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Abstract: Detecting cybersecurity intelligence (CSI) on social media such as Twitter is crucial because
it allows security experts to respond cyber threats in advance. In this paper, we devise a new text
classification model based on deep learning to classify CSI-positive and -negative tweets from
a collection of tweets. For this, we propose a novel word embedding model, called contrastive
word embedding, that enables to maximize the difference between base embedding models. First,
we define CSI-positive and -negative corpora, which are used for constructing embedding models.
Here, to supplement the imbalance of tweet data sets, we additionally employ the background
knowledge for each tweet corpus: (1) CVE data set for CSI-positive corpus and (2) Wikitext data
set for CSI-negative corpus. Second, we adopt the deep learning models such as CNN or LSTM to
extract adequate feature vectors from the embedding models and integrate the feature vectors into
one classifier. To validate the effectiveness of the proposed model, we compare our method with
two baseline classification models: (1) a model based on a single embedding model constructed
with CSI-positive corpus only and (2) another model with CSI-negative corpus only. As a result,
we indicate that the proposed model shows high accuracy, i.e., 0.934 of F1-score and 0.935 of area
under the curve (AUC), which improves the baseline models by 1.76∼6.74% of F1-score and by
1.64∼6.98% of AUC.
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1. Introduction

Twitter is a representative social media where users write their opinions and share events.
It is known that more than 150 million users are wrote more than 500 million tweets per day as
of 2019 [1]. To extract useful information from such a large number of tweets, the application of the
text classification is necessary to condense the entire large-scale information into a small-scale subclass
manageable for analysis. As a result, the text classification of tweets has been attempted in various
domains to detect the information related to a specific topic. Typical examples are the geolocation
prediction of the user by the classification of tweets containing the geolocation [2], the political
affiliation prediction by the classification of tweets related to the politics [3], and the crime prediction
by the classification of tweets based on the emotion [4]. However, the classification of tweets is
inherently difficult because the length of tweets is limited, i.e., less than 280 characters, and various
types of users are involved in writing tweets in an informal way [5].
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In this paper, we aim to detect cybersecurity intelligence (CSI) from a collection of tweets.
Cybersecurity is defined as the practice of defending computers, servers, mobile devices, electronic
systems, networks, and data from malicious attacks (e.g., phishing, ransomware, or data breaching),
which abuse vulnerabilities in the systems [6]. To prevent the cyberattacks or minimize the damage
from the attacks, it is important to collect the latest CSI from various data sources such as open-source
intelligence (OSINT), human intelligence (HUMINT), or intelligence from the dark web. Among the
data sources, Twitter is the representative OSINT data where CSI has been generated constantly [7].
That is, the security experts, system administrators, and hackers discuss technical details about
cyber attacks and share their experiences [8]. Figure 1 shows examples of the tweets containing a
commonly used CSI keyword, ‘CVE’ (i.e., Common Vulnerabilities and Exposures), which refers to
publicly disclosed software vulnerabilities. As depicted in Figure 1, CSI-positive tweets include crucial
information related to the cyber threats such as attackers, vulnerabilities, and targets. Therefore,
by revealing CSI-positive tweets in advance, cybersecurity experts are able to respond to the
corresponding cyber threats effectively. For this purpose, we classify the entire tweet data sets into
positive and negative classes based on the relevance of CSI.

Figure 1. The examples of the tweets containing cybersecurity intelligence.

There have been research efforts to detect CSI in tweets automatically based on machine learning
or deep learning models. It has been known that a way of constructing an embedding model
significantly affects on the classification performance [9]. As a result, two important issues have
been dealt with: (1) the corpus definition used for constructing the embedding model and (2) the
classifiers used for training the classification model. Ritter et al. have collected tweets containing
keywords related to the cyber attack events and have proposed a weakly supervised learning
model [10]. Le et al. have collected tweets containing CSI related keywords written by the selected
Twitter accounts and have used CVE data set, which has been collected from National Vulnerability
Database (NVD) (https://nvd.nist.gov/vuln/full-listing), for constructing the embedding model.
They have trained two anomaly detectors using centroid and one-class Support Vector Machine
(SVM) [11]. Chambers et al. have collected tweets containing the name of Distributed Denial of
Service (DDoS) attacked organization and have performed time series analysis based on the frequency
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of tweets to forecast cyber threats [12]. Dionísio et al. have collected the tweets containing cyber
threat intelligence and have labeled them manually. They have used a deep learning model based on
convolutional neural network (CNN) to detect tweets related to cyber threats [13].

In this paper, we propose a new text classification model for classifying CSI-positive and -negative
tweets by devising a novel embedding model. To constructing the embedding model, we consider
two kinds of corpora: (1) CSI-positive corpus (e.g., tweets related to CSI) and (2) CSI-negative corpus
(e.g., tweets unrelated to CSI). We do not have clear criteria to define the CSI-negative corpus because
the subjects are widely distributed. In contrast, we can clearly define the CSI-positive corpus using
a keyword set related to CSI such as “RCE”, “CVE”, or “Exploit” defined in data curated from
cyber threat intelligence specialized companies (e.g., Recorded Future) or adopting well-defined
public knowledge (e.g., CVE data set). Due to these different characteristics, when we use only
CSI-positive corpora in constructing the embedding model, CSI-positive tweets are well classified,
but CSI-negative tweets are not; when we use only CSI-negative corpus, it cannot extract distinct
features for a specific class, and consequently, the overall classification performance is not satisfactory.
These characteristics are supported by the experimental results conducted in this paper (See Section 6).

