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Abstract: GNSS (global navigation satellite system) and SINS (strap-down inertial navigation system)
integrated navigation systems have been the apparatus for providing reliable and stable position and
velocity information (PV). Commonly, there are two solutions to improve the GNSS/SINS integration
navigation system accuracy, i.e., employing GNSS with higher position accuracy in the integration
system or utilizing the high-grade inertial measurement unit (IMU) to construct the integration
system. However, technologies such as RTK (real-time kinematic) and PPP (precise point positioning)
that improve GNSS positioning accuracy have higher costs and they cannot work under high dynamic
environments. Also, an IMU with high accuracy will lead to a higher cost and larger volume,
therefore, a low-cost method to enhance the GNSS/SINS integration accuracy is of great significance.
In this paper, multiple receivers based on the GNSS/SINS integrated navigation system are proposed
with the aim of providing more precise PV information. Since the chip-scale receivers are cheap,
the deployment of multiple receivers in the GNSS/SINS integration will not significantly increase the
cost. In addition, two different filtering methods with central and cascaded structure are employed
to process the multiple receivers and SINS integration. In the centralized integration filter method,
measurements from multiple receivers are directly processed to estimate the SINS errors state vectors.
However, the computation load increases heavily due to the rising dimension of the measurement
vector. Therefore, a cascaded integration filter structure is also employed to distribute the processing
of the multiple receiver and SINS integration. In the cascaded processing method, each receiver is
regarded as an individual “sensor”, and a standard federated Kalman filter (FKF) is implemented
to obtain an optimal estimation of the navigation solutions. In this paper, a simulation and a field
tests are carried out to assess the influence of the number of receivers on the PV accuracy. A detailed
analysis of these position and velocity results is presented and the improvements in the PV accuracy
demonstrate the effectiveness of the proposed method.

Keywords: GNSS (global navigation satellite system); SINS (strap-down inertial navigation system);
Kalman filter; multiple receivers

1. Introduction

Represented the global positioning system (GPS), the global positioning navigation system (GNSS)
has been widely used to generate position, velocity, and time (PVT) information [1,2]. Signals from
the vehicle satellites are broadcast to the earth, and the receivers generate the PVT information by
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processing the satellites signals. However, due to the long range of the signal transmitting, the signal
power is comparatively weak when it reaches the earth [3,4]. The limitation of the signal power leads
to the receiver failing to work well under some challenging environments, e.g., in urban canyons,
indoors, tunnels, etc. Basically, two major factors obstruct the GNSS positioning accuracy. Firstly,
due to the signals reflected by surrounding objects, none-line-of-sight (NLOS) and multipath (MP) will
induce additional errors in the pseudo-range measurements [5–8]. Secondly, a momentary partial or
total signal blockage attenuates the position accuracy by changing the satellite distribution. Especially
while the satellites are totally blocked, the receiver cannot output PVT information [9,10]. Therefore, in
order to construct a seamless navigation system, GNSS is usually integrated with a strap-down inertial
navigation system (SINS).

SINS is a completely self-contained navigation system without receiving or broadcasting any
signals. SINS processes the angular rates and acceleration measurements from the gyroscopes
and accelerometers, and then provides continuous positioning, velocity and attitude (PVA)
information [11–13]. Compared with GNSS, the SINS works in almost all environments. The accuracy
of the SINS depends on the accuracy of the employed gyroscope and accelerometer sensors [14–16].
Complicated noises contained in the raw measurements of the angular rates and acceleration lead to
the SINS positioning errors diverging over time [16–18]. GNSS and SINS are recognized as highly
complementary, i.e., while GNSS work well, accurate navigation solutions from the GNSS receiver
can calibrate the errors of the SINS, and the on the contrary, SINS can provide accurate navigation
solutions during the GNSS signal outage.

According to the measurements utilized in the integration, GNSS/SINS integration can be divided
into three different architectures: loose, tight, and ultra-tight integration (LI, TI, and UTI, respectively).
In the loose integration model, the difference between GNSS and SINS position and velocity information
is employed as the measurements of the integration filter for estimating the SINS errors states [19–22].
In the tight and ultra-tight models, the pseudo-range and pseudo-range rates or baseband signal
processing results are usually employed as the measurements of the integration filter [23–25]. Compared
with TI and UTI, the LI model directly utilizes the position and velocity information to construct the
measurement vector, which has the advantage of easy implementation. LI architecture is widely used
in various applications for generating stable and precise PV information.

