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Abstract: Lung cancer occurs in the lungs, trachea, or bronchi. This cancer is often caused by malignant
nodules. These cancer cells spread uncontrollably to other organs of the body and pose a threat
to life. An accurate assessment of disease severity is critical to determining the optimal treatment
approach. In this study, a Taguchi-based convolutional neural network (CNN) was proposed for
classifying nodules into malignant or benign. For setting parameters in a CNN, most users adopt
trial and error to determine structural parameters. This study used the Taguchi method for selecting
preliminary factors. The orthogonal table design is used in the Taguchi method. The final optimal
parameter combination was determined, as were the most significant parameters. To verify the
proposed method, the lung image database consortium data set from the National Cancer Institute
was used for analysis. The database contains a total of 16,471 images, including 11,139 malignant
nodule images. The experimental results demonstrated that the proposed method with the optimal
parameter combination obtained an accuracy of 99.6%.
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1. Introduction

Lung cancer is the commonest form of cancer with the highest death rate both in developed and
developing countries. In Taiwan, it has ranked first in terms of cancer mortality for more than five
years. Female lung cancer is the number one cause of cancer-related death among women in Taiwan.
Lung cancer is the leading cause of death in the United States and East Asia [1,2]. The smoking behaviors
and environmental factors that cause lung cancer have been extensively studied [3]. Lung cancer is
asymptomatic in the initial stage; therefore, approximately 70% to 75% of most newly diagnosed lung
cancers are terminal. Traditionally, chest x-rays, computed tomography (CT), and magnetic resonance
imaging have been used to physically analyze tissues to diagnose lung cancer [4,5]. Systemic therapy
for these patients includes chemotherapy or targeted therapy. Early detection of lung cancer is
critical in reducing misdiagnosis by physicians. Because of rapid advancements in computer software,
the application of computer aided detection (CAD) software has become common. CAD assists
imaging specialists to determine, identify, and evaluate lung lesions and nodules in digital CT images.
In particular, the discovery of small nodules between 5 and 15 mm in diameter allows the early
detection and treatment of lung diseases.

The current wave of artificial intelligence technology has achieved several breakthroughs, such as
recognition, generation, and analysis of images [6–8], and speech [9], in the natural user interfaces.
Machines have features that enable humans to interact with users. Modern devices not only have
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more affinity, but also a more reasonable and intelligent judgment and response to the surrounding
environment. Such products have large development potential, including driverless cars, drones,
smart homes, manufacturing robots, and chat robots. Convolutional neural networks (CNN) are a
major development in deep learning. CNNs are capable of classifying images and are widely applied
in object detection tasks [10–12]. Furthermore, they have been continuously developed and improved.
The handwritten font recognition model LeNet-5 [13] was developed in 1994 and is one of the earliest
CNNs. LeCun et al. compared the multilayer back propagation network and CNN. The excellent design
of LeNet5 helps extract features using operations such as convolution, parameter sharing, and pooling,
thus reducing computational costs. Finally, the fully connected neural network is used for classification
and recognition. This network is the basis for several neural network architectures. Developed in 2012,
AlexNet [14] won the Imagenet competition. ReLU, instead of traditional activation functions, is used
in AlexNet. However, the GPU memory limits the network size, Therefore, AlexNet was extended on
two GPUs, which were trained in parallel. However, none of the aforementioned architectures has
a rapid method of determining optimal parameters. Therefore, in this study, we used the Taguchi
method to determine optimal parameters.

