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Abstract: Due to the diversity of distributed generation sources, microgrid inverters work under
complex and changeable conditions. The core device of inverters, an insulated gate bipolar transistor
(IGBT), bears a large amount of thermal stress impact, so its reliability is related to the stable operation
of the microgrid. The effect of the IGBT aging process cannot be considered adequately with the
existing reliability evaluation methods, which have not yet reached the requirements of online
evaluation. This paper proposes a fusion algorithm for online reliability evaluation of microgrid
inverter IGBT, which combines condition monitoring and reliability evaluation. Firstly, based on the
microgrid inverter topology and IGBT characteristics, an electrothermal coupling model is established
to obtain junction temperature data. Secondly, the segmented long short-term memory (LSTM)
algorithm is studied, which can accurately predict the aging process of the IGBT and judge the aging
state via the limited monitoring data. Then, the parameters of the electrothermal coupling model are
corrected according to the aging process. Besides, the fusion algorithm is applied to the practical
case. Finally, the data comparison verifies the feasibility of the fusion algorithm, whose cumulative
damage degree and estimated life error are 5.10% and 5.83%, respectively.
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1. Introduction

The microgrid can take full advantage of the high efficiency and flexibility of the distributed
generation, which can maintain the balance of load power and achieve a certain degree of optimal
management. Inverter in microgrid plays a key role in power conversion, transmission, and storage,
showing its reliability particularly crucial in practical application [1,2]. Insulated gate bipolar transistors
(IGBTs), with fast switching speed, simple driving circuits, and large current capacity, have been
widely used in microgrid inverters [3]. Due to the diversity of distributed generation sources and
the complexity of operation mode, IGBT, the core device of a microgrid inverter, often bears a lot of
thermal stress cycles. Under complex working conditions, the performance of IGBT will gradually
degrade, which is a critical factor of inverter fault [4–6].

Generally, the IGBT reliability analysis is carried out from Physics-of-Failure (PoF). Studies have
shown that the fluctuation of junction temperature is the main reason for IGBT failure. Owing to the
different coefficients of thermal expansion (CTE), the thermal stress inside the IGBT structure is uneven,
resulting in damage to the bond wires, the solder layer, and the interior of the chip [7,8]. There are
two ways to obtain junction temperature online: direct measurement and indirect measurement [9,10].
Direct measurement is to obtain junction temperature data by embedding integrated sensors inside the
IGBT module. In the process of designing and producing IGBTs, manufacturers need to consider the
electromagnetic compatibility of integrated sensors. Hence, this method has the disadvantages of data
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transmission delay and high cost in actual projects. Indirect measurement means to estimate the junction
temperature of the IGBT in real-time by establishing an electrothermal coupling model, which has the
advantages of low delay and strong online monitoring capabilities. In addition, the infrared thermometer
can also be used to measure the IGBT 3-D temperature distributions, but it is often disturbed by the
package structure [11]. The electrothermal coupling model estimates the junction temperature in real-time
through power loss without intruding into the package. However, the electrothermal coupling model of
the IGBT is generally established based on the IGBT’s technical manual. The IGBT is constantly aging
owing to fatigue damage during operation, which makes the pre-established electrothermal coupling
model no longer adapt to the current IGBT state. In [12], the author proposed a mathematical analysis
method for fundamental frequency junction temperature fluctuation based on equivalent sine half-wave
loss. However, the converter IGBT junction temperature was estimated without updating the parameters
of the electrothermal coupling model in time. In [13], when predicting the life of the IGBT in a static
synchronous compensator (STATCOM) via the electrothermal coupling model and rainflow counting
algorithm, the influence of the IGBT aging process was not considered. In [14], an adaptive thermal
equivalent circuit model for estimating the junction temperature of the IGBT is proposed, which can
correct the parameter deviation of the electrothermal coupling model caused by the aging of the solder
layer. However, multiple temperature sensors between the substrate and heat sink must be installed,
which has a weak anti-interference ability to the external environment. In general, the electrothermal
coupling model is very suitable for online monitoring of the IGBT junction temperature, but there is
currently no effective means to correct the effect of the aging process in the online monitoring process.

