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Abstract: In this paper we present two different, software and reconfigurable hardware,
open architecture approaches to the PUMA 560 robot controller implementation, fully document them
and provide the full design specification, software code and hardware description. Such solutions are
necessary in today’s robotics and industry: deprecated old control units render robotic installations
useless and allow no upgrades, advancements, or innovation in an inherently innovative ecosystem.
For the sake of simplicity, just the first robot axis is considered. The first approach described is a PC
solution with data acquisition I/O board (Humusoft MF634). This board is supported with Matlab
Real-Time Windows Toolbox for real-time applications and thus whole controller was designed in
Matlab environment. The second approach is a robot controller developed on field programmable
gate arrays (FPGA) board. The complexity of FPGA design can be overcome by using a third party
software package, such as self-developed Matlab FPGA Real Time Toolbox. In both cases, parameters
of motion controller are calculated by using simulation of the PUMA 560 robot first axis motion.
Simulations were conducted in Matlab/Simulink using Robotics Toolbox.

Keywords: educational robots; MATLAB; robot control; robot programming; open platforms

1. Introduction

The PUMA 560 robot made significant impact in the robotics era, and has been widely accepted in
many fields of industry. While more advanced robots found their application in industry in recent times,
PUMA 560 found its new purpose in education, partially due to the fact that it is the mathematically
best described robot. Its simple structure enables development of new controllers and testing of
the new controlling algorithms for education and scientific purposes. Nowadays there are many
manufacturers in the market, but the produced robots use controllers which are not open for research
and education purposes. In education process organized for students it is important to have the
possibility to measure different values (position, error, torque etc.) from control algorithms utilized
on controller in real time and compare them with results from other simulations as well as textbooks.
Consequently, new controlling approaches, as well as controllers for the PUMA 560 robot have been
developed at institutes and universities worldwide.

Open architecture community in robotics is not just an educational exercise. It is an immediate
necessity, as closed-source solutions harm the repair process, adjustments to the field application, as
well as regular maintenance and/or usability after the manufacturers go out of business or change
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ownership/business model. In this light, the ability to provide open source software, open source
reconfigurable hardware such as field programmable gate arrays (FPGA), and open design for additional
adaptor circuitry is instrumental. We need schemes that are modular, reconfigurable, and flexible—they
can be re-used for similar robots to those they are originally designed for, their components can be used
interchangeably, and mission-specific controllers can be produced by adapting the general architecture.
Contribution of this paper is delivering such a solution, with full verification of its performance,
and making it available under Creative Commons CC BY 4.0 license.

The motivation we had comes both from the industrial and educational practice, and we contribute
to both. When the practitioners ask “Can you repair what you own?” [1], the answer promoted by
the majority of equipment vendors is no, and their solutions lack modularity (cannot replace just a
part), openness (cannot diagnose faults or replicate the functionality), or flexibility (narrow, restricted
set of functions and operations span). We introduce solutions that promote the opposite. In the
educational arena [2], open source solutions allow more than closed-source ones: all educators had
the experience of closed-source solution providers delivering separate software or hardware units for
every functionality needed in the classroom, even if a single solution could cover them all. For example,
even if all hardware needed for cascade control of a plant exists in the educational system provided
by the vendor, the educators still have to buy a simple (LabView wrapped) application to access the
hardware and pay a significant price for it. At the same time, students lose the opportunity to make
such an application themselves, or see how it is made, or tweak it as a part of their training, which,
we argue is a basic skill for an engineer. Again, here we offer solutions open for editing and tinkering.
An open-source trained student will become an open-source advocating professional.

In the majority of scientific papers, one may find three different approaches implemented on
different platforms. One of them is pure simulation using MATLAB/Simulink with adequate robotic
toolboxes. The second one is using PC-based controllers and the third one is using embedded systems.
The first approach, widely accepted and globally in use for education and research, is Robotics Toolbox
developed by professor Peter Corke [3]. Major characteristic feature of the mentioned toolbox is the
fact it can be used for many other robots, not only PUMA 560. The second approach is very popular
because, using a friendly environment on a PC with an appropriate additional data acquisition board,
it is possible to control a robot in real time [4–9]. The third approach is also very common due to
possibility to develop a standalone embedded controller [10–15]. In Reference [10], an FPGA-based
controller for the Fanuc S420F robot is proposed, developed and described as open architecture which
enables scalability (possibility of adding new degree of freedom (DOF)) independently from vendors
in case of possible failure of old robot where vendors fail to provide further support and maintenance.
Comparing a PC-based controller with an embedded controller, it is obvious that different approaches
have some advantages and disadvantages, which will be further discussed in our paper.