Experiments should be conducted to obtain sufficient relevant data to determine the mechanism
of the observed phenomena. Most researchers use the trial and error approach to determine optimal
parameters. Trial and error is a type of learning in which various responses in a situation are attempted,
seemingly at random, until one response achieves the relevant goal. Through successive trials,
the successful response is strengthened and occurs earlier. However, this method is time consuming.
Therefore, an efficient method should be used to obtain experimental data. Taguchi [15,16] developed
a method based on the orthogonal array (OA) experiment, which considerably reduces variance for
the experiment by optimal setting control parameters. Therefore, a combination of experimental
design and control parameter optimization is used in the Taguchi method to obtain the best results.
An OA provides a well-balanced set of experiments. The Taguchi signal-to-noise ratio (S/N) is a
logarithmic function of the desired output. It is an optimized objective function, which is helpful
for data analysis and the prediction of the optimal results. The Taguchi method is a scientifically
standardized mechanism for evaluating and implementing improvements in products, processes,
materials, equipment, and facilities. These improvements are designed to optimize the program
to produce the best results and simultaneously reducing the number of defects. In recent years,
several researchers [17,18] have used the evolutionary computation methods to optimize parameters
of CNN. Esteban et al. [17] used evolutionary techniques at unprecedented scales to discover models
and DNA-based coding schemes for CIFAR-10 and CIFAR-100 datasets. Ma et al. [18] proposed
an autonomous and continuous learning (ACL) algorithm that can automatically generate a deep
convolutional neural network (DCNN) architecture for each given visual task. They divided the DCNN
into multiple stacked meta-convolutional blocks and fully connected blocks, each of which may contain
convolution, pooling, full connection, batch normalization, activation and exit operations to convert
the architecture to integer code. According to the above-mentioned methods, these methods can
obtain good accuracy. However, they take more time to determine the architecture parameters [17,18].
We used the CNN-based Taguchi method to classify lung nodules in CT images. Our objective was to
improve the CNN accuracy and decrease the experimental time.

The remainder of the paper is organized as follows. Section 2 introduces the relevant CNN based
Taguchi method. In Section 3, the experimental results of the proposed method are described. Section 4
presents conclusions.

2. CNN-Based Taguchi Method

This section details how a Taguchi-based CNN is used for detecting gender from an image data
set. The flow chart of the proposed method is presented in Figure 1.
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is passed to a 1000-channel softmax layer, which corresponds to the distribution of 1000 class labels. 
Lung nodules are classified using two labels, namely benign and malignant. Therefore, we changed 
the last FC layer to a two-channel softmax layer, which corresponded to the distribution of the two-
class label. Table 1 lists the parameters of show the AlexNet architecture. 
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Statistical methods are used in quality engineering to improve product quality and reduce costs. 
These methods are also used in biology, marketing, and advertising. Professional statisticians concur 
with the goals and advancements of quality engineering. The most substantial advantage of the 
Taguchi method is that useful information can be obtained with fewer experiments. Although it is 
not as favorable as the full factor method for determining the exact optimization position, it requires 
fewer trends to determine the optimization trend. The feasibility is considerably greater than the full 
factor method. The Taguchi method has the following characteristics: (1) quality characteristics based 

Figure 1. Flow chart of the proposed method.

2.1. CNNs

CNNs consists of one or more convolutional and fully connected layers, and pooling layers.
Compared with other deep learning structures, CNNs can provide better results in image and speech
recognition. This model can also be trained using back-propagation algorithms. AlexNet was used in
this study [14].

The AlexNet network structure has eight layers. The first five layers are convolutional layers (C),
the next three layers are fully connected (FC) layers, and the output of the last fully connected layer
is passed to a 1000-channel softmax layer, which corresponds to the distribution of 1000 class labels.
Lung nodules are classified using two labels, namely benign and malignant. Therefore, we changed the
last FC layer to a two-channel softmax layer, which corresponded to the distribution of the two-class
label. Table 1 lists the parameters of show the AlexNet architecture.

Table 1. Parameters of the AlexNet architecture.