The contributions of the paper are summarized as follows:

1. We propose a novel word embedding model, contrastive word embedding, that enables to
maximize the difference between base embedding models. We construct each embedding model
using CSI-positive corpus or -negative corpus, which have completely different characteristics.
Here, we utilize the background knowledge, which is well-defined public data set for a specific
class, to supplement the imbalance of each tweet corpus. Hence, we use two kinds data sets for
the CSI-positive corpora: (1) CSI-positive tweet data set and (2) CVE data set as the background
knowledge; we use two kinds of data sets for the CSI-negative corpora: (1) CSI-negative tweet
data set and (2) Wikitext data set as the background knowledge.

2. We devise a new text classification model based on the proposed word embedding model.
We adopt deep learning models such as CNN or LSTM to extract adequate feature vectors from
the embedding model and integrate the feature vectors into one classifier. To the best of our
knowledge, none of the previous methods have considered both CSI-positive and -negative
embedding models in one integrated classifier.

3. To validate the effectiveness of the proposed classification model, we compare it with two baseline
models: (1) a model based on a single embedding model constructed with CSI-positive corpus
only and (2) another model with CSI-negative corpus only. In the experiment, we use 70,000 tweets
for CSI-positive and CSI-negative corpora as training data set, respectively, and 30,000 tweets for
each corpus as testing data set, respectively. As a result, we indicate that the proposed model
shows high accuracy, i.e., 0.934 of F1-score and 0.935 of AUC, which improves the baseline models
by 1.76∼6.74% of F1-score and by 1.64∼6.98% of AUC.

The paper is organized as follows. In Section 2, we explain the background for the tweet
classification. In Section 3, we review the related work. In Section 4, we present data sets and corpus used
in this paper. In Section 5, we propose a new classification model based on contrastive word embedding.
In Section 6, we present the experimental results to show the effectiveness of the proposed model.
In Section 7, we discuss the characteristics of the proposed model. In Section 8, we conclude the paper.

2. Background

Text classification methods have been studied for various applications because they can be used
to enhance the speed of decision-making and the automation of the analyzing process for the text
data [14]. Over the past years, machine learning techniques (e.g., k-NN [15] and SVM [16]) have been
investigated for the text classification. Recently, due to the huge success of deep learning in the field of
natural language processing, there have been many research efforts that proposed text classifiers based
on deep learning. Here, two considerable factors affecting the performance of the text classifier are as
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follows: (1) word representation with a corpus and (2) the deep learning model used for the classifier.
In the following sections, we explain the details of each factor.

2.1. Word Representation

2.1.1. Word Embedding

Word embedding represents the words in the text in an R-dimensional vector space. It enables
us to capture both the semantic and syntactic information of words from the vector space [17,18].
In the deep learning model, the effective word embedding model is essential as well for improving
the accuracy of the text classification [9]. Term Frequency-Inverse Document Frequency (TF-IDF)
has been widely used as a measure to represent the importance of the words in a document based
on the simple statistics (i.e., frequency for each word) [19]. However, TF-IDF does not capture the
semantic of the words in the document. Therefore, Mikolov et al. have proposed Word2Vec [20] that
can represent the semantic similarity of words. It trains word embedding model considering similarity
of words in local context windows. They have also devised a method of representing the text corpus
by the phase instead of the word in Word2Vec [21]. Glove is another text representation using global
word–word co-occurrence statistics to address the problem in Word2Vec, which does not consider
the global co-occurrence [22]. FastText has been proposed to overcome the problem of Word2Vec,
which cannot represent out of vocabulary words and infrequent words [23]. To this purpose, FastText
breaks each word into a bag of character n-grams and use the sum of all the n-grams as a vector for the
word. Li et al. have proposed a new embedding model where each element is composed of a pair of
contradicting words (e.g., a pair of unimpressive and impressive words) [24]. The proposed model
performs well in recognizing a contradicting relation between sentences. Liu et al. have shown that it
is more effective to construct word embedding using the corpus related to a specific target topic than
using the general corpus [25].

2.1.2. Multiple Word Embedding

To improve the performance of a single embedding model, there have been research efforts to
utilize multiple embedding models. Bruni et al. have proposed multiple embedding models defined
from different data models, i.e., textual models and visual models [26]. Luo et al. have shown that the
performance of text similarity measurement becomes better when we use multiple word embedding
instead of a single word embedding [27]. Zhang et al. have shown that the performance of multiple
word embedding from various text representations, i.e., Word2Vec, Glove, and Synthetic, is better than
that of each single embedding [28]. Ren et al. have proposed multiple word embedding where one is
constructed with original texts and the other with the background knowledge [29].

2.1.3. Background Knowledge for Embedding

The performance of deep learning models tends to be degraded when only a target data set is used
as the corpus for training the embedding model because the training data set cannot encompass all the
characteristics of the target class due to its imbalanced characteristic [29]. To resolve this imbalance of
a target data set, a method of incorporating the background knowledge, which utilizes the external
reliable data set for supplementing the target class, has been proposed [30,31]. In particular, tweets
tend to contain insufficient information for the classification because it has informal expression and a
limited length of the text [5]. In this paper, we also define the background knowledge for CSI-positive
and -negative data set and show their effectiveness compared to a target data set (i.e., tweets).

2.2. Text Classification with Deep Learning

In the text classification based on deep learning, once the text corpus is represented in the
embedding model, its outputs are fed into the classifier based on deep learning. In the following sections,
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we introduce the representative deep learning models, which will be used in the proposed
classification model.