The inspiration for this work, namely for the new computer-based control results presented,
comes from the educational/engineering reality—availability of components and knowledge dictates
the strategy of implementation. Previously, we designed a scheme based on an FPGA: when a
new acquisition board became available, we decided to examine how both the process of controller
implementation and its results compare to the FPGA solution. At the same time, we wanted to deliver
both to the community as open source options to choose and use either when hardware resources and
application constraints allow it. Since we mostly use the acquisition board as an elaborate AD/DA
converter, our solution is not platform-dependent. With that, we avoid the pitfall of relying to yet
another proprietary component—the goal of this work is to converge to a completely open and
accessible hardware and software scheme.

In the relevant literature there is wide choice of different control strategies with widespread groups
of algorithms used for the purpose of controlling the axes of the PUMA 560 robot. For developing a
control strategy, it is necessary to use adequate algorithm, as well as parameters in order to provide
appropriate controlling signals in real time. Complexity of robot control algorithms very often lies
in compromising between accuracy and available hardware resources for the purpose of calculating
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torque for particular axis of robot in real time. Due to construction of the PUMA 560 robot and its low
accuracy it is unnecessary to use advanced, nonlinear control algorithms. To perform a comparison of
results obtained from different platforms it is crucial to use the simplest possible control algorithm
which can also be implemented on different platforms. Based on the aforementioned requirements,
the plus derivative (PD) algorithm with gravity compensation for robot motion control proposed
in [15] is adequate and it represents a compromise between available resources and maximum accuracy
which can be achieved with robots like the PUMA 560.

Calculating PD parameters for the algorithm is common practice in simulations, but it is highly
demanding in case of controlling a robot axis in real time. Regarding this issue, engineers refer to
un-modeled dynamics and unknown friction between some mechanical parts and often propose the
use of tuning PD parameters in real time in the course of the control process.

The PUMA 560 robot belongs to the group of anthropomorphic arms. The base configuration
corresponds to a two-link planar arm with an additional rotation about an axis of the plane. Axes of
base configuration are powered by DC motors (300 W). Remaining three axes correspond to spherical
wrist and they are also powered by DC motors (160 W). For testing a modified PD algorithm, the first
robot axis is used, since only the first axis of the PUMA 560 robot is not affected by gravity. For gravity
compensation it is necessary to use complex control algorithms [15] which can lead to occurrence of
discrepancy between results obtained from other platforms and to avoid it the decision was reached to
use only the first axis of the PUMA 560 robot for testing purposes.

In the following sections, we present the simulation framework for the first axis of the robot,
the hardware and software we developed for the control of the actual robot, and the results of simulation
compared to the results of the two controllers on the actual device. The software code and the hardware
description is provided in supplementary content for reproducibility and free use.

2. Materials and Methods

2.1. Simulation of the PUMA 560 First Robot Axis

The PUMA 560 robot has DC motors with permanent magnets which was a common practice
in the beginning of the robotic era. There are a lot of advantages to their use and favorable ratio
between motor torque and velocity is certainly a major one. The reason behind it is the interaction
between stator and rotor magnetic fields. This type of DC motors requires no energy for the stator.
A consequence of that is less weight and volume for the same output power. Brushed permanent
magnet DC motor, as its name says, has brushes used for transfer of DC electricity to the system.
This motor generates torque directly from DC voltage using internal commutation, static permanent
magnets and rotating electric magnets. Torque is generated by force (Lorentz force) at the ends of coil,
positioned in an outside magnetic field. Motor contains internal inductance and resistance which can
be approximated with an RL circle.

For the purpose of simulating the motion of the first robot axis it is necessary to take into
consideration the mass of the whole robot, because the DC motor moves the complete structure,
unlike other motors in the robot. For example, the last axis motor only operates with mass of the last
segment of the robot. In Table 1, are presented all parameters of the first segment of the robot and
mass for the whole robot.

For simulation purposes Robotics Toolbox for MATLAB/Simulink was used, developed by
professor Peter Corke [3,16]. It is important to note that some parameters presented in Table 1 may vary
for some robots. In few decades of production of robot PUMA 560, robots from different manufacturers
emerged in the market and difference between them was mostly in the mass of some segments which
has to be taken in consideration during simulation process [17]. For that reason, all parameters
from [15] are experimentally verified for used robot and only those parameters are presented in Table 1.
Mathematical model of robot PUMA 560 is described in detail in [15–17].



Electronics 2020, 9, 972 4 of 15

Table 1. Parameters of the PUMA 560 robot.

