
electronics

Article

A Segmentation Enhancement Method for the
Low-Contrast and Narrow-Banded Substances in
CBCT Images

Lam Dao-Ngoc 1 , Ching-Feng Liu 1,2 and Yi-Chun Du 1,*
1 Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005,

Taiwan; da62b202@stust.edu.tw (L.D.-N.); wtcen@hotmail.com (C.-F.L.)
2 Department of Medical Research, Chi Mei Medical Center, Tainan 71005, Taiwan
* Correspondence: terrydu@stust.edu.tw; Tel.: +886-6-253-3131 (ext. 3321)

Received: 20 May 2020; Accepted: 7 June 2020; Published: 11 June 2020
����������
�������

Abstract: Due to its low contrast, narrow banded, and emerged to the output imaging attribute
scale, facial skin tissue is difficult to extract from dental cone-beam computed tomography (CBCT)
reconstructions. Furthermore, there is a challenge of balancing the indication and patient-specific
factors and imaging dosage to make it both safe and diagnostically effective for successful treatment
planning. These issues make a new frontier for facial skin and soft tissue diagnostic applications
driven by sparse dental and low-dose CBCT data. In this study, a new segmentation enhancement
method for low-contrast and narrow-banded substances is proposed based on our previous work on
selective anatomy analysis iterative reconstruction (SA2IR). The purpose of the proposed method
is to segment facial skin tissue based on combinatorial optimization and previously known facial
soft tissue structure anatomy. Our results using this method indicated that the skin thickness was
much more easily and more quickly identified than with conventional ultrasonic scanning methods.
This method holds the potential to be an assisting tool for studying linage of anthropometrics,
forensics, human archaeology, and some narrow medico-dental applications.

Keywords: cone-beam computerized tomography (CBCT); facial skin; soft tissue; selective anatomy
analysis iterative reconstruction (SA2IR); combinatorial optimization

1. Introduction

In advance of the non-destructive principles, cone-beam computed tomography (CBCT) is
employed as an effective assistive tool in medicine, sciences, and industries. One of the most mature
applications is accounted for in digital dentistry [1,2]. This has been proven for the flexible integrability
to dental computer-aided frameworks, thus, CBCT has been recommended by worldwide dental
organizations [3,4], with the strong clinical evidence in various protocols, such as oral and dental
implantology [5,6], endodontics [7], periodontics [8] and other applications in maxillofacial and
orthognathic surgeries orthodontics [9].

In addition to these impressive applications, CBCT is also recommended for use as a novel assistive
tool in other medical branches, such as human craniofacial anthropometrics [10], archaeology [11] and
forensics [12]. In comparison to conventional invasive methods, CBCT opens new frontiers for new
application metric-assistive tooling, reducing costs, time, and improving productivity (De Donno et
al., 2019) [13] and (Hwang et al., 2019) [14]. In this field, there are two types of studying population
samples: living human beings and cadavers.

Independent of medical imaging, any in vivo studies must be concerned with the ethical
judgment nonabusive dosages of what is “as low” as “reasonably achievable” (ALARA, 1977) [15],
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“diagnostically acceptable” (ALADA, 2015) [16] and their extension of “being indication-oriented
and patient-specific” (ALADA-IP, 2018) [5]. Thus, this has systematically guided both professional
practice regulations, as well as in relevant technical experiments [3,4,17–20]. In advance of CBCT
technology, the sparse and dose-reduced CBCT reconstruction algorithms have achievements in various
approaches. The benefits in terms of time, cost, and clinical outcome in a variety of fields are strongly
affected by reconstruction tasks. There are various approaches, such as compression-sensing [21],
dictionary learning [22], computation improvement by graphical processing [23], deep-learning
segmentation and three-dimensional cephalometric landmark tracing [24,25]—or selective anatomic
analysis (SA2IR), previously proposed by the authors [26].

However, low-contrast and narrow-banded thresholding are hidden in these reconstructed results,
which makes the segmentation of substances impossible or insufficient. In contrast, other approaches
and their augmentation, such as magnetic resonance imaging and ultrasonic imaging, entail extra costs,
time, dose, inter-method-conversion errors, and have invasive impacts on human beings and ethics.
Therefore, narrow low-contrast craniofacial skin structure is too inefficiently segmented both pixel-wise
and globally, due to anatomical complexity. Despite various methods, CBCT images segmentation is
only sufficient for hard tissues and the global representative of all the soft tissue structures. One of the
preferred is the active contour-method family [27].