Layers Kernel Size Stride Padding

C1 11 × 11 4 0
C2 5 × 5 1 2
C3 3 × 3 1 1
C4 3 × 3 1 1
C5 3 × 3 1 1

Neurons

FC6 4096
FC7 4096
FC8 1000

2.2. Taguchi Method

Statistical methods are used in quality engineering to improve product quality and reduce costs.
These methods are also used in biology, marketing, and advertising. Professional statisticians concur
with the goals and advancements of quality engineering. The most substantial advantage of the
Taguchi method is that useful information can be obtained with fewer experiments. Although it is not
as favorable as the full factor method for determining the exact optimization position, it requires fewer
trends to determine the optimization trend. The feasibility is considerably greater than the full factor
method. The Taguchi method has the following characteristics: (1) quality characteristics based on
the quality loss function, (2) definition and selection of experimental factors, (3) S/N ratio, and (4) the
Taguchi OA.
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In the full factor method, when the control factor and number of levels increase, the number of
experiments increases exponentially. Therefore, partial factorial design increases the complexity of
the experimental method. If an OA is used, fewer experiments are required to obtain a reliable factor
effect. The use of OA to conduct experiments is key to Taguchi quality engineering. Before the OA
is constructed, the number of factors that affect the quality characteristics, the level of each factor,
and the difficulties that may occur in the experiment should be determined. Then, an appropriate
OA should be selected, and the factors should be preconfigured before experiments are conducted.
An appropriate OA is configured for the selected control factor for experiments. Finally, the S/N ratio
is calculated based on the experimental observations obtained by the experiment, and the best factor is
analyzed using the S/N ratio.

The analysis of experimental data is based on the S/N ratio created by Dr. Taguchi. The quality
characteristics can be divided into the larger the better (LTB), smaller the better, and nominal the best.
This paper presents a static parameter design. A larger quality characteristic and higher experimental
is preferred. We used the following LTB formula:

LTB S/N ratio = −10 log10
1
T

T∑
i=1

(
1

Xi2
)

where T is the number of experiments, and Xi is the ith experimental result.

3. Experimental Results

3.1. Dataset

The lung image database consortium image collection includes diagnostic and lung cancer
screening chest CT scans with annotated lesions. Eight medical imaging companies and seven
academic centers collaborated to create this data set which contains 245,931 images (CT scans and
X-ray images). For each participant, images from CT scans were obtained with an associated XML
file that recorded the results of a two-phase image annotation process performed by four experienced
chest radiologists. In the initial blinded-read phase, each radiologist independently reviewed each
CT scan and marked lesions belonging to one of three categories “nodules ≥ 3 mm in diameter,”
“nodules < 3 mm in diameter,” and “non-nodules ≥ 3 mm in diameter” (see Figure 2).
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Figure 2. Lung nodules.

In this data set nodules are classified as either benign or malignant. We classified 16,471 images as
benign and 11,139 images as malignant. Figure 3 shows the malignant and benign lung nodules of
computed tomography (CT).
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Figure 3. The malignant and benign lung nodules of computed tomography (CT).

3.2. Taguchi Based CNNs

3.2.1. Defining Control Levels and Factors

First, we defined the three levels and six factors. Factors included kernel size, stride, and padding
for first and fifth convolutional layers. Table 2 presents the control levels and factors.

Table 2. Control levels and factors.

First
Convolutional

Layer (C1)
Kernel Size

First
Convolutional

Layer (C1)
Stride

First
Convolutional

Layer (C1)
Padding

Fifth
Convolutional

Layer (C5)
Kernel Size

Fifth
Convolutional

Layer (C5)
Stride

Fifth
Convolutional

Layer (C5)
Padding

Level 1 13 4 2 7 3 2
Level 2 11 3 1 5 2 1
Level 3 9 2 - 3 1 0

3.2.2. OA

Experiments were performed according to the OA. Here, there were five with three levels and one
with two levels. The degree of freedom was 15. We selected the L18 OA. Table 3 presents the L18 OA.
The factors C1 Kernel Size, C1 Stride, C1 Padding, C5 Kernel Size, C5 Stride and C5 Padding are shown
in Table 3. The initially selected factors and levels required 21

× 35 = 486 experiments, while only 18
experiments were required after using the Taguchi experiment.

Table 4 presents the test accuracy and S/N ratio. Finally, we analyzed the best levels and rank
significance factors. Table 5 presents the best level prediction.