With careful analysis of the GNSS/SINS LI mechanism, there are three solutions to improve the
LI accuracy. Firstly, since the GNSS receiver included in the integration is always with meter level
accuracy, technologies such as RTK (real-time kinematic) and PPP (precise point positioning) capable of
decimeter or centimeter level accuracy can improve the accuracy of the GNSS/SINS integration system.
GNSS with RTK or PPP/SINS integration at different measurement levels has been implemented and
evaluated [26–28]. Gao evaluated the impact of the IMU grades on the PPP/SINS TI system [26]; Watson
characterized the performance of the GNSS-PPP/SINS TI system in a simulated environment [27]; and Li
investigated high-accuracy positioning in urban areas using single-frequency GPS/BDS/GLONASS
RTK/SINS integration [28]. However, the GNSS receivers with PPP or RKT are more expensive than
those with the single point positioning (SPP) method. The prices of some typical products are listed in
Table 1; a receiver with RTK usually costs hundreds of dollars, while the SPP-based receiver usually
costs less than 20 dollars. Moreover, RTK or PPP cannot work under high dynamics, e.g., missiles
or rockets.

Table 1. GNSS (global navigation satellite system) receiver prices.

Product Price (Dollars) Technology

UBLOX NEO-M8N 10 SPP
UBLOX ZEDF9P RTK 500 RTK

NOVATEL OEM719 800 RTK
Trimble BD982 700 RTK
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Secondly, in the GNSS/SINS LI architecture, a low-cost IMU is usually employed to construct SINS
for budgetary reasons. A low-cost IMU will also affect the positioning accuracy of the whole system,
especially in the condition that GNSS ceases to be effective. Gao implemented the GNSS/SINS integration
with different grades of the IMU, and their respective performance levels were characterized [26].
Niu presented the quantitative analysis of the IMU quality impact on the GNSS/SINS integration [29].
Table 2 lists the prices of some typical IMU products including MEMS IMUs and fiber optic gyroscope
(FOG)-based IMUs. With bias stability decreasing, the price increases dramatically.

Table 2. IMU (inertial measurement unit) prices.

Product Price (Dollars) Gyroscope Bias Stability

MEMS IMU MPU9250 5 -
MEMS IMU ADIS16448 1000 15◦/h
MEMS IMU MTI-710 2000 10◦/h
FOG IMU KVH CG5100 20,000 1◦/h

Thirdly, the LI integration model is highly nonlinear; linearization of the model will affect the
performance of the integration. In order to alleviate the negative influence of the model’s nonlinearity
on the integration, some nonlinear Kalman filters, such as UKF (unscented Kalman filter) or CKF
(cubature Kalman filter), are utilized [30–32]. Fernández proposed a nonlinear Kalman filter for the
GNSS/SINS UTI system [30]; Nourmohammadi employed a QR-factorized CKF in the decentralized
GNSS/MEMS-SINS integration system [31]; Benzerrouk investigated adaptive CKF and sigma points
KF based MEMS-IMU/GNSS data fusion for reducing the influence of the measurement outlier [32].

Motivated by the aim of enhancing the SPP-based GNSS/SINS LI positioning accuracy without
raising costs, this paper investigated the use of multiple GNSS receivers (SPP) in the GNSS/SINS
LI method. Since a chip-scale GNSS receiver (SPP) is cheap, i.e., the price of the U-blox NEO-M8N
(U-blox, Thalwil, Switzerland) receiver was about 10 dollars. Compared with utilizing an IMU with
higher accuracy, the cost of including more receivers in the GNSS/SINS LI system could be within
the budget. The different receivers were regarded as individual “sensors” providing measurements
for the integration filter. Two different processing methods with central and cascaded structures
were investigated and compared. The central processing method directly utilized the measurements
in the LI integration filter. However, in this centralized processing method, the dimension of the
measurement vector increased with the number of receivers, which increased the computation load.
The cascaded processing method divided the filter into several sub-filters with lower dimensions
of the measurement vector. Moreover, the sub-filter could run parallel, which helped to reduce
the computation load. Finally, both a simulation and a field test were carried out to evaluate the
performance of the proposed method.