The need for a fast, interactive, and helpful tool to extract human craniofacial narrow low-contrast
skin is effectively addressed in mass-populated anthropometrics and forensic sciences. Being motivated
and inherited from [26], we propose a method to extend the segmentation proficiency of these anatomic
interests to the SA2IR reconstructed images of the CBCT trending. The context is presented in the
methodology (Section 2), experimental results (Section 3), and further discussed in Section 4, below.

2. Materials and Methodology

The schematic portfolio of our proposed method to enhance craniofacial skin tissue thickness
segmentation is shown in Figure 1.
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Kaohsiung, Taiwan), in Integrated Biomedical System Laboratory, Southern Taiwan University of 
Science and Technology, Tainan, Taiwan, was used in the mentioned SA2IR reconstruction. The 
reconstructed results were used as input for our proposed algorithm’s experiments. The experiments 
were implemented in the MATLAB environment (MATLAB 2017b, The Mathworks, Inc., Natick, MA, 
USA), processed by ASUS G531 (Intel® Core™ i7-9750H CPU @2.60 GHz, 16 GB RAM, Nvidia GTX 
1650 GPU, Taipei, Taiwan), supported by Nvidia CUDA toolkit 10.1 compilation. For our 

Figure 1. Portfolio of the proposed method to enhance the segmentation of the low-contrast and
narrow-banded substances in cone-beam computed tomography images.

2.1. Materials and Equipment

As mentioned in [24], DCT100-0X0 CBCT configuration (Taiwan Care Tech Corporation (TCT),
Kaohsiung, Taiwan), in Integrated Biomedical System Laboratory, Southern Taiwan University
of Science and Technology, Tainan, Taiwan, was used in the mentioned SA2IR reconstruction.
The reconstructed results were used as input for our proposed algorithm’s experiments. The experiments
were implemented in the MATLAB environment (MATLAB 2017b, The Mathworks, Inc., Natick, MA,
USA), processed by ASUS G531 (Intel® Core™ i7-9750H CPU @2.60 GHz, 16 GB RAM, Nvidia GTX
1650 GPU, Taipei, Taiwan), supported by Nvidia CUDA toolkit 10.1 compilation. For our experimental
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works, a realistic digital patient head (RMDH) data of a young adult Caucasian male was used,
provided by Aichert, A. et al., 2013 [28].

2.2. The Proposed Anatomic Moderators (PAM)

Corresponding to our selective anatomy analysis principle [24], facial soft tissue structure (FSTS)
principal featuring was technically analyzed and morphologically decomposed into three facial regions
and four quadrants (Figure 2). The anatomy layering is simply described in Figure 2. According to
Ref. [12–14,29], the most effective and widely accepted craniofacial morphologic landmarking was
proposed in De Greef, S. et al. [28], referred to Table 1. In the same study, a mass-populated sample of
510 females and 457 males of Caucasians was taken in craniofacial soft tissue thickness measurements
that were used to update the contemporary Caucasian anthropometrics chart is updated and efficiently
used in forensics and medical anatomy. Gender, ages, and body mass index (BMI) were systematically
studied in correspondence. This has been indicated as a ground truth dataset for soft tissue and skin
depth standardized inspections [12,29].
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Table 1. Craniofacial soft tissue thickness landmarks [26,30].

No. Landmarks No. Landmarks No. Landmarks

1 Supra-glabella 1 12/33 Supraorbital 2 23/44 Supra-glenoid 2

2 Glabella 2 13/34 Lateral glabella 2 24/45 Zygomatic arch 2

3 Nasion 2 14/35 Lateral nasal 2 25/46 Lateral orbit 2

4 End of nasion 2 15/36 Sub-orbital 2 26/47 Supra-M2 3

5 Mid-philtrum 3 16/37 Inferior malar 2 27/48 Mid masseter 3

6 Upper lip 3 17/38 Lateral nostril 3 28/49 Occlusal line 3

7 Lower lip 3 18/39 Nasolabial ridge 3 29/50 Sub-M2 3

8 Chin–lip fold 3 19/40 Supra-canine 3 30/51 Gonion 3

9 Mental eminence 3 20/41 Sub-canine 3 31/52 Mid-mandibula 3

10 Beneath chin 3 21/42 Mental tubercle
anterior 3 - -

11/32 Frontal eminence 1 22/43 Mid-lateral orbit 2 - -

Notes: 1 belong to the upper facial region (UFR), 2 belong to the middle facial region (MFR) and 3 belong to the
lower facial region (LFR).