Joint Parameter Value

1st joint

Gear ratio Kr 62.61
Encoder 1000 imp/rev
Accuracy 0.101 mrad
Length in Home position 0.43 m

-

Jm,1 2 × 10−4 kgm2

Bm,1 6.3 Nms/rad
Ra,1 2.1 Ω
Km,1 0.223 Nm/A
r1 62.61
Kb,1 0.26 V/rads
Kp 260
Kd 80

All joints PUMA 560 mass 54.5 kg
Workspace 320◦

Proportional plus derivative (PD) controllers are usually implemented independently at each
joint of the robot. Assuming that the electric time constant is much smaller than the mechanical time
constant, the dynamics of the j-th actuator of PUMA 560 robot (permanent magnet DC motor) can be
presented in the following form:

[
Jm, j + r2

j ·Jr, j(q)
] ..
θm, j +

(
Bm, j +

Kb, j·Km, j

Ra, j

)
.
θm, j =

Km, j

Ra, j
va, j − r j·τr, j(θ) (1)

where θm, j is the actuator angular position, r j is the gear reduction, Jm, j is the sum of actuator and
gear inertias, Bm, j is the equivalent mechanical damping constant at the actuator shaft, Km, j is the
motor torque constant, Ra, j is the armature resistance, r j·τr, j(θ) is the external load torque acting on the
actuator axis, va, j is the armature voltage, Kb, j is the back emf constant of the actuator, r2

j ·Jr, j(q) is the
robot inertia reflected on the actuator shaft.

On the basis of the provided equation it is easy to draw a conclusion that actuator dynamics
are linear in actuator angular position θm,j, so therefore linear control theory can be applied. The PD
controller is described by:

va, j = Kp, j·
(
θm, j − θm, j,d

)
−Kd, j·

.
θm, j (2)

where θm,j,d is the desired angular position and Kp,j and Kd,j are the proportional and derivative gains.
The closed loop system is obtained by applying the PD control to the actuator dynamics,

which yields the following equation:

[
Jm, j + r2

j ·Jr, j(q)
] ..
θm, j +

(
Bm, j +

Kb, j·Km, j

Ra, j
+

Km, j·Kd, j

Ra, j

)
.
θm, j +

Km, j

Ra, j
Kp, j·

(
θm, j − θm, j,d

)
+ r j·τr, j(θ) = 0 (3)

Equations (1)–(3) can be represented as a block diagram in Figure 1, created in Simulink:
Nonlinear and coupling effects of robot structure can be reduced by the mechanical gear reduction

rj. Taking into account the large gear reduction rj, the change in magnitude of the robot configuration
dependent terms r2

j ·Jr, j(q) and r j·τr, j(θ) may be neglected. Under such an assumption, they can be
perceived as constant, linearising the system and allowing us to apply the Laplace transform to perform
stability analysis. This assumption, however, will be revisited shortly.

Assuming that the r2
j ·Jr, j(q) and r j·τr, j(θ) are constant and applying Laplace transforms on

Equation (3) we obtain the following:{[
Jm, j + r2

j ·Jr, j(q)
]
s2 +

(
Bm, j +

Kb, j·Km, j

Ra, j
+

Km, j·Kd, j

Ra, j

)
s +

Km, j

Ra, j
Kp, j

}
θm, j(s) =

Km, j

Ra, j
Kp, j·θm, j,d(s) − r j·τr, j(θ) (4)
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The characteristic polynomial of the closed loop system is provided by

D(s) =
[
Jm, j + r2

j ·Jr, j(q)
]
s2 +

(
Bm, j +

Kb, j·Km, j

Ra, j
+

Km, j·Kd, j

Ra, j

)
s +

Km, j

Ra, j
Kp, j (5)

from which we learn that any positive Kp,j, and Kd,j, will yield a stable closed loop system.
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However, r2
j ·Jr, j(q) and r j·τr, j(θ) in a practical setting are configuration dependent terms, the zeros

will drift on the complex plane as the robot moves. Therefore, it is difficult to obtain satisfactory
performance of the closed loop system for all robot configurations if PD gains are fixed. Consequently,
a tracking error occurs. The tracking error can only be reduced by using sufficiently large gains.
Although a PD controller is very simple and robust, it suffers from the curse of “high gain”. One way
of achieving zero tracking error without using infinitely high gains is to compensate an external torque
r j·τr, j(θ) in Equation (4).