Since IGBT aging has a non-negligible influence on reliability evaluation, IGBT condition
monitoring can provide new ideas for the correction of electrothermal coupling parameters.
IGBT state parameters include gate threshold voltage, module thermal resistance, collector current,
collector–emitter voltage, short-circuit current, etc., which can reflect the aging state of IGBT [15,16].
In [17], the on-state collector–emitter voltage at the inflection point was used to detect the degradation
of the bonding wire, and experiments had shown that the method is not disturbed by the external
environment temperature. In [18], the aging process of the solder layer was monitored through the
thermal resistance of the IGBT module, and the equivalent thermal network model parameters were
updated in real-time accordingly. In [19], the author detected the IGBT chips in the multi-chip IGBT
power module through the gate turn-on threshold voltage and accurately judged the number of faulty
chips for early warning. In [20], the aging state of the IGBT was monitored by monitoring the difference
of the short-circuit current, and the experiment proved that this parameter was little affected by the
junction temperature. The above studies show that the IGBT state parameters can accurately reflect the
state of health and have strong anti-interference, but these studies are carried out under the conditions
of sufficient monitoring data.

The aging cycle of IGBT is very long, which means that a large amount of condition monitoring
data is needed to identify the aging stage. In the process of online evaluation of IGBT reliability, it is
impossible to obtain a large amount of monitoring data in a short time. In order to evaluate the IGBT
state more efficiently, the application of data-driven (DD) can extract more health information from
the historical data of the state parameters. DD is to predict the time series of observation parameters
through traditional numerical techniques (Kalman filters [21], particle filters (PF) [22], regression [23],
and statistical methods [24]), machine learning (neural networks [25], decision trees [26], and support
vector machines [27]), and other approaches. In [22], a prognostic method based on Mahalanobis
distance (MD) and PF methods were used to predict the remaining useful life (RUL) of IGBT, with an
error of 20%. In [25], two machine learning methods, neural network (NN) and adaptive neuro-fuzzy
inference system (ANFIS), were adopted to predict the RUL of IGBT via information beyond half-life.
The errors calculated using NN and ANFIS are 19.04% and 30.91%, respectively. At present, few studies
are adopting NN to predict and analyze the aging process of IGBTs, and the accuracy of prediction
needs to be improved [28].
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Motivated by the analysis described above, this paper improves the long short-term memory
(LSTM) algorithm according to IGBT aging characteristics to obtain the segmented LSTM prediction
network. Combined condition monitoring and reliability evaluation, a PoF and DD fusion algorithm
is proposed for online reliability evaluation of microgrid inverter IGBT. First, the segmented LSTM
accurately predicts the aging state curve of the IGBT based on the limited monitoring data, and the
IGBT aging state is judged in real-time. Next, parameters of the electrothermal coupling model are
updated to correct the influence of the aging process, which guarantees the junction temperature data
is consistent with the actual working conditions. Further, the rainflow counting algorithm makes
statistics on the thermal stress distribution via the junction temperature data. Finally, combined with
fatigue damage theory and the life prediction model, a reliability evaluation is carried out.

This paper is organized as follows. Section 2 establishes an electrothermal coupling model for the
topology of the microgrid inverter and verifies the model by the power loss and junction temperature
data of the manufacturer. Section 3 illustrates IGBT fatigue damage theory and accelerated aging
experiments, and studies the segmented LSTM prediction network suitable for the IGBT aging process.
Section 4 introduces the proposed fusion algorithm flow and analyzes an actual case via the fusion
algorithm. Verification and comparison are presented in Section 5. Section 6 draws the conclusion.

2. IGBT Reliability Modeling

2.1. Electrothermal Coupling Model

Bonding wire peeling and solder layer cracking are two main failure modes of IGBTs, which
mainly caused the junction temperature inside the device [29]. Therefore, the junction temperature is
the crucial data to study the performance degradation and reliability analysis of microgrid inverter
IGBTs. Figure 1 illustrates the flow chart of establishing the electrothermal coupling model, which can
output real-time junction temperature data. The IGBT power loss model is derived by combining the
microgrid inverter topology and IGBT operating characteristics. The equivalent model of the IGBT
thermal network is derived based on the physical structure of the IGBT module and the internal heat
conduction process. Eventually, the real-time junction temperature fluctuation data of the IGBT under
the current operating conditions can be output.
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Figure 1. Electrothermal coupling model Figure 1. Electrothermal coupling model

Set the DC side voltage to 1100 V, the external ambient temperature to 50 °C, the switching
frequency to 10 kHz, and the duty cycle to 0.4. The electrothermal coupling model refers to the
IRG4BC30K IGBT datasheet, which is produced by Infineon. In Table 1, compared with the data output
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by the Infineon-IGBT simulation tool under the same conditions, the model is verified by power loss
and junction temperature.