Due to the natural close-contoured and symmetric anatomy of a human head, 52 proposed
landmarks (Figure 3 and Table 1) were re-grouped into the sufficient facial regions and quadrants,
based on our anatomy analysis [26]. As per our proposal, the craniofacial database was used to
generalize anatomy-specific moderators, named “the proposed anatomic moderators” (PAM). PAM was
used as anatomic weights wPAM

ij for our proposed segmentation methods. Craniofacial symmetry is
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proven in [14,15,30]; thus the database was symmetrically built for left and right lateral quadrants.
Based on our anatomic analysis, that was defined in three regions in height, as the upper region (UFR),
middle region (MFR) and lower region (LFR) and in four quadrants radially, as the frontal quadrant
(QI), left quadrant (QII), back quadrant (QIII) and right quadrant (QIV).
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Figure 3 and Table 1 describe 52 landmarks of facial soft tissue. The landmark numbers 1 to 10 are
positioned on the coronal mid-line. The others are indicated symmetrically and bilaterally (left-sided
and right-sided). For example, landmark 12/33 with #12 and #33 are left and right supraorbital,
respectively. In Figure 3, the facial regional landmarking is defined into facial regions, such as (1) No. 1,
11 and 32 belong to UFR, (2) No. 2–4, 12–16, 22–25, 32–37 and 43–46 belong to MFR and (3) No. 5–10,
17–21, 26–31, 38–42 and 47–53 belong to LFR.

The verification conditions of PAM are listed as Caucasians validated, gender dimorphism
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referred to as Tables 5.1, 5.2, B.1, and B.2 of ICRU Report 44 [18]. The new biophysical exposure
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attenuation coefficients of human soft tissue, in correspondence of PAM, are shown in Table 2 and
Figure 4.

Table 2. Attenuation coefficients of human facial soft tissues.

Tissues Specific Density ρ

(kg/m3)
Mass Attenuation

Coefficient µ/ρ (cm2/g)
Mass–Energy Absorption
Coefficient µen/ρ (cm2/g)

Exposure Mode (keV) 40 80 100 40 80 100

Skin 1090.00 0.2620 0.1810 0.1690 0.0649 0.0254 0.0250
Adipose 916.00 0.2400 0.1800 0.1690 0.0448 0.0235 0.0243
Muscle 1050.00 0.2690 0.1820 0.1690 0.0705 0.0260 0.0254

Gingivae 1160.00 0.2972 0.2011 0.1867 0.0779 0.0287 0.0281
Air 1225.00 0.2490 0.1660 0.1540 0.0671 0.0240 0.0232
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As the simplified layering structure (Figure 2), the craniofacial anatomy is decomposed into
four tissue groups (Ntotal

T = 4), as ambiance ({T1}), soft tissues ({T2}), hard tissues ({T3}) and the
supra-high substances (metallic artifacts) ({T4}), respectively. Corresponding PAM moderators and their
attenuation coefficients interpolation, the optimal thresholding,

{
Topt

i

}
=

[{
Topt

lb,i

}
,
{
Topt

ub,i

}]
, is computed

in the grayscale of [0, LGV,i]. The pixel-wise gray value of the adjacent
{
Topt

i

}
and

{
Topt

i−1

}
is computed as

Equation (3).

gi(x, y) − gi−1(x, y) =


χub

i , i f LGV ≥ I(x, y) ≥
{
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}
χwt

i , i f
{
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}
> I(x, y) >

{
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lb,i

}
χlb

i , i f
{
Topt

lb,i

}
≥ I(x, y) ≥ 0

(3)

With g(·)(x, y) is the chosen gray-value at pixel (x, y) of
{
Topt
(·)

}
;
{
T(·)

lb,i

}
and

{
T(·)

ub,i

}
are the lower

and upper bounds of
{
T(·)

i

}
, respectively; ub, lb and wt stand for upper bound, lower bound and

weighted; χ(·)
(,)

is the set threshold values of
{
Topt
(·)

}
, while χ(ub)

(·)
∝ max{T(·)}

{
wPAM

i, j .ti, j(x, y)
}
, χ(lb)

(·)
∝

min{T(·)}

{
wPAM

i, j .ti, j(x, y)
}

and χ(wt)
(·)
∝ wPAM

i, j .ti, j(x, y); LGV,i is the maximum gray-value of {Ti}.

The proposed anatomic analysis based craniofacial soft tissue thickness distribution of Caucasians
is computed, shown in Table 3.
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Table 3. Proposed anatomic moderators (PAM)-based craniofacial soft tissue thickness.