In Reference [15,18], it is proved that a PD controller with exact gravity compensation is
asymptotically stable at the zero-equilibrium point for point-to-point control. In the matrix form
Equation (1) can be written in the following form:

M(q)
..
q + N

(
q,

.
q
) .
q + g(q) = u (6)

where q is the position vector of the joints of the robot, u is the input torque or force acting on the joints,
M is the inertia matrix, N is a matrix representing nonlinear centrifugal and Coriolis forces, and g
denotes the gravitational effect. On the assumption that the robot system (6) is controlled with the
control law as presented in Figure 2:

u = g(q) + Kp·
(
qd − q

)
−Kd·

.
q (7)

where Kp and Kd are two positive-definite gain matrices, the closed loop system is obtained as:

M(q)
..
q = −N

(
q,

.
q
)
+ Kp·

(
qd − q

)
−Kd·

.
q (8)

Comparing Equations (6) and (7) with Equation (1) and doing term matching shows that we
are compensating for the effects of terms which are a function of q, or equivalently, the gravitational
effects of the manipulator configuration. Now, we proceed with the Lyapunov stability analysis (with
nonlinearities in (6), we cannot use linear theory anymore), defining the position error as:

e = qd − q (9)
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and a Lyapunov function candidate:

V
(
q,

.
q
)
=

1
2

.
qTM(q)

.
q +

1
2

eTKpe (10)

Differentiation of V along the closed loop system dynamics yields:

.
V
(
q,

.
q
)
=

.
qTM(q)

..
q +

1
2

.
qT .

M(q)
.
q− eTKp

.
q (11)

.
V
(
q,

.
q
)
=

.
qT
·

[
u− g(q) −N

(
q,

.
q
) .
q
]
+

1
2

.
qT .

M(q)
.
q− eTKp

.
q (12)

with Reference [13],
.

M(q) − 2N
(
q,

.
q
)
= 0 the following equation is:

.
V
(
q,

.
q
)
=

.
qT
·

[
−Kd·

.
q−N

(
q,

.
q
) .
q
]
+

1
2

.
qT .

M(q)
.
q = −

.
qTKd·

.
q (13)

Equation (13) is negative for
.
q , 0. Therefore,

.
q will reduce in magnitude until

.
q ≡ 0 which

implies that
..
q = 0. In this case, the closed loop system (8) yields e = 0.

At this point, it is worth noting that all assumptions made in this derivation are from a common
set of assumptions for manipulators [15]. Their appropriateness has been confirmed in this work both
by simulation and experiment.

The simulation result for the PUMA 560 robot with parameters from Table 1 is described in
detail in [19], where the task was simulation of rotating first three axes in order to define appropriate
controlling algorithm. Outdated robot construction with simple gear box solution dictated the use
of the proposed control algorithm—a simple PD with gravity compensation shown in Figure 2.
The aforementioned control algorithm can fully satisfy maximal precision which can be obtained from
the PUMA 560 robot. On the other hand, proposed PD control algorithm required less resources, namely
fewer multiplication units, which is important during its implementation on embedded platform.
Figure 2 represents the control scheme in its traditional form [15]; the dynamics of the manipulator
from (6) cannot be represented in such a scheme without resorting to a single block representation.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 15 

 

𝒖 = 𝑔ሺ𝒒ሻ + 𝑲𝒑 ∙ ሺ𝒒ௗ − 𝒒ሻ − 𝑲𝒅 ∙ 𝒒ሶ  (7) 

where Kp and Kd are two positive-definite gain matrices, the closed loop system is obtained as: 𝑀ሺ𝒒ሻ𝒒ሷ = −𝑁ሺ𝒒, 𝒒ሶ ሻ + 𝑲𝒑 ∙ ሺ𝒒ௗ − 𝒒ሻ − 𝑲𝒅 ∙ 𝒒ሶ  (8) 

Comparing Equations (6) and (7) with Equation (1) and doing term matching shows that we are 
compensating for the effects of terms which are a function of q, or equivalently, the gravitational 
effects of the manipulator configuration. Now, we proceed with the Lyapunov stability analysis (with 
nonlinearities in (6), we cannot use linear theory anymore), defining the position error as: 𝑒 = 𝒒ௗ − 𝒒 (9) 

and a Lyapunov function candidate: 𝑉ሺ𝒒, 𝒒ሶ ሻ = 12 𝒒ሶ ்𝑀ሺ𝒒ሻ𝒒ሶ + 12 𝑒்𝑲𝒑𝑒 (10) 

Differentiation of V along the closed loop system dynamics yields: 𝑉ሶ ሺ𝒒, 𝒒ሶ ሻ = 𝒒ሶ ்𝑀ሺ𝒒ሻ𝒒ሷ + 12 𝒒ሶ ்𝑀ሶ ሺ𝒒ሻ𝒒ሶ − 𝑒்𝑲𝒑𝒒ሶ  (11) 