2.2.1. CNN

LeCun et al. have proposed CNN for aiming on image recognition [32]. The basic idea of CNN
is capturing a feature of data by moving the kernel, a convolution matrix, to a region in the image.
Generally, while neural networks do not maintain spatial information in the image, CNN can maintain
it by applying the kernel into each region of the image. For natural language processing (NLP),
we can also apply the convolutional layer of CNN to the vector space converted from the text corpus.
Because each kernel can learn the embedding on a region (i.e., one sentence in NLP) and capture
the semantic and structural features in the sentence, CNN performs well in the text classification.
Xu et al. have adopted a CNN model in classifying news data using two kinds of embedding models:
topic-based word embedding and Word2Vec [33]. In addition, Kim et al. have shown the effectiveness
of CNN in short text classification on movie reviews [34]. Hu et al. have presented a new method,
SVMCNN, for the short text classification, which combines CNN and SVM [35]. Specifically, they have
used CNN as the feature extractor of short texts and SVM as the classifier, and SVMCNN shows a
better performance than each of CNN and SVM. Liu et al. have proposed an attention-gated CNN for
the sentence classification by generating attention weights from the feature’s context windows before
the pooling layer [36], which shows a better performance than standard CNN models.

2.2.2. RNN and LSTM

Elman et al. have proposed recurrent neural network (RNN) for sequential data processing
such as voice and text processing [37]. The distinguishing feature of RNN, which is different from
general neural networks, is the introduction of the hidden state vector. The hidden state describes the
summary of the previous input data, and it is updated whenever the new input comes in. Eventually,
after processing all the input data, the hidden state is a summarization of the entire sequences,
which is quite similar to the processing of a sequence performed by a human being. Naturally,
RNN has the advantage when processing the sentences that are read by a person. However, as the layer
becomes deep, gradient exploding and vanishing problems occur, which degrades the performance.
To avoid them, Long Short-term Memory (LSTM) has been proposed [38]. To prevent gradient
exploding and vanishing problems, LSTM adds the cell state so as to adjust previous information.
LSTM has been widely used for the text classification because it can learn high-level representation
using a deeper layer due to the cell state while preserving the sequence order of representations,
which is provided by RNN. Wang et al. have applied LSTM to the sentiment classification of short texts
on social media [39]. Ding et al. have proposed a densely connected Bi-LSTM consisting of multiple
Bi-LSTM layers [40], which shows a better performance than Bi-LSTM.

3. Related Work

3.1. Tweet Classification

A number of studies have been proposed to apply machine learning and deep learning techniques
to the tweet classification. First, for the machine learning techniques, Sriram et al. have proposed the
classification method based on the Naïve Bayes classifier using the account information additionally
to improve the classification accuracy in the tweet [41]. Alsmaddi et al. have proposed a new term
weighting scheme and have evaluated nine term weighting schemes containing the proposed scheme
for extracting characteristics of tweets [42]. Then, they have applied machine learning techniques
such as SVM and k Nearest Neighbor (k-NN) to the corpus made based on each term weighting.
Second, for the deep learning techniques, Wang et al. have applied LSTM to classify Internet Movie
Database (IMDB) reviews by the sentiment [39]. They have shown that the performance of the deep
learning model is better than that of the machine learning method such as Naïve Bayes and Extreme
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Learning Machine (ELM). Zhou et al. have attempted to concatenate the CNN and LSTM for utilizing
their strengths [43]. That is, CNN is used to extract a sequence of the phase representation, and then,
LSTM is used to learn the sentence representation from the output of CNN. Graph Convolutional
Network (GCN) has been proposed, which is one of the effective graph neural networks that can
capture neighbor information in the graph representation [44]. Yao et al. have proposed a new GCN
for the text classification using a single large graph consisting of word nodes and document nodes.
Because it can jointly learn the embedding of words and documents, it shows a robust classification
performance even with a small-labelled data [45]. Yang et al. have applied the capsule networks [46]
to the text classification [47]. For this, they have devised dynamic routing strategies to alleviate the
disturbance of some noise capsules.

3.2. Classification Using Background Knowledge

There have been research efforts utilizing the background knowledge in training embedding
models in the text classification. Yang et al. have proposed a new topic model that combines lexical
features obtained from two training data sets, i.e., Google Snippet and Ohsumed, and semantic features
obtained from Wikitext, which is used as the background knowledge, for the topic classification of the
short text [48]. Qureshi et al. have constructed a large graph of categories and articles in Wikipedia,
which is used as the background knowledge [49]. This graph-based background knowledge shows
a better performance than Word2Vec, FastText, and GloVe. Ren et al. have proposed a new text
representation model that calculates the similarity between text data at Fundan University, which is the
target data set, and the Chinese encyclopedia, which is the background knowledge [50]. Furthermore,
Ren et al. have performed the feature fusion and decision fusion of multiple embedding models made
from the target data set and the background knowledge [29].

Based on the investigations of these previous studies, we adopt background knowledge to improve
the performance of classifying CSI-positive and -negative tweets. Especially, we focus on the definition
of the background knowledge in building multiple word embedding models based on CSI-positive
and -negative tweets. We also investigate the effects according to different fusion strategies (i.e., feature
fusion and decision fusion) in designing the proposed embedding model (See Section 5.5).

3.3. Classification by the Cybersecurity Intelligence

Ritter et al. have proposed weakly supervised learning to detect cybersecurity events using
tweets [10]. For the weakly supervised learning, they have annotated tweets containing the keyword
“DDoS” out of the tweets written on the dates when the DDos attacks occurred as cybersecurity
intelligence (CSI)-positive tweet data. Chambers et al. have proposed a framework to analyze the
DDoS attack using tweets according to the following steps: (1) collection of tweets written on the day
when the DDoS attack occurred, (2) training them using the basic neural network, (3) detection of
attack events from the trained model, and (4) extraction of the attack topics by analyzing the user’s
response to the attack using an LDA-based model [12]. Zong et al. have collected tweets containing
a keyword, “vulnerability”, and have applied logistic regression to detect the existence of threats.
They have also applied logistic regression and CNN to analyze the extent of threats and the user’s
opinions on social media about cyber threats [51].