Caucasians
Aged (18–29)

The Proposed PAM-Based FSTS Thickness (in mm)

Females Males

BMI <20 (20–25) >25 <20 (20–25) >25

Soft Tissue Thickness µ σ µ σ µ σ µ σ µ σ µ Σ

FSTS

UFR
QI/QIII 3.850 0.5500 4.000 0.600 4.500 0.650 3.850 0.430 4.100 0.595 4.900 0.905
QII/QIV 3.800 0.500 3.900 0.600 4.500 0.600 3.800 0.470 4.100 0.640 5.000 0.960

MFR
QI/QIII 6.999 1.287 7.354 1.356 8.155 1.405 6.319 1.123 6.717 1.287 7.941 1.606
QII/QIV 7.700 1.750 8.250 1.850 9.500 1.900 6.950 2.080 7.743 2.032 9.550 2.460

LFR
QI/QIII 11.35 1.894 11.502 1.945 12.246 2.156 11.465 1.918 11.834 2.063 12.816 2.080
QII/QIV 16.367 2.567 17.000 2.700 18.800 3.100 15.867 2.427 16.879 2.912 19.867 3.357

SFSTS

UFR
QI/QIII 2.595 0.140 2.745 0.190 3.245 0.24 2.595 0.020 2.845 0.185 3.645 0.495
QII/QIV 2.545 0.090 2.645 0.190 3.245 0.19 2.545 0.060 2.845 0.230 3.745 0.550

MFR
QI/QIII 5.744 0.877 6.099 0.946 6.900 0.995 5.064 0.713 5.462 0.877 6.686 1.196
QII/QIV 6.445 1.340 6.995 1.440 8.245 1.49 5.695 1.670 6.488 1.622 8.295 2.050

LFR
QI/QIII 10.095 1.484 10.247 1.535 10.991 1.746 10.210 1.508 10.579 1.653 11.561 1.670
QII/QIV 15.112 2.157 15.745 2.290 17.545 2.69 14.612 2.017 15.624 2.502 18.612 2.947

Notes: BMI is body-mass-index; FSTS and SFSTS are facial soft tissue structure and sub-skin facial soft tissue structure. UFR, MFR, and LFR are upper, middle, and low facial regions,
respectively. QI, QII, QIII, and QIV are the frontal, left, right and back quadrants, respectively.
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2.3. Knapsack Problem in PAM-Based Craniofacial Soft Tissue or Skin Segmentation

Factually, the image segmentation task was a variation of the subset partitioning problem.
Therefore, combinatorial optimization was used in our proposed method. The PAM-based craniofacial
FSTS segmentation, as “PAM-based segmentation”, was modeled as a multi-choice knapsack problem
(MCKP), constraints defined by PAM. According to [31], the general binary MCKP of PAM-base
segmentation was as Equation (4).

maximize
Ntotal

T∑
i=1

ni,k∑
j=1

(
wPAM

i, j ·ti, j·xi, j

)∣∣∣∣∣∣∣∣∣
{Ti}

(4)

subject to :
Ntotal

T∑
i=1

ni,k∑
j=1

(
wPAM

i, j ·ti, j·xi, j

)
−

{
Topt

lb,i

}
ODA

≤

{
Topt

ub,i

}
PAM

,
Ntotal

T∑
i=1

ni,k∑
j=1

ti, j = t{Ti},

With xi, j ∈ {0, 1}, with i = [1, 4] and j = [1, nk]. The specific attenuation of each {Ti} or {Ti,j}, is
the subset–sum constraint. To solve, the Dantzig–Wolfe decomposition [32] and subset-sum partition
(KSP)i [33] are used, as the inverse problem (IKSP)i of the known ni,k items, as Equations (5)–(7).

(KSP)i minimize min zi(βi) =

Ntotal
T∑

i=1

ni,k∑
j=1

(wPAM
i, j ·ti, j·xi, j)

∣∣∣∣∣∣∣∣∣
{Ti}

(5)

(IKSP)i minimize βi(z) (6)

Reformed as:

maximize z, subject to :
ni,k∑
j=1

βi(z)

∣∣∣∣∣∣∣∣
{Ti}

≤ β and z ≥ 0 (7)

Solve for the optimal value z∗ of (6):

ni,k∑
j=1

βi(z)

∣∣∣∣∣∣∣∣
{Ti}

= β ⇒ z = z∗ (8)

ni,k∑
j=1

βi(z)

∣∣∣∣∣∣∣∣
{Ti}

< β ⇒ z < z∗ (9)

ni,k∑
j=1

βi(z)

∣∣∣∣∣∣∣∣
{Ti}

> β ⇒ z > z∗ (10)

As proposed Algorithm 1, the solution of Equation (4) is an iterative binary search algorithm,
the decomposed per-each-iteration median efficiencies for each {Ti} ∈ {T} is defined by z. In the

correspondence of
ni,k∑
j=1

βi(z)

∣∣∣∣∣∣
{Ti}

value, the (IKSP)i is solved by z. The optimal z∗ is defined as the

algorithm termination condition, shown in Equation (8). The initial item values of the concerned
thresholds are eliminated, respectively, then replaced by 0 or 1, as mentioned in step 4 of Algorithm 1.
The process is repeated while removing these fixed (decision) items from the problem. Corresponding
to each threshold {Ti}, the profit sum of the fixed 1-valued items, named as Pi and the {Ti} is
referred to as the updated set of remaining items. The threshold elimination is implemented
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as if the set of remaining items of {Ti} is an individual (or |Ti| = 1) and the βi(z) is simple linear functional.