The remainder of this paper is organized as follows: Section 2 examines the integration model in
detail including the state and measurement model, the central processing method, and the cascaded
processing method. Section 3 presents the simulation and the results analysis; the discussion and
conclusion are presented in Sections 4 and 5, respectively.

2. Methods

2.1. Integration Model with One Receiver

2.1.1. The Integration Filter Error State Model

The LI integration scheme includes 15 states composed of position errors, velocity errors, attitude
errors, gyroscope bias, and the accelerometer bias. The state vector X is defined as:

X = [δφ, δv, δp, δε, δ∇]T (1)
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where the vector δφ = [α, β,γ] is the error of pitch, roll, and yaw attitude angle, respectively; the vector
δv = [δve, δvn, δvu] is the error of east, north, and up velocity in east-north-up (ENU) navigation frame,
respectively; the vector δp = [δL, δλ, δh] is the latitude, longitude, and height (LLH) errors, respectively;
the vector δε =

[
εx, εy, εz

]
is the three-axis gyroscope bias; and the vector δ∇ =

[
∇x,∇y,∇z

]
is the

three-axis accelerometers bias.
The integration filter is commonly a Kalman filter, thus, the state equation can be written as:

Xk+1 = Fk+1,k ×Xk + G×W (2)

where Fk+1,k is the state transformation matrix, which is constructed based on the SINS error model; W
is the system error noise matrix, which is usually model as zero-mean white Gaussian noises; and G is
the matrix of the process noise distribution [18–21].

2.1.2. The Integration Filter Measurement Model

As aforementioned, position and velocity differences between GNSS and SINS are employed to
construct the measurement vector, and the model is expressed as:

Zk+1 = Hk+1Xk+1 + µk+1 (3)

where Zk+1 is the measurement vector at k + 1 epoch; Hk+1 is the observation matrix; and µk+1 is
the measurement noise. Normally, the measurement noise is assumed to be subject to Gaussian
distribution. The detailed form of the measurement vector is as follows [18–21]:

Zk+1 =



(
LINS

k+1 − LGNSS
k+1

)
(RM + h)(

λINS
k+1 − λ

GNSS
k+1

)
(RN + h)cos(L)

hINS
k+1 − hGNSS

k+1
vINS

e,k+1 − vGNSS
e,k+1

vINS
n,k+1 − vGNSS

n,k+1
vINS

u,k+1 − vGNSS
u,k+1


(4)

The observation matrix Hk+1 is:

Zk+1 =

[
diag[RM + h(RN + h) cos(L) 1] 03×3 03×9

03×3 diag[ 1 1 1 ] 03×9

]
Xk+1 + µk+1 (5)

2.1.3. Kalman Filter

A standard Kalman filter works with the two-step process: prediction and updating. In the first
step, the filter predicts the states at the next epoch with the state transformation matrix and error
covariance matrix:

X̃k+1 = Fk.k+1Xk (6)

P̃k+1 = Fk.k+1P̂kFT
k,k+1 + Qk (7)

where the symbols, ‘~’ and ‘ˆ’, denote prediction and updated parameters, respectively. Qk is the
covariance matrix of the process noise. In the second step, the state is updated in a weighted average
manner based on state propagation and the measurements:

X̂k+1 = X̃k+1 + Kk+1

(
Zk+1 −Hk+1X̃k+1

)
(8)

Kk+1 = P̃k+1(Hk+1)
T
[
Hk+1P̃k+1

(
Hk+1

)T
+Rk+1

]−1
(9)
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P̂k+1 =
(
I−Kk+1Hk+1

)
P̃k+1 (10)

where Rk+1 is the covariance matrix of the observation noise and Kk+1 is the Kalman gain matrix.