Le Sceller et al. have proposed a new framework for discovering cybersecurity events in real time,
called SONAR [52]. SONAR collects tweets containing CSI and clusters them into several groups
using the first story detection algorithm [53] where each cluster is regarded as one event. It also
identifies new keyword sets related to CSI considering the co-occurrence between the tweets in the
Glove embedding model.

Dionísio et al. have proposed a method to classify tweets related to CSI in real time [13]. They have
used CNN as the classifier to determine if a given tweet is related to CSI and have used BiLSTM to
classify the tweets as one of six entities. They have shown that the proposed method outperforms the
machine learning techniques such as SVM and Multi-Layer Perceptron (MLP).
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Alves et al. have proposed a Twitter streaming threat monitor that continuously updates the
summary of the threats related to a target infrastructure [54]. They have collected CSI-positive tweets
based on the accounts and have extracted features using TF-IDF. Then, they have used MLP and SVM
as the classifier for CSI-positive tweets.

Le et al. have proposed a new machine learning-based method for detecting CSI [11]. They have
used CVE data set as the background knowledge and have adopted two novelty classifiers (i.e., centroid,
one-class SVM) to detect tweets related to CSI. For extracting the features to the classifiers, Le et al.
have used TF-IDF values obtained from the CVE data set. In contrast, in this paper, we use two
representative deep learning models, i.e., CNN and LSTM, for both the feature extractor and the
classifier, because the machine learning-based classifier requires the preceding feature extractor and its
performance greatly depends on the feature extractor [55]. The detailed architecture of the proposed
method is explained in Section 5.5. Especially, in our method, we focus on integrating multiple baseline
learning models into one classifier. This implies that our framework can be easily extended to support
the other deep learning or machine learning methods including this method by incorporating a new
baseline learning model into the framework. As presented in Section 4, the F1-score of the proposed
model is observed 0.932∼0.934 at maximum, which indicates quite high accuracy compared to the
method proposed by Le et al. [11] where F1-score has been only 0.643, even considering different
data sets.

Table 1 summarizes the comparison of previous studies on the classification by the CSI. It indicates
that they have focused on the usage of the effective classifiers to improve the classification accuracy.
None of them have used multiple word embedding models; only one study [11] has used the
background knowledge for a single word embedding. In this paper, we focus on the design of a
novel multiple word embedding, which is built in a contrastive way in terms of the relevance of CSI,
and the definition of the background knowledge for the multiple word embedding.

Table 1. Comparison of previous studies on the classification by the cybersecurity intelligence (CSI).

Methods Classifiers Data Sets Background
Knowledge

Multiple
Word Embedding

Ritter et al. [10]
Weakly supervised

learning Tweets containing “DDoS” N/A X

Chambers et al. [12]
Basic neural

network Tweets written on attack day N/A X

Zong et al. [51]
Logistic

regression Tweets filtered by keywords N/A X

Le Sceller et al. [52]
First story
detection Streaming Tweets N/A X

Dionísio et al. [13]
SVM, MLP,

CNN, BiLSTM Tweets filtered by keywords N/A X

Le et al. [11]
Centroid,

One-class SVM,
CNN, LSTM

Streaming Tweets CVE descriptions X

Alves et al. [54] SVM, MLP
Tweets filtered by accounts

and keywords N/A X

4. Data Sets and Corpus

In this paper, we use three kinds of data sets: (1) curated data, (2) OSINT data, and (3) background
knowledge. Curated data are provided by the companies specialized in the field of the cybersecurity
such as Recorded Future (https://www.recordedfuture.com/), Sensecy (https://www.sensecy.com/),
and Surfwatch (https://www.surfwatchlabs.com/). In this paper, we obtain them from Recorded
Future, and they are used to (1) identify Twitter accounts related to CSI and (2) filter tweets related to
CSI from the collected tweets. We use tweets for OSINT data, which are publicly opened and can be
crawled [56]. By leveraging the curated data, we classify a collection of the tweets into CSI-positive and

https://www.recordedfuture.com/
https://www.sensecy.com/
https://www.surfwatchlabs.com/
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-negative classes. In addition, we use CVE data set and Wikitext data set as the background knowledge
to construct embedding models. Table 2 shows the type, source, data set name, usage, and data size of
each data set.

Table 2. The used data sets.

Types Sources Data Set Name Usage Data Size

Curated data Recorded Future RF Keyword Set Filtering 639 keywords
RF Account Set Filtering 130 accounts

OSINT Twitter
CSI-Positive Tweet Data Set

Embedding, Training,
Testing 100,000 tweets

CSI-Negative Tweet Data Set
Embedding, Training,

Testing 100,000 tweets

Background
knowledge

NVD CVE Data Set Embedding 134,166 identifiers
Wikipedia Wikitext Data Set Embedding 28,475 articles

4.1. Curated Data

We acquire 1935 total accounts who have been written tweets contained in the “exploit” category
analyzed by Recorded Future. The list of accounts is sorted by the number of tweets containing “exploit.”
Among 1935 accounts, we define RF account set as the top 130 accounts. In addition, we define RF
keyword set as the keywords in “industrial term” analyzed by Recorded Future. The total number of
keywords included in the RF keyword set is 639, and the examples are as follows: “Internet-security”,
“flaw”, “PoC”, “Exploit”, “RCE”, “Online Security Blog”, “CVE”, “Flash”, “Sandworm”, “Shellshock”,
“Neutrino”, “Samba”, “Stagefright”, “Bin,” which clearly show the relevance to CSI.

