adder has shown its
superiority in all the examined conditions, presenting, at a parity of k, a quality improvement several
times greater, and in most cases, one order of magnitude higher, than the energy penalty.

Author Contributions: Conceptualization, S.P., F.S., F.F., P.C.; Formal analysis, S.P., F.S., F.F., P.C.; Investigation,
S.P., F.S., F.F., P.C.; Writing—review & editing, S.P., F.S., F.F., P.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16

Qu
al

ity
 G

ai
n

(P
SN

R)
 [%

]

Energy penalty (%)

New-LOA
New-HOERAA
New-AA6

k=2

k=4

k=6
k=8

k=2

k=4

k=6
k=8

k=2

k=4
k=6 k=8

INF

100

80

60

40

20

0

Energy penalty [%]

Qu
al

ity
 ga

in
 (P

SN
R)

 [%
] New-LOA

New-HOERAA
New-AA6

0 2 4 6 8 10 12 14 16

Figure 13. Quality gain versus the energy penalty in terms of: (a) MED; (b) MSE; (c) PSNR.

5. Conclusions

This research work has presented a novel approximation technique to design fast and low-power
adders suitable for FPGA devices. The proposed strategy efficiently exploits the configurable resources
available within FPGAs to significantly improve the quality over the state-of-the-art approximate
adders, while exhibiting similar computational delays and energy consumptions. In particular,
the approximate adder presented here computes each couple of consecutive sum bits by taking into
account the internal intermediate carry signal, which is properly generated to correct both the bit
positions, thus minimizing the error introduced on the generic 2-bit addition.

For the purposes of comparison with state-of-the-art competitors, several implementations
of the novel approximate adder have been characterized in terms of resources requirements,
energy consumption, computational delay, and standard error metrics. For the 32-bit configuration,
varying the number of inaccurate LSBs k from 2 to 16, the proposed design always demonstrates the
best EDP-accuracy tradeoff.

Finally, the 2D digital image filtering has been chosen as a case study to compare the performances
offered by the novel approximation technique with the ones obtained by the competitors in more
complex elaborations. The proposed approximate adder has shown its superiority in all the examined

Electronics 2020, 9, 1529 18 of 19

conditions, presenting, at a parity of k, a quality improvement several times greater, and in most cases,
one order of magnitude higher, than the energy penalty.

Author Contributions: Conceptualization, S.P., F.S., F.F., P.C.; Formal analysis, S.P., F.S., F.F., P.C.; Investigation,
S.P., F.S., F.F., P.C.; Writing—review & editing, S.P., F.S., F.F., P.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alioto, M. Ultra-Low Power VLSI Circuit Design Demystified and Explained: A Tutorial. IEEE Trans. Circuits
Syst. I Regul. Pap. 2012, 59, 3–29. [CrossRef]

2. Itoh, K. A Historical Review of Low-Power, Low-Voltage Digital MOS Circuits Development. IEEE Solid-State
Circuits Mag. 2013, 5, 27–39. [CrossRef]

3. Blanco-Filgueira, B.; García-Lesta, D.; Fernández-Sanjurjo, M.; Brea, V.M.; López, P. Deep Learning-Based
Multiple Object Visual Tracking on Embedded System for IoT and Mobile Edge Computing Applications.
IEEE Internet Things J. 2019, 6, 5423–5431. [CrossRef]

4. Mao, H.; Yao, S.; Tang, T.; Li, B.; Yao, J.; Wang, Y. Towards Real-Time Object Detection on Embedded Systems.
IEEE Trans. Emerg. Top. Comput. 2018, 6, 417–431. [CrossRef]

5. Han, J.; Orshansky, M. Approximate computing: An emerging paradigm for energy-efficient design.
In Proceedings of the 2013 18th IEEE European Test Symposium (ETS), Avignon, France, 27–30 May 2013;
pp. 1–6. [CrossRef]

6. Liang, J.; Han, J.; Lombardi, F. New Metrics for the Reliability of Approximate and Probabilistic Adders.
IEEE Trans. Comput. 2013, 62, 1760–1771. [CrossRef]

7. Alioto, M.; De, V.; Marongiu, A. Guest Editorial Energy-Quality Scalable Circuits and Systems for Sensing
and Computing: From Approximate to Communication-Inspired and Learning-Based. IEEE J. Emerg. Sel.
Top. Circuits Syst. 2018, 8, 361–368. [CrossRef]