𝑉ሶ ሺ𝒒, 𝒒ሶ ሻ = 𝒒ሶ ் ∙ ሾ𝒖 − 𝑔ሺ𝒒ሻ − 𝑁ሺ𝒒, 𝒒ሶ ሻ𝒒ሶ ሿ + 12 𝒒ሶ ்𝑀ሶ ሺ𝒒ሻ𝒒ሶ − 𝑒்𝑲𝒑𝒒ሶ  (12) 

with Reference [13], 𝑀ሶ ሺ𝒒ሻ − 2𝑁ሺ𝒒, 𝒒ሶ ሻ = 0 the following equation is:  𝑉ሶ ሺ𝒒, 𝒒ሶ ሻ = 𝒒ሶ ் ∙ ሾ−𝑲𝒅 ∙ 𝒒ሶ − 𝑁ሺ𝒒, 𝒒ሶ ሻ𝒒ሶ ሿ + 12 𝒒ሶ ்𝑀ሶ ሺ𝒒ሻ𝒒ሶ = −𝒒ሶ ்𝑲𝒅 ∙ 𝒒ሶ  (13) 

Equation (13) is negative for 𝒒ሶ ് 0. Therefore, 𝒒ሶ  will reduce in magnitude until 𝒒ሶ ≡ 0 which 
implies that 𝒒ሷ = 0. In this case, the closed loop system (8) yields e = 0. 

At this point, it is worth noting that all assumptions made in this derivation are from a common 
set of assumptions for manipulators [15]. Their appropriateness has been confirmed in this work both 
by simulation and experiment. 

The simulation result for the PUMA 560 robot with parameters from Table 1 is described in detail 
in [19], where the task was simulation of rotating first three axes in order to define appropriate 
controlling algorithm. Outdated robot construction with simple gear box solution dictated the use of 
the proposed control algorithm—a simple PD with gravity compensation shown in Figure 2. The 
aforementioned control algorithm can fully satisfy maximal precision which can be obtained from 
the PUMA 560 robot. On the other hand, proposed PD control algorithm required less resources, 
namely fewer multiplication units, which is important during its implementation on embedded 
platform. Figure 2 represents the control scheme in its traditional form [15]; the dynamics of the 
manipulator from (6) cannot be represented in such a scheme without resorting to a single block 
representation. 

 
Figure 2. PD control with gravity compensation. 

The proposed model was experimentally tested for three axes in [19], and it provides simulation 
for all three axes. 

Figure 2. PD control with gravity compensation.

The proposed model was experimentally tested for three axes in [19], and it provides simulation
for all three axes.

For the purpose of comparison, Equation (7) can be simplified using first robot axis because it is
not affected by gravity g(q). All further analysis and experiments in this paper will hence restrict to the
first axis. In Figure 3, the task was rotating the first segment of the robot from home position to 1 rad.
Simulation result is presented in Figure 3.

A trajectory generated with polynomial of seventh degree [16,20] was used for simulation
purposes. In the relevant literature it is also called the S trajectory which refers to the fact that it has
‘slow’ changing value of robot segment position during starting and stopping movements. Even the
derivative of acceleration (known as jerk) is smooth function. Using the trajectory with S shapes causes
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minimum stress to the robot’s motor as well as other mechanical parts [16,20]. Position error obtained
in simulation was around 1 mrad, but in the stationary state after movement it was significantly
lower at 0.2 mrad. From the results obtained by simulation, it can be concluded that based on robot
construction and age, simple control strategy can provide maximal precision in case of the PUMA
560 robot.
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2.2. Control Scheme Using PC

The first controller model we present in this paper is a PC control scheme. Convenient for
environments that already have general-purpose hardware and experience in usual engineering
software, a PC scheme has an easy learning curve and allows fast implementation. Our inspiration
here came from an educational setting: students gain experience in simulating devices represented by
simplified transfer function models in a few hours—with just a few hours more, they can control the
real system using the same software modality.

When using PC in real-time controlling applications, it is necessary to have appropriate hardware
which allows connection between PC with installed control software (e.g., MATLAB) and the controlled
object. In our case, Humusoft 634 data acquisition board was used for generating and accepting
signals to PC from controlled object. It was placed inside a PC with 8 GB of RAM and i7 processor.
The board has support from MATLAB and therefore signals from that environment can be taken
into the MATLAB model and taken from model into the environment through analog and digital
inputs/outputs. After installing the board into desktop PC, it is necessary to adjust the settings in
MATLAB related to defining input/output ranges in Volts and to set up to Simulink for Real Time
Windows Target (RTWT). Real-Time Windows Target is a one-box solution which allows PC to achieve
real-time performance.

Signals from the PC, i.e., the Humusoft 634 board, should be presented in a suitable form to the
robot. For that purpose, it was necessary to develop a driver with H bridge for controlling DC motors
utilized in robots. The task of the driver is to translate low power signals from Humusoft board in the
±10 V range into a high-powered signal (60 V, ±10 A) for controlling DC motors. Figure 4 presents the
driver we developed for this purpose, and it is described in detail in [21].
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Figure 4. DC motor driver (60 V, ±10 A) [21].