4.2. CSI-Positive Tweet Data Set

We use cybersecurity intelligence (CSI)-positive tweet data set for word embedding, training,
and testing of the model. Figure 1 shows an example of a CSI-positive tweet data set. To collect this
data set, we use a web crawling framework, Scrapy (https://scrapy.org/). We collect all tweets written
by the accounts in the RF account set. Since some of them could not be related to CSI, we filter only
the tweets containing at least one keyword in the RF keyword set and define them as the CSI-positive
tweet data set.

4.3. CSI-Negative Tweet Data Set

We use CSI-negative tweet data set for word embedding, training, and testing of the model.
For this data set, we collect the tweets written by random users using the Twitter Streaming
API (https://developer.twitter.com/en/docs/tweets/filter-realtime/overview) and define them as
the CSI-negative tweet data set. Tweets written by random users are widely distributed in
various topics. Thus, it is an adequate data set that has contrastive characteristics against CSI-positive
tweet data set.

4.4. CVE Data Set

Common Vulnerabilities and Exposures (CVE) is a database for describing disclosed software
flaws managed by the National Vulnerability Database (NVD) (https://nvd.nist.gov/vuln/full-listing).
A CVE has the brief description of a cyber threat that includes the information about the affected
product, versions, vendor, threat type, impact, method, and inputs of an attack. It is a formal document
that has been officially verified. In this paper, we use the CVE data set as the background knowledge
to supplement the imbalance of the CSI-positive tweet data set.

https://scrapy.org/
https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
https://nvd.nist.gov/vuln/full-listing
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4.5. Wikitext Data Set

Wikitext data set (https://creativecommons.org/licenses/by-sa/3.0/) is a collection of tokens
extracted from a set of verified articles on Wikipedia. For this, we use wikitext data with over
100 million tokens. One existing study has verified the performance of the Wikitext data set by
showing that the performance of the language modeling using the Wikitext data set is superior to that
of using Penn Treebank, which is a target data set [57]. In this paper, we use the Wikitext data set as
the background knowledge to supplement the imbalance of the CSI-negative tweet data set.

5. The Proposed Classification Model for Detecting Cybersecurity Intelligence in Twitter

5.1. Basic Idea

We propose a new text classification model for detecting cybersecurity intelligence in Twitter based
on a novel embedding model, contrastive word embedding. Figure 2 shows the overall framework of
the proposed model based on contrastive word embedding. To construct the proposed embedding
model, we define two completely different corpora according to the relevance of CSI: (1) CSI-positive
data set and (2) CSI-negative data set. To confirm the conjecture that these two corpora have contrastive
characteristics in terms of CSI, we investigate the CSI-positive ratio for each corpus using actual
tweet data sets. Specifically, with CSI-positive corpus (i.e., 50,000 tweets) and -negative corpus
(i.e., 50,000 tweets), we calculate the ratio of tweets containing the CSI related keywords (See the
definition of RF keyword set in Section 4.1) out of the former corpus and that out of the latter corpus,
respectively. As a result, we observe that 39.75% of tweets in the CSI-positive corpus and only 4.88% of
tweets in the CSI-negative corpus have the CSI related keywords. This implies that the defined two
corpora are contrastive in terms of CSI.

Figure 2. The overall framework of the proposed classification model based on contrastive
word embedding.

5.2. Pre-Processing of Data Sets

Because tweets usually contain noises, pre-processing of the collected raw tweets is essential.
In this paper, we adopt the existing pre-processing methods that have been commonly used in previous
SNS text mining studies [13,58]. The used pre-processing techniques are as follows: (1) all characters
except for those used in English are eliminated, (2) uppercase letters are converted to lowercase letters,
and (3) tweet dependent properties such as @RT, tag, link, and punctuation are removed. In the case
of the CVE and Wikitext data set, we also eliminate all characters except for those used in English.

https://creativecommons.org/licenses/by-sa/3.0/
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When we construct the embedding model from a corpus, we use the top 5000 words based on the
frequency in each corpus for every embedding model.

5.3. Annotation

Table 3 shows the training and testing data sets used for the proposed method. We use a total of
200,000 tweets for training and testing. Specifically, for CSI-positive tweet data set, we use 70,000 tweets
from the top 100 accounts in RF account set for training. We use 30,000 tweets from the remaining
30 accounts in RF account set for testing, separating the testing data set from the training data
set. For CSI-negative tweet data set, among a total of 100,000 tweets collected from the Twitter
streaming API, we use 70,000 tweets for training and the remaining 30,000 tweets for testing.

Table 3. Training, testing data.

Data Sets Target Accounts Number of Tweets Usage

CSI-positive tweet data set 100 accounts 70,000 Training

30 accounts 30,000 Testing

CSI-negative tweet data set Random accounts 70,000 Training

Random accounts 30,000 Testing

5.4. The Baseline Model

In this section, we present the baseline model based on each single word embedding that will
be used as the basis of the proposed classification model. Figure 3a shows the architecture of the
baseline model.

(a) (b)
Figure 3. The architectural difference between the baseline model and the proposed model. (a) The
baseline model. (b) The proposed model.

Input layer: We conduct one-hot encoding of the input tweet text. We fix the length of the encoded bits
as 100. That is, if the encoded bit length is larger than 100, we use the front 100 bits; otherwise, we pad 0.