Algorithm 1 Subset-sum partitioning to solve the PAM-based MCKP

Input: {T}, {Ti} ∈ {T}, β, βi and initial values of wPAM
i, j

∣∣∣∣
{Ti}

Output: optimal solution for z∗

Begin
Let Pi := 0 be the profit of the fixed 1-valued variables in each threshold {Ti},
i =

[
1, Ntotal

T

]
. The procedure is implemented as follow:

1: For every remaining threshold of {Ti}, i =
[
1, Ntotal

T

]
, the median of the remained

in the set of
{

pi, j
wi, j

∣∣∣∣ j ∈ {Ti} = ∪ ({Ti}L, {Ti}G)
}

is computed, as ri. The subsets {Ti}L

and {Ti}G are defined as followed:

{Ti}L :=
{

j ∈ {Ti}
∣∣∣ pi, j
wi, j

< ri

}
and {Ti}G :=

{
j ∈ {Ti}

∣∣∣ pi, j
wi, j
≥ ri

}
And: zi :=

∑
j∈G

(
pi, j + Pi

)
and Zi := {zi, zi, . . . , zi}, when |Zi| = |Ti|.

2: Compute z, the median of the set {Z} = ∪
Ntotal

T
i=1 {Zi}.

3: For i =
[
1, Ntotal

T

]
, solve the (IKSP)i problem’s βi(z). The stop condition is

implemented, as if z is optimal, as Equation (8).
4: For every threshold, variables elimination is executed as below:

xi,k =


1, i f

∑
βi(z) ≤ β, z < z∗, and

ti, j

wPAM
i, j
≥

ti,k

wPAM
i,k

, ti, j, j ∈ {Ti}

0, i f
∑
βi(z) ≤ β, z > z∗, and

ti, j

wPAM
i, j
≤

ti,k

wPAM
i,k

, ti, j, j ∈ {Ti}

1. Set xik := 1, k ∈ {Ti}G, if the Equation (9) and z ≥ zi are achieved.
2. Set xik := 1, k ∈ {Ti}L, if the Equation (10) and z ≤ zi are achieved.

Remove the fixed 1-valued item from the threshold, and accordingly update Pi.
5: If n = 0, that means having no thresholds remained, then:

Solve the current linear equation of βi(z) to find z∗.
Else Return to step 1 of this algorithm.

End

2.4. The Proposed Segmentation Method for FSTS Narrow Low-Contrast Substances of FSTS

As mentioned, the shape-ness energy functional of deformable model differentiation, well-known
as the “active contour” segmentation method, is widely used in medical image processing, due to its
aggressive efficiency and accuracy [28]. With the previously known morphologic features, this algorithm
is originated by McInertney, T. and Terzopoulos, D. (1996) [34], then modified by Karasev, P. et al.,
2013 [35]. It has been developed in various approaches, such as faster computation regularization [36],
edging featured for its geodesic model (GAC) [37], or using Chan–Vese’s energy functional (CVAC) [38].
To increase the sensitivity of CVAC, the integration of Mumford–Shah functional (MFS)—known
as the MFS-CVAC method—was optimized by three subset-disjoint minimizers that regularize the
bounded regions—inter versus outer sides (Iint and Iext) and perimeter of the contour Ψ. In advance,
that smoothens each subset

{
Ti, ( j)

}
internally, while still maintaining the boundaries of the adjacent

subsets,
{
Ti, ( j)

}
and

{
Ti, ( j−1)

}
[39]. However, due to undefined dimensionality, unknown morphology,

and convex discontinuity of the given I(x, y) and Ψ morphology, the MFS-CVAC is easily ill-posed [40].
Because most of the real cases are piece-wise continuity, the weak form of MFS is preferred, without
the region-bounded minimizer. That is called Blake-Zisserman functional εBZ(Iinter, Iouter, Ψ) [41],
as Equation (11). Hence, the craniofacial skin segmentation is the minimization of εBZ(Iinter, Iouter, Ψ).
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Unlike the general soft tissue representation, the FSTS narrow low-contrast substance segmentation is
still technically challenged in practice.