2.2. Intgeration Model with Multiple Receivers

2.2.1. Centralized Integration Filter Method (CIF)

The centralized integration filter (CIF) architecture is presented in Figure 1; all the measurements
are directly employed to construct the measurement vector. The following Equations (11) and (12)
illustrate the measurement vector of the CIF. Notably, the error state model of the CIF method remains
the same as in Equation (2):

ZCIM
k+1 =



Zr1
k+1
...

Zri
k+1
...

ZrN
k+1


=



Hr1
k+1
...

Hri
k+1
...

HrN
k+1


Xk+1 +



µr1
k+1
...

µri
k+1
...

µrN
k+1


, i = 1, . . . , N (11)

Zri
k+1 = Hri

k+1Xk+1 + µri
k+1 =



(
LINS

k+1 − Lri
k+1

)
(RM + h)(

λINS
k+1 − λ

ri
k+1

)
(RN + h)cos(L)

hINS
k+1 − hri

k+1
vINS

e,k+1 − vri
e,k+1

vINS
n,k+1 − vri

n,k+1
vINS

u,k+1 − vri
u,k+1


Xk+1 + µri

k+1 (12)

where the superscript ri refers to the ith receiver; the subscript k + 1 refers to the epoch; Zri
k+1 is the

measurement vector composed of the different information from the ith receiver and SINS; Lri
k+1, λri

k+1
and hri

k+1 are latitude, longitude, and height from the ith receiver; and vri
e,k+1, vri

n,k+1 and vri
u,k+1 are east,

north, and up velocity from the ith receiver. The observation matrix Hri
k+1 is identical to Equation (5),

and µri
k+1 is the measurement noise matrix of the ith receiver.
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With more receivers employed in the LI, the Kalman filter processing is re-written as follows:

X̃k+1 = Fk.k+1Xk (13)
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P̃k+1 = Fk.k+1P̂kFT
k,k+1 + Qk (14)

X̂k+1 = X̃k+1 + KCIM
k+1





Zr1
k+1
...

Zri
k+1
...

ZrN
k+1


−



Hr1
k+1
...

Hri
k+1
...

HrN
k+1


X̃k+1


(15)



Kr1
k+1
...

Kri
k+1
...

KrN
k+1


= P̃k+1



Hr1
k+1
...

Hri
k+1
...

HrN
k+1



T



Hr1
k+1
...

Hri
k+1
...

HrN
k+1


P̃k+1



Hr1
k+1
...

Hri
k+1
...

HrN
k+1



T

+



Rr1
k+1
...

Rri
k+1
...

RrN
k+1





−1

(16)

P̂k+1 =


I−KCIM

k+1



Hr1
k+1
...

Hri
k+1
...

HrN
k+1




P̃k+1 (17)

KCIM
k+1 =

[
Kr1

k+1 · · ·K
ri
k+1 · · ·K

rN
k+1

]
(18)

where KCIM
k+1 is the Kalman gain matrix of the CIF. Compared with the Kalman filter described

in Equations (6)–(10), the Kalman filter of the CIF has different updating equations. Substituting
Equation (18) into Equation (15), the X̂k+1 updating can be written as:

X̂k+1 = X̃k+1 +
[
Kr1

k+1

(
Zr1

k+1 −Hr1
k+1X̃k+1

)
· · ·Kri

k+1

(
Zri

k+1 −Hri
k+1X̃k+1

)
· · ·KrN

k+1

(
ZrN

k+1 −HrN
k+1X̃k+1

)]
= X̃k+1 +

N∑
i=1

Kri
k+1

(
Zri

k+1 −Hri
k+1X̃k+1

)
(19)

where the state X̂k+1 is estimated by adaptively fusing the measurements from multiple receivers.

2.2.2. Distributed Integration Filter Method (DIF)

As illustrated in Equations (13)–(17), with multiple receivers employed in the LI, the dimension
of the measurement vector, Kalman gain matrix, and measurement observation matrix increase with
the number of included receivers. As a result, the computation load of the integration filter increases
significantly. Federated Kalman filtering (FKF) has been demonstrated an effective distributing method
to process multi-sensor integration [33]. Since the sub-filter can run parallel, the FKF can reduce the
computation load by dividing the measurement vector into several vectors with lower dimensions.
Therefore, a distributive integration filter method (DIF) based on the FKF is designed and presented
in this section (the structure is presented in Figure 2). In the DIF, each receiver is regarded as an
individual “sensor”.