Word embedding: For the baseline model, we use a single embedding layer, i.e., CSI-positive or
-negative embedding on which we construct CNN or LSTM layers. We use four types of corpora
(i.e., CSI-positive tweet data set and CVE data set for CSI-positive corpora; CSI-negative tweet data set
and Wikitext data set for CSI-negative corpora). To construct all the embedding models, we randomly
initialize output vectors of the model with the size of 100 dimensions.
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Feature extractor: In the proposed model, we employ the feature fusion strategy for integrating
feature vectors extracted from multiple learning models into a classifier (See Section 5.5). For this,
we need to separate the feature extractor and the classifier because the concatenation of the features
occurred between the feature extractor and the classifier. We also design each baseline model with
the same strategy for comparison. That is, we use the deep learning model (i.e., CNN and LSTM)
for the feature extractor. Then, we apply the classifier to the feature vectors extracted from the
feature extractor. For constructing a CNN model, we use a Conv1D layer with 128 filters and a global
max-pooling layer; For a LSTM model, we use 128 nodes in a hidden layer and tanh activation.

Binary classifier: We design a binary classifier based on a fully connected layer with sigmoid activation.
We train the model so as to minimize the binary cross entropy.

5.5. Contrastive Word Embedding and Model Fusion

The main idea of the proposed model is devising a new classification model based on contrastive
word embedding that can effectively integrate multiple word embedding models into one classifier.
Figure 3b shows the architecture of the proposed model compared to the baseline model. Here,
the distinguishing properties of the proposed model from the baseline model stem from two aspects:
(1) the used embedding model and (2) the model fusion. In the embedding model, we use two multiple
word embedding models having contrastive characteristics in terms of CSI, i.e., both CS-positive
embedding and -negative embedding, for one classification model. In the model fusion, we concatenate
the feature vectors extracted from the deep learning model based on each single embedding model
and integrate them into one classifier. To focus on the effectiveness due to the contrastive embedding
model and its fusion, we use the same base embedding models and deep learning models as in the
baseline model.

In designing the model fusion, we consider two commonly-used fusion methods of multiple
learning models: (1) the feature fusion and (2) the decision fusion [59]. The feature fusion is the
concatenation of the feature values extracted from multiple models, and the entire feature values
will be delivered into the succeeding step; the decision fusion determines the final decision values
considering the feature values extracted from multiple models. In this paper, we employ the feature
fusion because it maintains all the features extracted from two base embedding models and the
succeeding step (i.e., the classifier) can utilize the interaction based on the difference between them.
The decision fusion cannot consider the interaction between features from multiple learning models.

Figure 4 shows the concept of the feature fusion used in the proposed model. Specifically, the result
of each embedding model is delivered into the deep learning model for the feature extraction. Then,
we concatenate the features generated from multiple learning models. For this, we use a fully connected
layer, as presented in Figure 3b, where ReLu activation is used and the unit (i.e., the dimensionality of
the output space) is 8. As a result, the feature vectors are expanded so as to consider both CSI-positive
and -negative corpora, maintaining both information in an integrated vector space. This leads to
improving the accuracy of the classification between CSI-positive and -negative tweets.

Figure 4. The concept of the feature fusion used in the proposed method.
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6. Performance Evaluation

6.1. Experimental Methods and Evaluation Metrics

In the experiment, we aim to measure the classification accuracy of the baseline models and the
proposed model. In the baseline model, if we choose CNN as the classifier, one of existing methods [13]
is mapped to the methodology. To measure the accuracy of the classification, we use four evaluation
metrics: (1) Precision, (2) Recall, (3) F1-score, and (4) AUC. Precision and recall are defined by four
components in the confusion matrix: true positive (TP), false positive (FP), false negative (FN), and true
negative (TN). TP and TN mean correct prediction; FP and FN wrong prediction. In our problem,
TP (or FP) means that the model predicts a given tweet is positive to CSI, and it is actually positive
(or negative); FN (or TN) the model predicts a given tweet is negative to CSI, but it is actually
positive (or negative). The precision represents the ratio of which model is true (i.e., TP) to what is
true (i.e., TP + FP). Equation (1) shows the equation for precision. Recall, which indicates sensitivity,
represents the ratio of what the model is true (i.e., TP) to be true (i.e., TP + FN). Equation (2) shows
the equation for recall. F1-score is a harmonic mean of precision and recall. It has been known that,
even when the data is imbalanced, F1-score can accurately evaluate the performance of the model [60].
Equation (3) is the equation for obtaining F1-score.

Precision =
TP

TP + FP
. (1)

Recall = TPR =
TP

TP + FN
(2)

F1-score = 2 × Precision × Recall
Precision + Recall

(3)

AUC is another commonly used criterion to evaluate the accuracy of the classification and is
obtained by calculating the area of the receiver operating characteristic (ROC) curve as shown in
Figure 5 [61]. ROC curve is represented by TPR, y-axis, and FPR, x-axis. TPR is the same as recall in
Equation (2). FPR is the proportion of the results that are incorrectly predicted as positive among the
negative as shown in Equation (4). AUC means how much model is capable of binary classification [62];
the higher the AUC, the higher the accuracy of the model.

FPR =
FP

FP + TN
. (4)

Figure 5. Area under the curve (AUC)-receiver operating characteristic (ROC) curve [61].
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We performed all experiments on a machine with GeForce RTX 2080 Ti, Intel Core i7 7800X
3.50 GHz CPU, and 64GM RAM running Ubuntu 18.04. We used Python (version 3.7.3) for
implementing the baseline and proposed models and Keras (version. 2.3.1) for CNN and LSTM.