The next task was acquiring the data from encoders attached to DC motors and providing data
processing in order for them to be accepted into MATLAB Simulink environment. For that purpose,
we developed a custom interface board, as presented in Figure 5 [22]. The interface board has interface
circuitry for processing signals from older generation encoders which generate two 1 Vpp sine waves
with the phase-shift of 90 degrees. It also provides DA and AD converters for connection of an FPGA,
an RS-232 port, and optional connection to an acquisition board, in our case the Humusoft board.
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The interface board has many options and can be used for accepting the data from encoders in
order to perform necessary processing and scaling to be accepted with Humusoft board.

It is important to note that it is possible to make closed control loop in MATLAB/Simulink using
the information on the position of the DC motor shaft.

In Figure 6 we present the block scheme for PC-based control system of the PUMA 560 robot,
with its three main parts.

MATLAB with Humusoft 634 data acquisition board which enables connection between the
MATLAB/Simulink model and controlled objects was installed on desktop PC. In our case, the controlled
object was the PUMA 560 robot which has DC motors for actuating a robot segment where the attached
encoders on the shaft of each DC motor were used for measuring position. For the purpose of adjusting
the signals from PC (Humusoft board) and robot (DC motors and encoders), a new controller was
developed, and it is described in detail in [22]. Instead of an FPGA as in [22], the controller was driven
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from the PC with Humusoft board. The above mentioned systems presented in block schemes enable
testing modified PD regulator in the same manner as in the provided simulation.Electronics 2020, 9, x FOR PEER REVIEW 9 of 15 
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Figure 7 represents the Matlab Simulink software interface towards the manipulator, through
the acquisition board. The ‘dif’ block corresponds to a discrete differentiator, and the rest of the
scheme closes the loop with the controlled manipulator. The reference input is the generated seventh
degree trajectory polynomial, generated in Robotics Toolbox and is used for all three cases, simulation,
software control, and FPGA control. Replacement of the board and board-related software elements is
straightforward (within input and output blocks), and in the best case, the board is replaced with an
open architectural design as well. As such, the solution is ready for upgrades and modifications.Electronics 2020, 9, x FOR PEER REVIEW 10 of 15 
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2.3. Control Scheme Using FPGA

An industrial setting, be it small or large, asks for dedicated hardware solutions for control,
both for prototyping and for continuous use. Hence, our second scheme aims at allowing custom
hardware development, but with as little restrictions caused by proprietary hardware/software as
possible, while allowing an adjustable learning curve and budget trade-offs.

A controller based on an embedded portable system is in demand for many applications,
so consequently it was decided to develop an FPGA-based controller. There are few different approaches:
using microcontrollers, microprocessors, and digital signal processors (DSP) in combination, etc., but the
most suitable approach is using FPGA due to its processing power and price [10–14]. Major drawback
for using FPGA is programming using VHDL which is not adequate for developing control algorithms
in user-friendly manner. For that purpose, it was decided to use MATLAB with the DSP Builder which
enables design of control algorithms in a graphical environment. A major drawback for the DSP
Builder is the absence of important blocks such as PD regulator, accepting signals from encoder etc.
and for overcoming this problem new FPGA Real-Time Toolbox was developed, as described in detail
in [23,24].

For the purpose of connecting the PC though FPGA with the PUMA 560 robot, we develop a
modular structure akin to one in PC based control loop, represented in Figure 8 as a block scheme for
the whole system.
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In comparison with the PC-based controller, where a microprocessor on the desktop PC is used
for calculating control algorithm in real time, in this case, we utilized the FPGA. The RS232 interface
was used for collecting the data from FPGA in real time and the whole procedure is described in detail
in [23].

3. Results

The experiment conducted in this paper had the goal of verifying the controllers we proposed,
and the same task was put front of all three schemes: the simulation, PC, and FPGA control. They had
to perform a rotational motion of the manipulator from 0 to 1 rad and back. Verification using a typical
trajectory confirming that the error bounds are within the expected margin is a standard procedure for
new open architectures [25], as the goal is to provide evidence for the applicability of their particular
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implementations; the suitability of the underlying control-theoretic algorithm has already been shown
for a variety of settings and manipulators [26].