(a) Sub-filter model
The sub-filter error state model is similar to Equations (1) and (2). The error vector is expressed as:

Xri = [δφ, δv, δp, δε, δ∇]T (20)
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Similar to Equation (2), the state model is:

.
X

ri
k+1 = Fri

k+1,kXri
k + GriWri (21)

where, Fri
k+1,k is the state transfer matrix; Wri is the system error noise matrix; and Gri is the matrix of

the process noise distribution. The measurement vector of the ri receiver is the same as in Equation (11).
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(b) Federated Kalman filter (FKF)
With the state and measurement listed in Equations (20) and (21), the prediction and updating of

the sub-filter are written as:
X̂ri

k,k+1 = Fri
k,k+1Xri

k (22)

Pri
k,k+1 = Fri

k,k+1Pri
k

(
Fri

k,k+1

)T
+ Qr

k (23)

Kri
k+1 = Pri

k,k+1

(
Hri

k+1

)T
(
Hri

k+1Pri
k,k+1

(
Hri

k+1

)T
+ Rri

k+1

)−1
(24)

X̂ri
k+1 = X̂ri

k+1,k + Kri
k+1

(
Zri

k+1 −Hri
k+1X̂ri

k+1,k

)
(25)

Pri
k+1 =

(
I−Kri

k+1Hri
k+1

)
Pri

k,k+1 (26)

where Pri
k is the covariance matrix of the ith sub-filter; Qr

k is the covariance of the processing noise;
and Rri

k+1 is the covariance of the measurement noise.
The sharing processing of the federated filter is as follows:

PM
k+1 =

 N∑
i=1

(
Pri

k

)−1

−1

(27)

X̂M
k+1 = PM

k+1

 N∑
i=1

(
Pri

k

)−1
X̂ri

k

 (28)

where the superscript “M” represents the matrix from the master filter in the FKF. The more specific
sharing procedure is as follows:

Qri
k = β−1

ri
QM

k (29)

Pri
k = β−1

ri
PM

k (30)
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N∑
i=1

βri
= 1 (31)

where βri
information sharing factor, and it should satisfy Equation (31); PM

k+1 is the covariance matrix
of the master integration filter; QM

k is the processing noise matrix of the master integration filter;

and X̂M
k is the error state vector of the master filter.

Assuming that there are N receivers deployed here, the dimensions of the matrixes of the KF
are listed in Table 3. In the DIF, the dimensions of the measurement vector, observation, and KF gain
matrix are all reduced compared with those of the CIF method.

Table 3. Vector dimension comparisons (N receivers).

CIF DIF

State vector 15× 1 15× 1
Measurement vector 6×N 6× 1
Observation matrix 6N × 15 6× 15

KF gain matrix 15× 6N 15× 6

3. Results

3.1. Simulation Test

3.1.1. The Integration Filter Error State Model

In order to validate and evaluate the performance of the proposed method, both a simulation and
a field test were carried out. In the simulation, a dynamic trajectory was generated, which is plotted in
Figure 3. The IMU and the GNSS settings are listed in Table 4. The accelerometer bias was 5 mg and
the noise was 1 mg; the gyroscope bias was 10◦/h, and the noise was 1◦/h. In terms of the GNSS errors,
the position errors were set to 10 m, and the velocity errors were set to 0.1 m/s. The multiple receiver
positions and velocity were simulated through adding white noise to the real measurements.Electronics 2020, 9, x FOR PEER REVIEW 9 of 23 
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White noise 1 mg

Gyroscope Bias 10◦/h
White noise 1◦/h

GNSS
Position 10 m
Velocity 0.1 m/s
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3.1.2. Comparison of Position/Velocity Errors