Table 1. Electrothermal coupling model verification.

Verify Content IGBT Switching Loss (W) IGBT Conduction Loss (W) Junction Temperature (°C)

Infineon-IGBT simulation tool 8.010 7.682 68.83
Electrothermal coupling model 8.276 7.799 69.81

Error 3.32% 1.52% 1.42%

2.2. Life Prediction Model

In order to evaluate the reliability and life of IGBT modules, manufacturers and researchers generally
carry out accelerated aging tests and put forward a series of IGBT module life models based on test data
and failure mechanisms, such as the Lesit model, Bayerer model, and Coffin–Manson model.

• The Lesit model considers both the junction temperature fluctuation and the average value, and its
mathematical expression is:

Nf= A·
(
∆Tj

)−α
· exp

( Eα

k·Tm

)
(1)

where A is the model correction coefficient, α is the junction temperature fluctuation index, k is
the Boltzmann constant, and Eα is the excitation energy of the IGBT module chip [30].

• The Coffin–Manson model involves three factors: maximum temperature, junction temperature
fluctuation, and cycle frequency [31]. Its mathematical expression is:

Nf= A·f −a
·

(
∆Tj

)−b
·G(Tm) (2)

where A is the fitting constant, a is the cycle frequency index (typical value is about 1/3), and b is
the junction temperature fluctuation index (standard value is about 2).

• The Bayerer model takes many other variables into account, in addition to the maximum junction
temperature and junction temperature fluctuations considered by the Coffin–Manson model.
Its mathematical expression is:

Nf= K·
(
∆Tj

)−β1
·e
−

β2
Tjmax+273

·tβ3
on ·I

β4 ·Vβ5 ·Dβ6 (3)

where K is the model correction coefficient, β1–β2 is the junction temperature fluctuation index and
the maximum junction temperature index, and β3–β6 is the power cycle heating time, the device
withstand voltage rating, the bonding wire current, and the index of the bond wire diameter [32].

Currently, the Lesit model is mostly applied in the life prediction of IGBT life. Its expression is
simple and consistent with the results of the aging experiment. Moreover, it has an excellent online
monitoring capability in conjunction with rainflow counting. Although the Bayerer model is more
accurate than other models, it is impossible to apply to online monitoring due to many parameters
being difficult to measure.

3. IGBT Aging Monitoring

3.1. Fatigue Damage Theory

IGBT needs to withstand a large number of thermal stress cycles during operation. Assume that
Nf is the number of failure cycles of the IGBT under a stress cycle with constant amplitude. When the
number of cycles that it bears the stress cycle is N (N is less than Nf), the fatigue damage of the IGBT
can be expressed by the cumulative damage degree as follows [33]:
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D =
N
Nf

(4)

If the device endures multiple constant amplitude stresses, and the number of impacts generated
by each constant amplitude stress is Ni, the cumulative damage degree can be expressed as follows:

D =
k∑

i=1

Di =
k∑

i=1

Ni

Nf, i
(5)

when the cumulative damage D reaches 1, it indicates that the device fails due to fatigue damage.
In the actual working process of the microgrid inverter, the solder layer of the IGBT is prone to fatigue
damage, and the thermal resistance increases with the aging process of the device material. Due to the
influence of the IGBT aging process on the life prediction, it is necessary to update the thermal network
parameters of the electrothermal coupling model in time. According to the aging law of the IGBT
module, increasing the thermal model parameters by 10%–50% can simulate different aging stages [34].

3.2. Accelerated Aging Test

Since the aging process of IGBT is very long, in order to obtain relatively accurate aging data in a
short time, it is necessary to conduct an accelerated aging test on IGBT. During the experiment, the device
is in a state of high-speed switching, so the device can withstand a large number of thermal stress
cycles in a short time, which accelerates the aging failure. The aging process of IGBT will change the
electrical parameters, so parameters measured easily can be selected to predict the aging process of IGBT.
Among these parameters, collector–emitter voltage is the most suitable precursor for aging prognostic,
considering online measurement, calibration, accuracy, linearity, and sensitivity [26]. When IGBT is
turned off, parasitic transistors produce a transient voltage, which interacts with the IGBT collector
voltage to produce the transient peak voltage in Figure 2a. The analysis of aging data in the National
Aeronautics and Space Administration (NASA) laboratory shows that the collector–emitter peak voltage
(Vce_peak) is closely related to the degradation, so Vce_peak can be employed to monitor the aging process
of IGBT.
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Figure 2. (a) Collector–emitter turn-off voltage waveform. (b) Insulated gate bipolar transistor (IGBT)
accelerated aging experiment platform.