Results of the PC control are presented in Figure 9. The first plot represents how the first robot
axis follows the reference trajectory from 0 (home position) to 1 rad and returns to home position. It is
important to note that for the first robot axis the load is maximal, because all the other robot segments
of are attached to the first segment and total mass is 54.5 kg. Observing the results obtained for the
first robot axis, it is impossible to notice any discrepancy between reference and achieved trajectory.
For that reason, the second plot was provided, and it was obtained as an output signal from block
error detection in the PD regulator. All values were obtained in number of pulses from encoders:
9850 pulses corresponds to 1 rad, i.e., a pulse corresponds to 0.102 mrad. Maximum measured error
was 40 mrad and it is a consequence of the nature of PD regulator. Important results were obtained
in the stationary state where the first axis rotating is finished, and its error is 2 pulses which equals
0.2 mrad, and is almost at the limit of encoder precision. Errors we cite here correspond to the worst
case scenario of the robot starting up from prolonged inactivity (effect caused by the lubricant used for
the robot’s bearings). In all other scenarios, i.e., in motion of the robot after “warming up” measured
errors were lower.
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Figure 9. Experimental results for the first robot axis with PC control.

In Figure 10, we present the experimental results obtained using the FPGA-based controller. As in
the previous experiment, the task was rotating the first axis from home position to the angle of 1 rad.
During the experiment [19], the value of the worst case position error was obtained, and it was in the
range of 10 to 12 pulses from encoders in the stationary state (the case in Figure 10 is not the worst,
and it is comparable to the results from Figure 9). The error was significantly greater before reaching
the stationary state which was expected due to the nature of the PD controller operating and the robot’s
mass of 54.5 kg (Table 1). The value of measured error before stationary state was out of range of
the used measurement components (±2 mrad), and so it is not visible in the figures, but estimated
indirectly. The worst-case scenario has the maximum measured error of 12 pulses in the stationary
state, X = 0.0012 rad. The noise visible in Figure 9 (PC control) does not appear in Figure 10 (FPGA
control) because of the AD/DA conversion: the Humusoft board used 14/bit converters, while in the
FPGA scheme we used 8-bit converters.



Electronics 2020, 9, 972 12 of 15

Electronics 2020, 9, x FOR PEER REVIEW 12 of 15 

 

worst, and it is comparable to the results from Figure 9). The error was significantly greater before 

reaching the stationary state which was expected due to the nature of the PD controller operating and 

the robot’s mass of 54.5 kg (Table 1). The value of measured error before stationary state was out of 

range of the used measurement components (±2 mrad), and so it is not visible in the figures, but 

estimated indirectly. The worst-case scenario has the maximum measured error of 12 pulses in the 

stationary state, X = 0.0012 rad. The noise visible in Figure 9 (PC control) does not appear in Figure 10 

(FPGA control) because of the AD/DA conversion: the Humusoft board used 14/bit converters, while 

in the FPGA scheme we used 8-bit converters. 

 

Figure 10. Experimental results for the first robot axis with FPGA control [19]. 

4. Discussion and Conclusions 

In this paper, experimental results obtained using two different approaches are presented. The 

first approach is a PC-based controller with HUMUSOFT board which enables using 

Matlab/Simulink in real time. If we take into consideration advantages and disadvantages related to 

using PC in real-time applications and its reliability and vulnerability to viruses, this approach is 

education oriented. Nowadays, Matlab is common tool in education due to the fact that students are 

provided with the possibility to see any value from controlling algorithm. In that manner, a PC-based 

controller presents open architecture, which is an excellent tool in education process because students 

can compare signals from controller with signals from simulations. On the other hand, an FPGA-based 

controller is more industrial approach which can provide more reliable solutions. Programming the 

FPGA is very demanding but there are some benefits of using them in industrial applications such as 

parallel processing and dedicated logic for each task which enables reliability, efficiency and 

application specific integrated circuit (ASIC) solutions. When we speak of ASIC in this context, what 

we have in mind is the ability to generate a custom ASIC running our algorithm, eliminating both 

the PC and the FPGA from the loop, which is convenient for, e.g., mass production and industry 

integration. It is important to note that HDL can be generated from Matlab for the purpose of 

programing FPGA, but there are necessary steps to be implemented prior to downloading on FPGA. 

Complexity of programming the FPGA can be partially reduced using the DSP Builder which enables 

programming Altera’s FPGA directly from Matlab. For that purpose is used, a self-developed FPGA 

Real-Time Toolbox [23]. In Table 2 we list features of both approaches. 

  

Figure 10. Experimental results for the first robot axis with FPGA control [19].