3.2.3. Confirmation Experiment

The best factors that were determined in this experiment were as follows: C1 Kernel Size = 9,
C1 Stride = 4, C1 Padding = 2, C5 Kernel Size = 5, C5 Stride = 1, C5 Padding = 2. These best factors
were used to perform two confirmation experiments.

To verify that these best factors were the optimal combination, each experiment was performed five
times, as depicted in Tables 6 and 7. Table 6 presents the experimental results of the original AlexNet
parameters, and Table 7 presents the experimental results of the best combination. The accuracy of
the best combination improved by 2.764%. Experimental results verified the accuracy of the original
AlexNet was 96.836%. After using the Taguchi method to determine the architecture parameters of
AlexNet, the accuracy was increased to 99.6%. It can be proved that the parameter optimization of
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Taguchi method improves the accuracy of AlexNet for classifying nodules into malignant or benign.
The proposed method assists radiologists in diagnosing lung nodules more accurately and is an
excellent CAD.

Table 3. L18 orthogonal array (OA).

First
Convolutional

Layer (C1)
Kernel Size

First
Convolutional

Layer (C1)
Stride

First
Convolutional

Layer (C1)
Padding

Fifth
Convolutional

Layer (C5)
Kernel Size

Fifth
Convolutional

Layer (C5)
Stride

Fifth
Convolutional

Layer (C5)
Padding

1 13 4 2 7 3 2
2 13 3 2 5 2 1
3 13 2 2 3 1 0
4 11 4 2 7 2 1
5 11 3 2 5 1 0
6 11 2 2 3 3 2
7 9 4 2 5 3 0
8 9 3 2 3 2 2
9 9 2 2 7 1 1
10 13 4 1 3 1 1
11 13 3 1 7 3 0
12 13 2 1 5 2 2
13 11 4 1 5 1 2
14 11 3 1 3 3 1
15 11 2 1 7 2 0
16 9 4 1 3 2 0
17 9 3 1 7 1 2
18 9 2 1 5 3 1

Table 4. Accuracy of the test and signal-to-noise (S/N) ratio.

NO. Test 1 Test 2 Test 3 Test 4 Test 5 S/N Ratio

1 96.22 96.11 95.43 96.09 95.43 −0.36779
2 91.87 97.43 90.59 90.91 91.91 −0.68229
3 97.11 95.27 89.88 93.69 93.65 −0.55338
4 99.82 99.74 99.29 99.25 97.96 −0.06931
5 97.88 92.61 93.5 93.85 96.68 −0.46014
6 98.7 93.3 93.4 97.49 91 −0.4777
7 93.28 96.07 93.1 95.71 97.01 −0.44597
8 99.76 99.72 99.84 98.7 99.31 −0.04675
9 99.25 98.26 97.17 98.16 99.7 −0.13163
10 99.55 97.45 97.79 99.64 99.25 −0.11164
11 93.12 91.64 89.32 93 91.42 −0.75558
12 99.35 99.64 99.9 97.21 98.68 −0.09241
13 99.92 99.55 99.74 99.33 98.64 −0.04939
14 87.74 92.39 89.56 94.42 90.31 −0.83863
15 87.66 92.76 89.52 90.47 83.93 −1.03993
16 92.82 96.11 92.17 90.91 97.65 −0.55308
17 98.85 98.46 98.1 99.37 98.6 −0.11601
18 99.88 99.94 99.84 99.8 99.88 −0.01148
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Table 5. Best level prediction.

Factors Levels C1 Kernel Size C1 Stride C1 Padding C5 Kernel Size C5 Stride C5 Padding

1 −0.427182 −0.2662 −0.359439 −0.41337 −0.48286 −0.19167
2 −0.489182 −0.48323 −0.396461 −0.29028 −0.41396 −0.3075
3 −0.217486 −0.38442 - −0.4302 −0.23703 −0.63468

Delta 0.271696 0.217034 0.037022 0.13992 0.245825 0.443009
Rank 2 4 6 5 3 1

Best levels 3 1 1 2 3 1

Best factors 9 4 2 5 1 2

Table 6. Experimental results of the original AlexNet parameters.