This paper uses the accelerated aging experimental data set published by NASA Prognostics
Center of Excellence (PCoE) to study the aging prediction network model and apply the best model in
the actual example [35]. The experimental platform of the NASA accelerated aging test for IRG4BC30K
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is shown in Figure 2b, and the test parameters are listed in Table 2. Therefore, the setting of the
accelerated aging test is very close to the actual working condition of IGBT. The parameters measured
by the accelerated aging experiment contain collector current, collector–emitter voltage, gate voltage,
and packaging temperature. Vce_peak was sampled and extracted to obtain the aging monitoring data
set until the device failed.

Table 2. Accelerated aging test parameters.

Types Setting

IGBT type IRG4BC30K
PWM duty cycle 0.4

Switching frequency (kHz) 10
Package temperature (°C) 260–270

Gate voltage (V) 10

3.3. Segmented LSTM Algorithm

In recent years, with the continuous development of deep learning (DL), relevant models are
gradually applied to fault time series data. DL is a kind of deep neural network model with multiple
nonlinear mapping levels, which can abstract and extract features of input signals layer by layer and
dig out more profound potential laws [36]. As one of the DL networks, having the inherent potential
of fully mining the data time-series information, a recurrent neural network (RNN) has been widely
used in time series prediction [37]. A convolution neural network (CNN) can also achieve the purpose
of time series prediction by constructing samples, but vast amounts of data are needed, which cannot
match the aging characteristics of IGBTs.

RNN introduces the concept of a time sequence into the design of a network structure, making it
more adaptable in the analysis of time-series data. However, RNN has many disadvantages, such as
gradient disappearance, gradient explosion, and reduced long-term memory. As an improved model
of RNN, LSTM can make up for the shortcomings of RNN. IGBTs can be affected by factors such as high
temperature, high pressure, and harsh environment during the working process. Besides, its continuous
stress impact will cause fatigue damage to the device. Therefore, the IGBT aging state gradually changes
with time, which indicates that the current device aging state will be affected by the previous one.
So, IGBTs aging prediction can be abstracted as a time series prediction problem.

In real projects, the monitoring device cannot collect a large amount of aging data in a short time,
which is not conducive to real-time evaluation of the aging state of IGBTs. The LSTM algorithm can
predict the aging process of IGBT according to the monitoring data. The prediction framework is shown
in Figure 3, and the parameter settings are listed in Table 3. The first 25% of the data set was used as
training data to train the LSTM time series prediction network, and the remaining 75% data verified
the prediction results in Figure 4. It can be found that the forecast data in the early stage coincided
with the observed value, but the forecast data in the later stage deviated far from the observed data.
Finally, the root mean squared error (RMSE) of the LSTM prediction was 0.27824.

Table 3. Hyperparameter settings of long short-term memory (LSTM) networks.

Types Setting

Initial Learn Rate 0.001
Learn Rate Schedule piecewise

Max Epochs 50
Gradient Threshold 1

Learn Rate Drop Period 25
Learn Rate Drop Factor 0.1
Execution environment GPU

Optimizer Adam
Verbose 0
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Figure 4. The first LSTM prediction.

In response to this problem, this paper proposed a segmented LSTM prediction algorithm, and the
flowchart is illustrated in Figure 5. During the first LSTM prediction, the first 1/3 data of the prediction
data (P1) was retained and combined with the original training data (T1) to form the training data of
the second LSTM prediction (T2). During the second LSTM prediction in Figure 6, the first 1/2 of the
prediction data (P2) and T2 were combined into the training data set for the third LSTM prediction (T3).
During the third LSTM prediction shown in Figure 7, all aging prediction data (P3) was consistent with
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the measured data. After three-segmented LSTM predictions, the final comparison of prediction data
and monitoring data is presented in Figure 8, and the RMSE was only 0.1153. The segmented LSTM
algorithm had higher prediction accuracy under the condition of limited training data, which meets
the needs of microgrid inverter IGBT condition monitoring and reliability analysis.
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4. IGBT Reliability Online Evaluation Fusion Algorithm