εweak(Iint, Iext, Ψ) = {λ1

∫
{T∗2}\Ψint

||∇Iint||
2 dxdy + λ2

∫
{T∗2}\Ψext

||∇Iext||
2 dxdy

+ξ·length|Ψ|{T∗2} (11)

To solve this problem, we proposed the PAM-based segmentation algorithm for skin structure,
described in Algorithm 2. In our method, the sagittal and coronal decompositions of each axial
slice were priorly used to verify the real PAM with the pixel-wise subset composition. This created

the MCKP for this application. Then, the optimal threshold of the concerned
{
T∗2, j

}
was solved as

Algorithm 1. After updating, the cross-junctions of the concerned tissues were finally examined.
The concerned tissue thickness was pixel-wise computed.

Algorithm 2 Proposed segmentation method

Input: Import the SA2IR reconstruction Ω3
SA2RT, regional and quadrant sectioning and ni,k

Output: cross-junction boundary and the thickness of facial combination skin
Begin

1:
Threshold the FSTS out of the original images. The followed procedure is implemented
on the FSTS-thresholded image only.
Generate the sagittal and coronal decompositions of each axial slice.

2:
Compute the pixel-wise gray value of the corresponded projections per each facial
region’s quadrant

3:
Implement the primary segmentation based on the preset number of concerned
threshold values, as Equations (1)–(3).

4:
Calculate PAM, the optimum FSTS thickness equivalence as the known pixel-wise
gray-value summation, calculated in step 2. Use subset-sum partitioning to solve the
MCKP (Algorithm 1).

5: Update the FSTS-thresholded image with the optimum
{
T∗2, j

}
.

6:
Segment the final result, by minimizing Equation (11). Compute the PAM-based skin
thickness pixel-wise.

End

2.5. Segmentation Efficiency Assessment Indices

In segmentation efficiency assessment of an I(x, y) to the ground truth reference Io(x, y),
Sørensen–Dice similarity coefficient (SDSC), as a Type I false measurement [42] and Jaccard similarity
index (JSIM) [43] are used, as Equations (12) and (13). Theoretically, the more segmentation accuracy is
defined, if and if only both SDSC and JSIM are closer to 1.

SDSC(I, Io) =
2.N

{
I(x, y)∩ Io(x, y)

}
N
{
I(x, y)

}
+ N

{
Io(x, y)

} , 1 ≥ SDSC(I, Io) ≥ 0 (12)

and:

JSIM(I, Io) =

∣∣∣I(x, y)∩ Io(x, y)
∣∣∣∣∣∣I(x, y)∪ Io(x, y)
∣∣∣ , 1 ≥ JSIM(I, Io) ≥ 0 (13)

In Equation (12), N{·} stands for the number of pixels in the enclosed set {·}, while the represents
the results of different segment techniques applied to SA2IR reconstruction.

To evaluate the accuracy, the segmented soft tissue and skin thickness is compared to the
contemporary Caucasian anthropometrics chart, mentioned above in Section 2.2. Herein, the correlation
of different quadrants’ facial skin thicknesses (tQv

FST) are defined, as tQII
FST = tQIV

FST and
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tQIII
FST = (1.2 ÷ 1.5) × tQI

FST. The total facial skin is computed by the subtraction of FSTS and SFSTS
thicknesses (Table 3).

3. Results and Discussion

The reconstruction of the realistic digital male head (RDMH) was implemented by the SA2IR
algorithm, enriched by ksampling = 8 [26]. Using an exposure of 60-KeV and slicing with an interval of
(0.5 ÷ 1.0) mm, the facial regions were defined along with the facial height. The upper facial region
(UFR) was defined from the lowest point of the chin soft tissue to the nasal spine of the anterior
maxillae (NSMA). The middle facial region (MFR) was defined from NSMA to the supra-glabella
(anatomy landmark #2, Figure 3 and Table 1). The lower facial region (LFR) was defined from the
supra-glabella to the highest point of cranial soft-tissue.

The three-dimensional construction was set as sagittal slice #180, coronal slice #180, and axial
slice #100 (Figure 5a,b). The experimental segmented results were applied to the SA2IR reconstruction.
The results of the proposed method were compared to the other active contour algorithms,
including CVAC [38] and MFS-CVAC [38,39]. The segmented facial skin cross-junctions results
are shown in Table 4.
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Table 4. Experimental results of Chan–Vese’s energy functional (CVAC), Mumford–Shah functional
(MFS)-CVAC, and the proposed method on the axial slice #80.