4. Discussion and Conclusions

In this paper, experimental results obtained using two different approaches are presented. The first
approach is a PC-based controller with HUMUSOFT board which enables using Matlab/Simulink in
real time. If we take into consideration advantages and disadvantages related to using PC in real-time
applications and its reliability and vulnerability to viruses, this approach is education oriented.
Nowadays, Matlab is common tool in education due to the fact that students are provided with the
possibility to see any value from controlling algorithm. In that manner, a PC-based controller presents
open architecture, which is an excellent tool in education process because students can compare
signals from controller with signals from simulations. On the other hand, an FPGA-based controller
is more industrial approach which can provide more reliable solutions. Programming the FPGA is
very demanding but there are some benefits of using them in industrial applications such as parallel
processing and dedicated logic for each task which enables reliability, efficiency and application specific
integrated circuit (ASIC) solutions. When we speak of ASIC in this context, what we have in mind is the
ability to generate a custom ASIC running our algorithm, eliminating both the PC and the FPGA from
the loop, which is convenient for, e.g., mass production and industry integration. It is important to note
that HDL can be generated from Matlab for the purpose of programing FPGA, but there are necessary
steps to be implemented prior to downloading on FPGA. Complexity of programming the FPGA can
be partially reduced using the DSP Builder which enables programming Altera’s FPGA directly from
Matlab. For that purpose is used, a self-developed FPGA Real-Time Toolbox [23]. In Table 2 we list
features of both approaches.

Table 2. Features of PC and FPGA based controllers.

Features
(Low, Medium, High)

Type of Controller

PC-Based FPGA-Based

Reliability Low High
Vulnerable on virus High Low

Skills Low High (Expert)
Industrial oriented Low High

Educational oriented High Low
Tuning parameters High Medium
Price of hardware Medium Low
Price of software High Low

Possibility of generating an ASIC deisgn Low High
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The use of Matlab in FPGA-based approach is optional, and all consequent customization of the
HDL code can be done without it, hence the implication of low software cost in Table 2. In Reference [22],
we have performed a cost analysis for PC+acquisition card vs. FPGA control solution, taking into
account hardware costs and design labor costs, showing that the former requires ~35 thousand euros
compared to 12 thousand euros for the latter. Without labor costs, i.e., just the hardware cost amounts
for 15 thousand and 1 thousand euros, respectively.

Experiment we verified our controllers with was the rotational task of reaching 1 rad angle
from the initial 0 rad state and going back to the initial state. The worst-case scenario error in the
steady state was 0.2 mrad for the simulation and the PC-based controller, and 1.2 mrad for the FPGA
based controller.

Identical results can be obtained from simulation and from experiment with PC-based controller
(and the FPGA in the case of Figure 10), which is at the very edge of maximum possible accuracy which
can be obtained with PUMA 560. It is important to note that the Robotics Toolbox with very precise
model of the PUMA 560 was used for simulation purposes. These error margins confirm our approach
is on par with state of the art control solutions for PUMA 560.

Significant discrepancy is noted between simulation results and the worst case results obtained
using the FPGA-based controller. The reason is adjusting the control algorithm to the resources on
FPGA, where number of multipliers is low, and number of bits used for representing numbers on FPGA
structure must be reduced. Experimental results obtained using the PC-based controller indicated
that error can be reduced using advanced FPGA in cases when it is unnecessary to reduce the number
of bits in order to fit in the FPGA, which will be the topic of new further research (as listed in [19],
the FPGA implementation for all three axes uses around 2250 logic cells, around 1000 dedicated logic
registers, 70 DSP elements, 35 multipliers 18 × 18, 44 pins). An important question, of course, is that of
the particular application—the FPGA based solution allows great simplification and scaling down of
resources if the required accuracy is not high, as demonstrated in our example.

It is important to note that industrial FPGA-based solutions enable two important features:
development of ASIC solutions and independence from vendors. Vendor independence is often the
only guarantee of prolonged use of equipment, as for older types of robot vendors usually provide
no support for maintenance or in case of failure, and the robot vendors become controller vendors.
While software can sometimes allow independence, open hardware always allows it. Open software,
hardware and their joint platforms are a stepping stone towards open primitives, open mechanical
structures and an overall new paradigm of robotics.

The aim of this paper was to investigate different approaches, educational and industrial,
for developing controllers for robots. For testing purposes, the PUMA 560 robot was used.
From experimental and simulation results presented in the paper we may conclude that different
approaches have their advantages and disadvantages, so we proposed the PC-based controller for
educational and FPGA-based controller for industrial purposes. Experimental results also show that
chosen hardware and self-developed hardware are adequate in order to meet necessary requirements
for robot controllers, and the architecture allows scaling and improvements.

Making solutions like ours, practically verified, well-documented and easily customizable,
available to the wide audience is not a contribution just to robotics and/or education audience: it is a
contribution to circular economy, right to repair, and the innovation prospects of the community we
live in. Robots discarded from production lines because of controller damage or discontinued support
could be repurposed and allow enterprises that could not afford them otherwise to creatively use
them in their manufacturing processes. Freedom of customization opens possibilities for variations:
cooperative settings for multiple manipulators [26] or mobile manipulators come to mind [27].

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-9292/9/6/972/s1:
hardware description, PC control code, PCB design for the interface.
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