4.1. Algorithm Flow

As shown in Figure 9, the framework of the online reliability evaluation fusion algorithm proposed
in this paper consisted of three parts. The first part is the reliability analysis based on PoF. The influence
of wind speed and ambient temperature is considered through SCADA data, and then the wind turbine
model and electrothermal coupling model are used to obtain real-time junction temperature data.
The second part is the DD condition monitoring. Vce_peak monitoring data is used for segmented LSTM
prediction to estimate the aging process of IGBT. According to the obtained aging curve, the thresholds
of different aging stages are divided. Compare the threshold and monitoring data to determine the
aging stage in real-time, and select the corresponding electrothermal coupling model, which considers
the impact of the aging process and improves the accuracy of microgrid IGBT reliability assessment.
The third part is the life prediction. The junction temperature fluctuation data is processed by the
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rainflow counting algorithm to obtain the distribution of the fluctuation amplitude and mean value.
In the end, the Lesit life prediction model could efficiently use the output data of the rainflow counting
algorithm and combine fatigue damage theory for life prediction.Electronics 2020, 9, x FOR PEER REVIEW 11 of 17 
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4.2. Case Analysis

In order to show the working principle of the fusion algorithm more clearly, this paper took
the wind power generation system in the microgrid as an example (specific parameters are listed in
Table 4) and analyzed the reliability of its inverter IGBT. The wind speed and ambient temperature
recorded in the SCADA database within one year were imported into the wind turbine model and the
electrothermal coupling model to derive the real-time junction temperature curve of the inverter IGBT.
Meanwhile, the segmented LSTM algorithm predicted the aging process through the monitoring data
of Vce_peak. Perform zero-order retention and averaging of aging data to extract more obvious aging
trends. The estimated aging process is presented in Figure 10, and the thresholds for different aging
stages are enlisted in Table 5.

Compare the threshold value and the monitoring data to determine the aging stage of the IGBT
in real-time, and then select the corresponding aging correction factor in Table 5. Substitute the
aging correction coefficient into the thermal resistance update equation to update the thermal
network parameters of the electrothermal coupling model, which ensures the accuracy of the junction
temperature data. The thermal resistance update equation is as follows:

R = Rinitial(1 + a ·rm) (6)
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where Rinitial is the initial value of thermal resistance, a is the aging factor (typical value is about 0.5),
r is the aging process coefficient (regular value is 0–1), and m is temperature stress factor (standard
value is 1) [38].

Table 4. Wind power system parameters.

Types Parameters

Rated power (kW) 20
Cut-in wind speed (m/s) 3
Rated wind speed (m/s) 11

Cut out wind speed (m/s) 25
Grid-side voltage (V) 690
DC side voltage (V) 1100

Grid-side frequency (Hz) 50
IGBT switching frequency (kHz) 10

IGBT Type IRG4BC30K

Table 5. The threshold voltage of IGBT aging stages.

Threshold Voltage Forecast (V) Observed (V) Aging Correction Factor

Health status 10.323 10.323 -
Aging stage 1 9.939 9.927 0.2
Aging stage 2 9.554 9.532 0.4
Aging stage 3 9.170 9.134 0.6
Aging stage 4 8.786 8.741 0.8
Aging stage 5 8.402 8.346 1.0

Figure 10. IGBT aging process.

After the above steps, the junction temperature data after aging correction can be obtained.
As shown in Figure 11, the rainflow counting method was used to extract the mathematical distribution
of junction temperature fluctuation ∆Tj and the average value of junction temperature Tm, which are
the critical data for the next reliability evaluation and life prediction. Compared with the uncorrected
junction temperature data, the corrected junction temperature data was more in line with the actual
working conditions, and the thermal stress load distribution obtained accordingly was more accurate.
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Finally, the Lesit life prediction model was used to predict the maximum number of thermal
stress cycles Nf, i that the aging IGBT can withstand under various operating conditions, and then the
cumulative damage and estimated life of IGBT were calculated with Equation (5).Electronics 2020, 9, x FOR PEER REVIEW 13 of 17 
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5. Comparison and Verification

Previously, the proposed fusion algorithm has been used to evaluate the reliability of the microgrid
inverter IGBT. In order to fully explain the advantages of the proposed fusion algorithm for online
evaluation of IGBT reliability, which combines PoF reliability analysis with DD condition monitoring,
the results of a health assessment were first compared with historical statistical data. Then, the life
prediction results were compared with that of other correction algorithms.