Methods
IQA Index CVAC (n2,k ≥ 3) [33] MFS-CVAC (n2,k ≥ 3)

[42]
The Proposed

Method

SDSC 0 0 1
JSIM 0 0 1

Skin detection X X
√

Segmented result
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The original and SA2IR reconstructed images, herein called “inputs”, are shown in Figure 5a,b. 
The SA2IR reconstruction was gray-valued higher, blurred, and smoother than the original with the 
biased regions, shown at both the external-sided and internal-sided of contour due to GV abrasion 
(Figure 5c–f). That abrasion was proportional to the input sparsity and the enrichment coefficient of 
the SA2IR [22]. The differences between those are visually shown along with the transition gradient 
between { ଵܶ} and ൛ ଶܶ,௝ൟ at facial and airway surfaces (the red circled in Figure 5b). 

To eliminate noise and adjacent thresholds influences, the FSTS thresholded of those inputs was 
used for the accurate assessment. Quantitatively, the segmented thresholds the MFR axial slice #80 
were (0.24763, 0.46987, 0.64822) (for SA2IR reconstruction) and (0.10583, 0.30593, 0.49014) (for 
original), respectively. Therefore, the FSTS threshold of those inputs was different, SA2IR 0.49014 
(original input) versus 0.46987 (SA2IR’s input). The FSTS-threshold of those inputs was 
superimposed, shown in Figure 4g, with the purple FSTS outer contour. The matching accuracy of 
the initial segmentation of FSTS-thresholded inputs was 0.686727, in which the regional and 
boundary overlaps were in the approximations of 8.149% and 42.478%, respectively. The operation 
time for the input FSTS thresholding took 0.963 s, which was excluded from the experimental 
operation times, shown in Table 4. 

In Table 4, over 1200 iterations, the local minima trap was detected while applying MFS-CVAC, 
circled red. That showed no facial skin structure detected, with the operation time of 76.001 s. Thus, 
their accuracy and specificity were valued “1”, but had zero values of SDSC and JSIM. In the same 
table, CVAC contrast showed no local minima trap and detected the skin tissue, but the average 
segmented thickness was thinner and out of the ground truth’s value. Better than the MFS-CVAC’s 
result, the CVAC’s operation was accomplished after 260 iterations (taken 8.221 s), with higher 
accuracy to the prior thresholded inputs, with the specificity of 1, the overall accuracy (0.69537) 
approximated to the raw inputs (0.68727). However, there was no significant differentiation in 

Max. iterations = 3000

Operation time (s) 8.970 77.540 45.8911 (n2,k = 4)

The original and SA2IR reconstructed images, herein called “inputs”, are shown in Figure 5a,b.
The SA2IR reconstruction was gray-valued higher, blurred, and smoother than the original with the
biased regions, shown at both the external-sided and internal-sided of contour due to GV abrasion
(Figure 5c–f). That abrasion was proportional to the input sparsity and the enrichment coefficient of
the SA2IR [22]. The differences between those are visually shown along with the transition gradient
between {T1} and

{
T2, j

}
at facial and airway surfaces (the red circled in Figure 5b).

To eliminate noise and adjacent thresholds influences, the FSTS thresholded of those inputs was
used for the accurate assessment. Quantitatively, the segmented thresholds the MFR axial slice #80
were (0.24763, 0.46987, 0.64822) (for SA2IR reconstruction) and (0.10583, 0.30593, 0.49014) (for original),
respectively. Therefore, the FSTS threshold of those inputs was different, SA2IR 0.49014 (original input)
versus 0.46987 (SA2IR’s input). The FSTS-threshold of those inputs was superimposed, shown in
Figure 4g, with the purple FSTS outer contour. The matching accuracy of the initial segmentation
of FSTS-thresholded inputs was 0.686727, in which the regional and boundary overlaps were in
the approximations of 8.149% and 42.478%, respectively. The operation time for the input FSTS
thresholding took 0.963 s, which was excluded from the experimental operation times, shown in
Table 4.

In Table 4, over 1200 iterations, the local minima trap was detected while applying MFS-CVAC,
circled red. That showed no facial skin structure detected, with the operation time of 76.001 s.
Thus, their accuracy and specificity were valued “1”, but had zero values of SDSC and JSIM. In the
same table, CVAC contrast showed no local minima trap and detected the skin tissue, but the average
segmented thickness was thinner and out of the ground truth’s value. Better than the MFS-CVAC’s
result, the CVAC’s operation was accomplished after 260 iterations (taken 8.221 s), with higher accuracy
to the prior thresholded inputs, with the specificity of 1, the overall accuracy (0.69537) approximated
to the raw inputs (0.68727). However, there was no significant differentiation in regional and boundary
overlap (SDSC = 0, JSIM = 0). The segmented red-bounded contours showed the insufficient clustering,
due to the “lost-data” of the black gap-offset between the purple contour and green region (Figure 4g).
Conclusively, it was too difficult or impossible to define the skin structure, without prior known
anatomic structure information.