8. Yang, Z.; Jain, A.; Liang, J.; Han, J.; Lombardi, F. Approximate XOR/XNOR-based adders for inexact
computing. In Proceedings of the 2013 13th IEEE International Conference on Nanotechnology, Beijing,
China, 5–8 August 2013; pp. 690–693. [CrossRef]

9. Kim, Y.; Zhang, Y.; Li, P. Energy Efficient Approximate Arithmetic for Error Resilient Neuromorphic
Computing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2015, 23, 2733–2737. [CrossRef]

10. Frustaci, F.; Perri, S.; Corsonello, P.; Alioto, M. Energy-Quality Scalable Adders Based on Nonzeroing Bit
Truncation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 964–968. [CrossRef]

11. Najafi, A.; Garcia-Ortiz, A. Stochastic Mixed-PR: A Stochastically-Tunable Low-Error Adder. IEEE Trans.
Circuits Syst. II Express Briefs 2019. [CrossRef]

12. Gupta, V.; Mohapatra, D.; Raghunathan, A.; Roy, K. Low-Power Digital Signal Processing Using Approximate
Adders. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2013, 32, 124–137. [CrossRef]

13. Mahdiani, H.R.; Ahmadi, A.; Fakhraie, S.M.; Lucas, C. Bio-Inspired Imprecise Computational Blocks for
Efficient VLSI Implementation of Soft-Computing Applications. IEEE Trans. Circuits Syst. I Regul. Pap.
2010, 57, 850–862. [CrossRef]

14. Frustaci, F.; Perri, S.; Corsonello, P.; Alioto, M. Approximate Multipliers with Dynamic Truncation for Energy
Reduction via Graceful Quality Degradation. IEEE Trans. Circuits Syst. II Express Briefs 2020. [CrossRef]

15. He, Y.; Yi, X.; Ma, B.; Zhang, Z.; Zhang, B. A Probabilistic Prediction Based Fixed-Width Booth Multiplier.
In Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu,
China, 26–30 October 2018; pp. 321–324. [CrossRef]

16. Prabakaran, B.S.; Rehman, S.; Hanif, M.A.; Ullah, S.; Mazaheri, G.; Kumar, A.; Shafique, M. DeMAS:
An efficient design methodology for building approximate adders for FPGA-based systems. In Proceedings
of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany,
19–23 March 2018; pp. 917–920. [CrossRef]

17. Balasubramanian, P.; Maskell, D.L. Hardware Optimized and Error Reduced Approximate Adder. Electronics
2019, 8, 1212. [CrossRef]

http://dx.doi.org/10.1109/TCSI.2011.2177004
http://dx.doi.org/10.1109/MSSC.2012.2230833
http://dx.doi.org/10.1109/JIOT.2019.2902141
http://dx.doi.org/10.1109/TETC.2016.2593643
http://dx.doi.org/10.1109/ETS.2013.6569370
http://dx.doi.org/10.1109/TC.2012.146
http://dx.doi.org/10.1109/JETCAS.2018.2865783
http://dx.doi.org/10.1109/NANO.2013.6720793
http://dx.doi.org/10.1109/TVLSI.2014.2365458
http://dx.doi.org/10.1109/TVLSI.2018.2881326
http://dx.doi.org/10.1109/TCSII.2019.2953617
http://dx.doi.org/10.1109/TCAD.2012.2217962
http://dx.doi.org/10.1109/TCSI.2009.2027626
http://dx.doi.org/10.1109/TCSII.2020.2999131
http://dx.doi.org/10.1109/APCCAS.2018.8605690
http://dx.doi.org/10.23919/DATE.2018.8342140
http://dx.doi.org/10.3390/electronics8111212

Electronics 2020, 9, 1529 19 of 19

18. Taştan, İ.; Karaca, M.; Yurdakul, A. Approximate CPU Design for IoT End-Devices with Learning Capabilities.
Electronics 2020, 9, 125. [CrossRef]

19. 7 Series FPGAs Configurable Logic Block User Guide, UG474 (v1.8). 27 September 2016. Available online:
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf (accessed on 22 July 2020).

20. Intel® Stratix® 10 Logic Array Blocksand Adaptive Logic Modules User Guide, UG-S10LA. 4 April 2020.
Available online: https://www.intel.com/content/dam/www/programmable/us/en/pdf/literature/hb/stratix-
10/ug-s10-lab.pdf (accessed on 22 July 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/electronics9010125
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdf/literature/hb/stratix-10/ug-s10-lab.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdf/literature/hb/stratix-10/ug-s10-lab.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Works
	The Novel Approximation Strategy
	The 2D Digital Image Filtering as a Case Study
	Conclusions
	References