In order to study the reliability of IGBTs, scientific research institutions and scholars have made
statistics on the failure and damage causes of a large number of IGBTs. Table 6 lists the average cumulative
damage degree statistics for the same type of IGBT in one year. View the weighted average cumulative
damage and life prediction results as the mathematical expectation of the evaluation results.
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Table 6. Historical statistics of IGBT cumulative damage.

Data Sources Year Number of Samples Cumulative Damage Degree

WMEP [39] 1998–2000 209 0.189
1989–2006 1028 0.085

LWK [39] 1993–2006 5719 0.042
CARROLL [40] 2005–2010 9110 0.020
FISCHER [41] 2003–2017 2316 0.150

5.1. Comparison and Verification of a Health Assessment

This paper used DL algorithms (LSTM), traditional time series prediction algorithms (ARIMA),
and the proposed algorithm (the segmented LSTM) to predict the aging of the monitoring data, and
make aging corrections in the process of reliability evaluation. Table 7 shows a comparison of the results
of aging correction using different prediction algorithms. Without aging correction, the cumulative
damage error reached 45.51%, which overestimated the IGBT health status. After aging correction
based on the actual aging parameter observation data, the cumulative damage error was only 3.88%,
which indicates the effectiveness of the fusion algorithm. It can be found that monitoring the aging
state and updating the parameters of the electrothermal coupling model in time could significantly
improve the accuracy of the reliability evaluation.

Compared with the LSTM algorithm and ARIMA algorithm, the segmented LSTM algorithm
could predict the aging process of IGBT more accurately, and the cumulative damage error after
correction was only 5.10%. Thus, the fusion algorithm based on the segmented LSTM still had excellent
adaptability in the case of insufficient monitoring data. The fusion algorithm could effectively correct
the influence of the aging process on the reliability evaluation of the IGBT, and the evaluation result
could genuinely reflect the health status of the IGBT.

Table 7. Comparison of health assessment.

Algorithm Type Cumulative Damage Error

Mathematical Expectation 0.0490 -
No correction 0.0267 45.51%

Observation data correction 0.0471 3.88%
Segmented LSTM 0.0465 5.10%

LSTM 0.0398 18.78%
ARIMA 0.0341 30.41%

5.2. Comparison and Verification of Life Prediction

In the existing literature, some correction methods have been tried to predict the life of the same
type of inverter IGBT. The expected life span is between 17.71 and 28.50 years. The predicted lifetime
obtained by the fusion algorithm proposed in this paper is 22.22 years, which is consistent with the
prediction results of the existing literature. So as to compare the accuracy of each correction algorithm,
the errors between the life prediction results and the mathematical expectation are calculated in Table 8.
The prediction error of the fusion algorithm is only 5.83%, which is far lower than other correction
algorithms. Therefore, the fusion algorithm based on the segmented LSTM can correctly predict the
life of the IGBT based on its health status.
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Table 8. Comparison of life prediction.

Algorithm Type Life Perdition (Year) Error

Mathematical Expectation 20.408 -
Proposed fusion Algorithm 21.598 5.83%
Multiple PoF algorithm [42] 22.000 7.80%

Segmented network
update algorithm [43] 28.500 39.65%

Single PoF algorithm [34] 17.710 22.63%

6. Conclusions

This paper proposed an online IGBT reliability evaluation fusion algorithm for microgrid inverters,
which combined the PoF reliability analysis with DD condition monitoring to eliminate the influence
of aging on a reliability analysis. For solving the contradiction between the IGBT aging cycle and
observation scale, the segmented LSTM algorithm was studied on the framework of the original LSTM
algorithm. Based on limited aging monitoring data, it could accurately predict the aging process of
the device and judge the aging stage, which is the basis for real-time updating of the electrothermal
coupling model parameters. The case analysis shows that the combination of condition monitoring
and reliability analysis dramatically improved the accuracy of the assessment. In the case of limited
monitoring data in actual projects, segmented LSTM can more accurately correct the impact of the
IGBT aging process than other traditional algorithms. Statistical data and algorithm comparison verify
the feasibility and superiority of the fusion algorithm. The proposed fusion algorithm reduces the
dependence on the length of the monitoring data time series and improves the accuracy of reliability
evaluation, which meets the requirements of the online reliability evaluation.
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