AlexNet Test 1 Test 2 Test 3 Test 4 Test 5

Accuracy 93.02% 97.29% 99.62% 99.53% 94.72%
Sensitivity 99.0% 99.8% 99.3% 98.7% 98.8%
Specificity 89.7% 92.0% 99.8% 99.9% 90.5%

Average Accuracy 96.836%

Table 7. Experimental results of the best combination.

Best Factors Test 1 Test 2 Test 3 Test 4 Test 5

Accuracy 99.51% 99.78% 99.94% 99.68% 99.09%
Sensitivity 99.9% 99.4% 99.98% 99.7% 99.5%
Specificity 99.3% 99.8% 99.9% 99.7% 98.9%

Average Accuracy 99.6%

3.3. Comparison Results of Training Times

In this study, 5 parameters with 3 levels and 1 parameter with 2 levels in AlexNet were chosen,
the training times using the Taguchi-based CNN and the trial and error method were 4.5 h, and 5 days
and 1.5 h, respectively. Table 8 presents the comparison results of training times using the Taguchi-based
CNN and the trial and error method. Recently, Ma et al. [18] proposed an autonomous and
continuous learning (ACL) algorithm to determine a DCNN structure for solving classification
problems. The MNIST, Fashion-MNIST, EMNIST-Digits, EMNIST-Letters, CIFAR10 and CIFAR100
datasets were used, the average training time of each generation took about 3, 5, 18, 12, 11, and 11 GPU
days. Table 9 shows the training times using the ACL algorithm for various databases. It took more
training time than the Taguchi-based CNN method. In addition, an ACL algorithm [18] divided the
DCNN into multiple stacked meta-convolutional blocks and fully connected blocks, each of which
might contain convolution, pooling, full connection, batch normalization, activation and exit operations
to convert the architecture to integer code. According to an ACL algorithm, the parameter optimization
of the convolution layers was also used in this study.

Table 8. The comparison results of training times using various methods.

Dataset Lung image database

Method Taguchi-based CNN The trial and error method

Training Time of Each Experiment ≈15 min ≈15 min

Number of Experiments 18 486

Total Training Time 4 h 30 min 5 days 1 h 30 min
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Table 9. The training times using the autonomous and continuous learning (ACL) algorithm for
various databases.

Dataset MNIST Fashion
MNIST

EMNIST
Digit

EMNIST
Letter CIFAR 10 CIFAR 100

Method ACL algorithm [18]

Number of Experiments 1 1 1 1 1 1

Training Time of Each Generation 3 days 5 days 18 days 12 days 12 days 11 days

4. Conclusions

In radiology, it is important to improve the accuracy of lung nodule classification. An excellent
CAD can not only assist the radiologist, but also reduce the burden on the radiologist. In this study,
we used the Taguchi method to design experiments and improve the classification accuracy of AlexNet.
Compared with the trial and error method, the proposed method saves substantial experimental time.
The selected five parameters with three levels and one parameter with two levels in AlexNet require
486 experiments using the trial and error method, while only 18 experiments are required using the
Taguchi method. The S/N ratio reaction table is used to determine the response of the factor to the
system at this level, and then determine the best level. The order of the influence of each factor on the
system is C5 Padding, C1 Kernel Size, C5 Stride, C1 Stride, C5 Kernel, and C1 Padding. The accuracy
of the best factor using Taguchi-based CNN is improved by 2.764%. The training times using the
Taguchi-based CNN and the trial and error method are 4.5 h, and 5 days and 1.5 h, respectively.
Experimental results indicate that the proposed method takes less training time than other methods.
In future work, the proposed method can also be applied to breast cancer, brain tumors, and liver
tumors. In addition, some incremental data methods, such as Generative Adversarial Network (GAN),
can be used to increase the amount of training data and improve the accuracy of classification.
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