In the proposed method’s results, the facial skin tissue was segmented, with different values of
the number of anatomic interests n2,k. In this, n2,k = 1 stands for no facial skin or no subset detection,
n2,k = 2 for facial adipose skin, n2,k = 3 for facial skin and adipose and n2,k = 4 for facial skin, adipose,
and muscles). As n2,k = 1, the result showed similar to the result of CVAC, due to step 6 of Algorithm 2.
However, as n2,k = [3, 4], there was no significant segmentation differentiation, when the maximum
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numbers of iterations were over 1250 iterations. As n2,k = 4, the experiment took 68.520 s to accomplish,
with the segmented result shown in Table 4.

To evaluate the average skin thickness validation, with
tQIII
FST

tQI
FST

= 1.5, the average segmented

thicknesses (in mm) of the proposed method were 3.1139 ± 0.8759 (n2,k = 2), 1.4220 ± 0.4000 (n2,k = 3)
and 1.3181 ± 0.3708 (n2,k = 4). The ground-truth thickness of Caucasian males, aged (18–29) and having
BMI < 20 is (1.25 ± 0.41) mm, taken by USM [30]. Pixel-wise, Algorithm 1 combinatorically optimized
the solution, constrained by the anatomic and biophysical weighed PAM. Therefore, the proposed
method’s results were higher adaptive to the ground-truth value. Exceptionally, in the case of n2,k = 2,
the skin thickness was thicker than of the n2,k = 3 and n2,k = 4, due to the merging of skin and adipose.

Free of the pressurized deformation and gravitational effect as USM [12,26,29], our method
was much more productive, due to a superlatively shorter operational time. In comparison to the
ground-truth average skin thickness, the measurements’ of our method were skewed right, with the
concern of tQIII

FST, while the ground-truth measurement was just implemented in the frontal and lateral
quadrants (QI, QII and QIV) only. However, it was not easy to define the skin thickness directly from
echoing depth in USM in practice. Corresponding with the timing of the operation, it was significantly
accelerated with our method. It took a couple of minutes for each slice segmentation, so that the
skin thicknesses at 52 landmarks, axially defined on 10 working slices (1 UFR’s slice, 6 MFR’s slices,
and 3 LFR’s slices), was found less than 20 min. Surprisingly, it took a couple of minutes for each
landmark inspection in USM; thus, the total accomplishment time was up to 104 min. To the USM, the
operation time was 5 times faster with the proposed method. Furthermore, the higher value of n2,k
was chosen, the better result of skin tissue thickness was detected.

In practical terms, the proposed method causes no operator fatigue failure while doing mass-
population data collection. To the conventional USM, that is much more inconvenient and dissatisfactory
in action for both operators and volunteers/patients, who get involved in the measurements.
Moreover, the measurements are much more difficult to operate and lesser accuracy on the slim-body
(BMI < 20) and obese-body (BMI > 25) subjects. Similarly, that is problematic to the old aged subjects
due to the FSTS plasticity and unstable placement at MFR’s and LFR’s landmarks. In our method, all of
those issues are eliminated. For processing, our method just needs a field-of-view accommodated scan.

Combining the speed SA2IR algorithm [26], the proposed method significantly benefits the modern
FSTS study, as shown above. Because the systematic anthropometric and/or anatomic statistical data
quality or consistency were important keys of this method, the accuracy and efficiency were strongly
dependent on the updating and refinement of the mass-population anatomic data. Therefore, in-depth
collaboration between clinicians and technologists should be developed and improved along with
time. However, it is difficult to do mass-population measurements at one time due to cost, workload,
mass-population sampling challenges, and ethical constraints. To solve a part of those limitations,
the shareable and online updated CBCT data management protocol was further studied and developed
to improve the PAM database expansion not only on one ethnicity.

4. Conclusions

In conclusion, the proposed combination–optimization-based method was significantly efficient for
facial skin structure segmentation and thickness measurements, due to ease of operation, computation
speed, and no soft tissue deformation, in comparison to contact-probed methods. Using the previously
known facial soft tissue anatomy and its biophysical properties, the skin thickness was identified much
more easily and faster than with ultrasonic scanning methods. Furthermore, the proposed method
also improved measurement consistency and productivity of the results due to the lack of dependence
on human visual-ranking. This is in contrast with other digital imaging methods. The tool shows
the potential to be an assistive tool for CBCT-driven studying lineage of anthropometrics, forensics,
human archaeology, and some narrow medico-dental applications.
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