6.2. Evaluation Result

6.2.1. The Accuracy of the Baseline Models

We measured the accuracy of the baseline model based on a single embedding model. Table 4
shows the evaluation result of the baseline model by varying the corpus (i.e., CSI-positive tweet
data set, CSI-negative tweet data set, CVE data set, and Wikitext data set) and classifiers (i.e., CNN
and LSTM).

Table 4. Evaluation result of the baseline models.

Embedding Model Corpus Learning Model
Measurement Precision Recall F1-Score AUC

CSI-positive
embedding

CSI-positive tweet
data set

CNN 0.535 0.853 0.658 0.557
LSTM 0.526 0.865 0.654 0.543

CVE data set CNN 0.958 0.856 0.904 0.909
LSTM 0.952 0.869 0.909 0.912

CSI-negative
embedding

CSI-negative tweet
data set

CNN 0.890 0.860 0.875 0.874
LSTM 0.887 0.870 0.878 0.879

Wikitext data set CNN 0.907 0.851 0.878 0.882
LSTM 0.905 0.867 0.886 0.888

In CSI-positive embedding, when we used the CVE data set (i.e., background knowledge)
as the corpus, it showed much better accuracy than the CSI-positive tweet data set. This result
demonstrated the necessity of using the background knowledge for detecting CSI from tweets.
We analyzed the result for each corpus in detail. (1) When the CSI-positive tweet data set is used as the
corpus, it shows the lowest accuracy out of all the corpora: 0.654∼0.658 of F1-score and 0.543∼0.557 of
AUC as the learning models are varied. We speculate that CSI-positive tweets contain much information
related to CSI, at the same time, contain information with general expressions used in tweets. As a
result, because CSI-positive tweets are relatively correctly classified (i.e., FN is low), the recall is high
(i.e., 0.853∼0.865); however, because the ratio of actual positive tweets out of the tweets predicted as
positive is low (i.e., FP is high), the precision is low (i.e., 0.526∼0.535). Table 5 shows four components
(i.e., TP, FN, FP, and TN) used for calculating precision and recall to analyze the accuracy of the baseline
models. Specifically, among 60,000 testing data sets, FN is only 4046∼4403, but FP is 22,204∼23,396.
(2) When the CVE data set is used as the corpus, it shows the highest accuracy out of all the corpora:
0.904∼0.909 of F1-Score and 0.909∼0.912 of as the learning models are varied. In this case, as shown in
Table 5, the recall is as high as the case of CSI-positive tweet data set; in addition, the precision is much
higher than the case of CSI-positive tweet data set because FP becomes much lower than the case of
CSI-positive tweet data set (i.e., only 1129∼1301).

In CSI-negative embedding, both the Wikitext data set and CSI-negative tweet data set show
comparable accuracy in the classification. That is, in the case of CSI-negative tweet data set, F1-score
was 0.875∼0.878 and AUC is 0.874∼0.879; in the case of Wikitext data set, F1-score was 0.878∼0.886 and
AUC was 0.882∼0.888.
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Table 5. Accuracy analysis of the baseline models.

Corpus Learning Model
Measurement TP FN FP TN

CSI-positive tweet
data set

CNN 25,597 4403 22,204 7796
LSTM 25,954 4046 23,396 6604

CVE data set CNN 25,674 4326 1129 28,871
LSTM 26,056 3943 1301 28,699

CSI-negative tweet
data set

CNN 25,799 4201 3177 26,823
LSTM 26,098 3902 3330 26,670

Wikitext data set CNN 25,528 4472 2623 27,377
LSTM 25,987 4013 2729 27,271

6.2.2. The Accuracy of the Proposed Model

Because the CVE data set significantly outperformed the CSI-positive tweet data set, we chose
the CVE data set as the only candidate for CSI-positive corpus in constructing the embedding model;
however, because the CSI-negative tweet data set and Wikitext data set show comparable accuracy,
we chose both of them for CSI-negative corpus. Table 6 shows the evaluation result of the proposed
model by the possible fusion of CSI-positive and -negative corpus. We indicate that the fusion of the
CVE data set and CSI-negative tweet data set shows better accuracy than that of the CVE data set and
Wikitext data set.

Table 6. Evaluation result of the proposed model.

Corpus Classifier
Measurement Precision Recall F1-Score AUC

Fusion of CVE data set and
CSI-negative tweet

CNN 0.957 0.912 0.934 0.935

LSTM 0.955 0.911 0.932 0.934

Fusion of CVE data set and
Wikitext data set

CNN 0.894 0.923 0.925 0.925

LSTM 0.949 0.902 0.925 0.927

Figure 6a,b show the comparison of the accuracy between the baseline models and the proposed
models using F1-Score and AUC, respectively. We indicate that the proposed models based on
contrastive word embedding achieve meaningful improvement compared to the baseline models
based on a single embedding model in both F1-score and AUC. Specifically, the proposed model based
on the fusion of CVE data set and CSI-negative tweet data set improves the accuracy of the baseline
model using only CVE data set by 2.53∼3.32% of F1-score and by 2.41∼2.86% of AUC; it improves
using only CSI-negative tweet data set by 6.15∼6.74% of F1-score and 6.26∼7.00% of AUC. Table 7
shows four components (i.e., TP, FN, FP, and TN) used for calculating precision and recall to analyze
the accuracy of the proposed model. By comparing Tables 5 and 7, we indicate that FP and TN in the
proposed model are quite similar to them in the baseline model where only the CVE data set is used,
which shows the best accuracy in the baseline model; however, in the proposed model, TP becomes
increase and FN decrease (i.e., 1260∼1680), respectively, compared to the baseline model, improving
the overall accuracy. In addition, the proposed model based on the fusion of CVE data set and Wikitext
data set improves the accuracy of the baseline model using only CVE data set by 1.76∼2.10% of F1-score
and 1.64∼1.76% of AUC; it improves that using only Wikitext data set by 4.40∼5.12% of F1-score
and by 4.39∼4.99% of AUC. Here again, we indicate that FP and TN in the proposed model are quite
similar to them in the baseline model where only the CVE data set is used; however, in the proposed
model, TP increases and FN decreases (i.e., 1016∼1156), respectively, compared to the baseline model.
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Table 7. Accuracy analysis of the proposed model.