Figure 4 plots the comparison of the position and velocity errors among the single/two/

four-receiver-based LI. Figure 4a–c presents the latitude, longitude, and height errors, and the
east, north, and up velocity errors curves are shown in Figure 4d–f, respectively. In Figure 4, the red
line refers to results from the single-receiver based LI, the blue line refers to the two-receiver based LI,
and the green line represents the position and velocity errors of the three-receiver based LI. It can be seen
that the position and velocity errors deceased with the increasing amount of receivers employed in the
LI system. Table 3 lists the statistical analysis results of the positioning and velocity errors. Compared
with the one-receiver based LI system, the mean values of the two-receiver LI errors decreased by
54.9%, 15.9%, 18.2%, respectively. Moreover, compared with that from two-receiver LI, the mean values
of the four-receiver LI position errors decreased by 1.7%, 29.3%, and 34.9%, respectively. The velocity
errors also improved according to the statistical analysis results listed in Table 5. Mean and STD
(standard deviation) values are presented in Figure 5; it can be observed that the mean and STD values
of the position both decreased with the number of receivers increasing. Figure 6 presents the CDF
(cumulative distribution function) of these position and velocity errors. It is obvious that these errors
were distributed within a smaller scope as the number of receivers increased.
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Table 5. Position and velocity errors comparison (CIF).

Receiver Amount Mean STD

Position Errors

Latitude errors (m)
Single 1.31 1.73
Two 0.59 0.70
Four 0.58 0.42

Longitude errors
(m)

Single 0.69 0.93
Two 0.58 0.71
Four 0.41 0.68

Height errors (m)
Single 0.77 1,17
Two 0.63 0.96
Four 0.41 0.43

Velocity Errors

East velocity errors
(m/s)

Single 0.022 0.028
Two 0.017 0.024
Four 0.016 0.018

North velocity
errors (m/s)

Single 0.030 0.036
Two 0.018 0.028
Four 0.015 0.025

Up velocity errors
(m/s)

Single 0.026 0.041
Two 0.025 0.034
Four 0.014 0.017
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3.1.3. DIF vs. CIF

The comparison of DIF and CIF position and velocity errors are presented in Figure 7 and the
statistical analysis results of the DIF are listed in Table 6. With the composition results, we can
observe that:

(1) In the DIF, the position and velocity errors also decreased with the amount of receivers increasing;
compared with the two-receiver LI, the mean values of these position errors from the four-receiver
LI decreased by 26.4%, 48.7%, and 55.5% respectively, and the corresponding velocity errors
decreased by 43.8%, 29.4%, and 61.9%, respectively, in terms of the mean values. The STD
values of the position and velocity errors also obtained different degrades of reduction with four
receivers employed in the DIF method.
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(2) Statistical results (mean and the STD values) from the DIF and CIF were similar, with all the
differences smaller than 20%; the CDF curves of these positions and the velocity errors presented
in Figure 8 also support this point.
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Table 6. Position and velocity errors (DIF).

Receiver Amount Mean STD

Position Errors

Latitude errors (m) Two 0.53 0.63
Four 0.39 0.41

Longitude errors (m) Two 0.82 0.71
Four 0.42 0.80

Height errors (m) Two 1.10 0.60
Four 0.49 0.65

Velocity Errors

East velocity errors (m/s) Two 0.016 0.021
Four 0.009 0.014

North velocity errors (m/s) Two 0.017 0.027
Four 0.012 0.018

Up velocity errors (m/s) Two 0.021 0.021
Four 0.008 0.010
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3.2. Field Test

3.2.1. Experiments Settings

For further validating the effectiveness of the proposed method, a field test was conducted.
A MEMS IMU (MSI3200, Micro-Star International, Zhonghe, New Taipei, Taiwan) and multiple UBLOX
GNSS (NEO-M8N, U-blox, Thalwil, Switzerland) receivers were employed to construct the LI system.
The antennas of these receivers were put together on the roof of a car. The GNSS measurements and
IMU dataset were collected for post-processing with the software developed in Matlab. Table 7 lists the
specifications of the IMU. The trajectory is presented in Figure 9a and the velocity curves are presented
in Figure 9b. The time length of the testing was approximately 250 s.

Table 7. Inertial measurement unit (IMU) specifications.