Corpus Classifier
Measurement TP FN FP TN

Fusion of CVE data set and
CSI-negative tweet

CNN 27,354 2646 1231 28,769

LSTM 27,316 2684 1284 28,716

Fusion of CVE data set and
Wikitext data set

CNN 26,830 3170 1305 28,695

LSTM 27,072 2928 1453 28,547

(a)

(b)
Figure 6. Comparison of the baseline models and the proposed model. (a) F1-score. (b) AUC.
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Here, we analyze the performance improvement of the proposed method compared to the best
baseline model (i.e., using only CVE data set). As shown in Tables 4–7 the precision of the proposed
model using the fusion of the CVE data set and CSI-negative tweet data set is similar to that of the
baseline model using only the CVE data set. However, the proposed model significantly improves
the recall by 4.83∼6.54% compared to the baseline model. As a result, the overall performance of the
proposed method shows a meaningful improvement compared to the baseline model.

7. Discussion

The goal of the classification: when we work on the cyber threat intelligence, it is difficult to
clearly determine the tweets related to cyber threats from public SNS media. In this paper, we propose a
classification model for detecting tweets related to cybersecurity, which can be more clearly determined
than tweets related to cyber threats by using the curated data sets without manual efforts (See Section 4).
In this paper, to focus on showing the effectiveness of the proposed model, we define the corpus using
the clearer criteria. If we can clearly define the corpus for cyber-threat-related tweets, we can also
apply the proposed model to the corpus.

Fusion of learning models: to integrate the multiple learning models into a classifier, we have
considered two approaches: (1) model fusion, which has been finally used in the proposed model,
and (2) data fusion, which have been used in the existing studies for other problems: measuring the
semantic relevance of short texts [63] and detection of the adverse drug reaction [64]. We have also
considered data fusion for the model fusion. Figure 7 shows the architecture of the data fusion we
have considered. That is, when we construct the embedding model, we integrate both CSI-positive
and -negative corpus as one corpus. However, we have observed that the data fusion is not effective
for classifying CSI-positive and -negative tweets as shown in Figure 8a,b where CVE data set and
CSI-negative tweet data set are used as the corpora. That is, when two corpora are combined, the result
model even degrades the classification accuracy based on a single embedding model.

Figure 7. The data fusion model.
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(a) (b)

Figure 8. Comparison between the baseline models and the data fusion. (a) F1-score. (b) AUC.

8. Conclusions

In this paper, we have devised a new text classification model based on deep learning to classify
CSI-positive and -negative tweets from a collection of tweets. For this, we have proposed a novel word
embedding model, called contrastive word embedding, that enables us to maximize the difference
between base embedding models. First, we have defined CSI-positive and -negative corpora, which are
used for constructing embedding models. Here, to supplement the imbalance of tweet data sets,
we have additionally employed the background knowledge for each tweet corpus: (1) CVE data set for
CSI-positive corpus and (2) Wikitext data set for CSI-negative corpus. Second, we have adopted the
deep learning models such as CNN or LSTM to extract adequate feature vectors from the embedding
models and integrate the feature vectors into one classifier.

To validate the effectiveness of the proposed embedding model, we have compared the proposed
model with two baseline classification models: (1) a model based on a single embedding model
constructed with CSI-positive corpus only and (2) another model with CSI-negative corpus only.
In the experiment, we used 70,000 tweets for CSI-positive and CSI-negative corpora as the training
data set, respectively, and 30,000 tweets for each corpus as testing data set, respectively. As a result,
we have indicated that the proposed model shows high accuracy, i.e., 0.934 of F1-score and 0.935 of
AUC, which improves the baseline models by 1.76∼6.74% of F1-score and by 1.64∼6.98% of AUC.

In this paper, we proposed the concept of contrastive word embedding, and it has been actually
used for classifying the CSI-positive and -negative tweets. The concept of contrastive word embedding
can be more widely used because it can be generalized by defining base multiple embedding
models and by effectively integrating them. Hence, this is applicable for improving the classification
performance of other domains by defining embedding models suitable for the problem and optimizing
its combination.
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Abbreviations

The following abbreviations are used in this manuscript:

CSI Cyber Security Intelligence
OSINT Open Source Intelligence
HUMINT Human Intelligence
CVE Common Vulnerabilities and Exposures
NVD National Vulnerability Database
IMDB Internet Movie Database
CNN Convolutional Neural Network
TF-IDF Term Frequency-Inverse Document Frequency
GCN Graph Convolutional Network
NLP Natural Language Processing
RNN Recurrent Neural Network
LSTM Long Short Term Memory
SVM Support Vector Machine
MLP Multi-Layer Perceptron
k-NN k Nearest Neighbor
LDA Latent Dirichlet Allocation
ReLu Rectified Linear Unit
ROC Receiver Operating Characteristic
AUC Area Under the Curve
BiLSTM Bidirectional Long Short Term Memory
DDoS Distributed Denial of Service
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