Gyroscope Bias stability (degree/h) ≤3◦/h
White noise (degree/h) 0.1◦/h

Accelerometer
Bias stability (mg) 0.1 mg
White noise (mg) 0.05 mg
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3.2.2. Results and Analysis

Figure 10 presents the position errors from one-receiver, two-receiver, and four-receiver LI, and the
CDF curves of these position errors are presented in Figure 11. It can be observed that:

(1) The position errors curves were smoother with the increasing number of the receivers, and the
position errors were also reduced when more receivers were employed in the LI system.

(2) With the CDF curves presented in Figure 11, not only were the maximum values of the position
errors reduced, the distributions of these errors were also compressed to a smaller range. In other
words, the uncertainties contained in the position and velocity errors were reduced.
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Furthermore, the mean values and STD values of these position errors are listed in Table 8.
It can be observed that the mean values and STD values of these position errors decreased with the
increasing number of the receivers. In addition, Figures 12 and 13 present the velocity errors and the
corresponding CDF curves. Similarly, the velocity errors also reduced with the increase in the number
of receivers. The mean values and the STD values are also listed in Table 9.
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Table 8. Comparison of position and velocity errors.

Receiver Amount Mean STD

Position Errors

Latitude errors (m)
Single 4.37 3.25
Two 3.21 2.57
Four 2.65 1.91

Longitude errors (m)
Single 3.98 2.98
Two 2.77 2.10
Four 1.96 1.56

Height errors (m)
Single 4.86 3.52
Two 3.98 2.75
Four 3.54 2.20

Velocity Errors

East velocity errors (m/s)
Single 0.093 0.073
Two 0.074 0.057
Four 0.061 0.052

North velocity errors (m/s)
Single 0.106 0.086
Two 0.087 0.071
Four 0.080 0.070

Up velocity errors (m/s)
Single 0.159 0.124
Two 0.148 0.111
Four 0.138 0.111
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Table 9. Position and velocity errors (DIF).

Receiver Amount Mean STD

Position Errors

Latitude errors (m) Two 3.13 0.63
Four 2.59 0.41

Longitude errors (m) Two 2.88 0.71
Four 2.08 0.80

Height errors (m) Two 4.15 0.60
Four 3.50 0.65

Velocity Errors

East velocity errors (m/s) Two 0.074 0.057
Four 0.061 0.053

North velocity errors (m/s) Two 0.087 0.071
Four 0.080 0.070

Up velocity errors (m/s) Two 0.148 0.111
Four 0.138 0.111Electronics 2020, 9, x FOR PEER REVIEW 20 of 23 
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4. Discussion

Although the simulation and field test results preliminarily demonstrated that more receivers
could reduce the position and velocity errors, we though following problem were worth further
discussion:

(1) In the simulation, we assumed these position and velocity errors were all subject to Gaussian
distribution. In fact, these receivers may not be subject to Gaussian distribution; even if they
were subject to Gaussian distribution, they may have different statistical parameters, which could
affect the fusion of the multiple receivers and the SINS. It could be seen from the velocity
errors presented in Figure 13 (field test), that the up-velocity errors saw a minor increase, which
could be caused by differences in the statistical parameters. As such, an adaptive tuning of the
measurement noise might help to improve the fusion results.

(2) In the field test, the antennas from the receivers were placed close together and the distance
between the antennas’ center point was approximately 10 cm. Since the errors of the employed
UBLOX receivers were several meters, we thought the distance had a minor impact on the position
results of the multiple receiver-based GNSS/SINS LI.
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5. Conclusions

A low-cost method to improve the GNSS/SINS LI system positioning accuracy was proposed and
investigated in this paper. With the simulation and the field tests, the results supported the following
conclusions. Including more receivers in the LI system was an effective way to reduce the position and
velocity errors of the GNSS/SISN LI system. With the computation load caused by the inclusion of the
multiple receivers, FKF was able to reduce the computation load without affecting the position and
velocity accuracy.

Limited by the experimental settings, future work is worthwhile for further investigation.
Tight integration had been compared and demonstrated to be more applicable than loose integration
in urban areas; as such, multiple receiver-based tight integration methods will be implemented and
investigated in the future. More GNSS constellations are available now, with GPS, BDS, GLONASS,
and Galileo being the major navigation satellite systems. More navigation satellites will surely improve
the performance of the integration system.
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