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Abstract: Gesture recognition that is based on high-resolution radar has progressively developed in
human-computer interaction field. In a radar recognition-based system, it is challenging to recognize
various gesture types because of the lacking of gesture transversal feature. In this paper, we propose
an integrated gesture recognition system that is based on frequency modulated continuous wave
MIMO radar combined with deep learning network for gesture recognition. First, a pre-processing
algorithm, which consists of the windowed fast Fourier transform and the intermediate-frequency
signal band-pass-filter (IF-BPF), is applied to obtain improved Range Doppler Map. A range FFT
based MUSIC (RFBM) two-dimensional (2D) joint super-resolution estimation algorithm is proposed
to obtain a Range Azimuth Map to obtain gesture transversal feature. Range Doppler Map and
Range Azimuth Map then respectively form a Range Doppler Map Time Sequence (RDMTS) and a
Range Azimuth Map Time Sequence (RAMTS) in gesture recording duration. Finally, a Dual stream
three-dimensional (3D) Convolution Neural Network combined with Long Short Term Memory
(DS-3DCNN-LSTM) network is designed to extract and fuse features from both RDMTS and RAMTS,
and then classify gestures with radial and transversal change. The experimental results show that the
proposed system could distinguish 10 types of gestures containing transversal and radial motions
with an average accuracy of 97.66%.

Keywords: gesture recognition; MIMO radar; deep learning; LSTM; CNN; feature fusion

1. Introduction

Gesture recognition has been regarded as an effective way of human-computer interaction (HCI)
and it has been increasingly applied in many applications [1–3]. There are many researches on
gesture recognition that is based on computer vision [4–7]. The Vision-based techniques study the
contours, shapes, and textures of gestures. However, vision-based methods require a large amount of
computational resource consumption, and they cannot work well in strong light or low light.

In recent years, radar sensor-based gesture recognition has gained a lot of attention. Radar
sensors can solve the problem of low recognition accuracy of vision-based system, due to poor lighting
conditions, which are ideal for in-car environments with poor lighting conditions. In addition, a radar
system is able to protect the user’s privacy better than the vision-based system. Therefore, radar-based
gesture recognition system has very broad application prospect and far-reaching application value
in practical applications [8–17]. There are some hand gesture recognition methods that are based
on Doppler radar [9,10]. However, Doppler radar can only get the Doppler information, also called
velocity information, but it cannot get the range information of target. Therefore, there are some
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limitations of the types of gestures with Doppler radar. Frequency modulated continuous wave
(FMCW) radar is a kind of radar that is capable of both range and velocity measurement, compensating
for the range parameters lack of Doppler radar. In [11,12], the authors presented dynamic gesture
recognition systems that are based on 77 GHz FMCW radars by while using micro Doppler features
and for driving assistance. However, only the Doppler estimation was employed for recognition,
and the range information was ignored. In [13], Latern, a FMCW radar-based system with range
information employed, was presented for continuous gesture recognition. The difficulty of [13] lies in
how to distinguish hand movement trajectory at the same range. In [14–18], two-dimensional-FFT
(2D-FFT) was used to process signals to generate the Range–Doppler Map (RDM) containing radial
range and velocity information of hand gesture. Google presented Soli, a robust, high-resolution,
low-power sensing technology that is based on millimeter-wave for hand gesture recognition [14].
Wang Y et al. presented TS-I3D network to extract range and velocity information of RDM for gesture
recognition [15]. In these literatures, only RDM was generated for classification and lack of angular
parameter, limiting gesture types for gesture recognition. These methods gradually cannot adapt to
real complex gesture recognition, including radial and transversal motions.

Gesture feature extraction and classification are also very important of hand gesture recognition.
Convolutional Neural Network (CNN) was used to extract features and classification of image for
gestures recognition [1,18–20]. Three-Dimension Convolution Neural Network (3DCNN), which was
developed to extract motion features encoded in a few consecutive frames, was widely used in various
types of continuous behavior recognition, including hand gesture recognition [21–24]. 3DCNN can
learn temporal information of a few consecutive gesture pictures, but is too shallow to learn long
term information. When compared with 3DCNN, Long Short Term Memory (LSTM) network is more
suitable to learn long-term temporal information. LSTM, which is a special form of RNN network [25],
is employed to learn long term information [26,27]. LSTM was employed in [16] to learn the temporal
characteristics of the RDM sequences of hand gesture. However, the authors in [16] directly extract the
range and Doppler features respectively rather than using deep learning network structure, ignored
the joint information between range and Doppler, which makes the feature extraction incomplete.

Aiming at the problem of insufficient parameters of hand gestures recognition, we proposed
a new range FFT based MUSIC (RFBM) 2D joint super-resolution estimation algorithm to generate
a Range Azimuth Map (RAM) for Range and Azimuth joint Estimation, making up for the lack of
lateral parameters. The RAM and RDM of each frame can form Range Doppler Map Time Sequence
(RAMTS) and Range Doppler Map Time Sequence (RDMTS). RAMTS and RDMTS were combined for
gesture recognition, which expands the variety of gestures for recognition. We designed a dual stream
3DCNN-LSTM (DS-3DCNN-LSTM) network to extract and fuse RDMTS and RAMTS features and
classify gestures to more effectively extract gesture spatiotemporal features.

The contributions of this paper are summarized, as follows:

(1) The development of a new system for hand-gesture recognition based on FMCW MIMO radar
and deep learning.

(2) Designing a pre-processing algorithm based on windowed Range–Doppler-FFT and
intermediate-frequency signal band-pass-filter (IF-BPF) to alleviate spectrum leakage and suppress
clutters in RDM.

(3) Proposing a RFBM 2D joint super-resolution estimation algorithm to generate RAM for joint
estimation of range and azimuth.

(4) Designing a DS-3DCNN-LSTM network to extract and fuse RDMTS and RAMTS to obtain high
recognition accuracy of complex gestures.

The proposed hand gesture system mainly consists of hand gesture data collection part, signal
processing part, and gesture recognition part. Figure 1 shows the simplified block diagram of gesture
recognition system. In gesture data collection part, the IF signal data are collected for signal processing.
In signal processing part, window functions and IF-BPF are employed on IF signal to alleviate the
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spectrum leakage and filter background clutter. Subsequently, Range Doppler FFT is employed to
obtain RDMTS. Meanwhile, the RFBM 2D joint super-resolution estimation algorithm is used to
obtain RDMTS. In the recognition part, RDMTS and RAMTS are input to DS-3DCNN-LSTM and the
classification results are given.
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Figure 1. The overview of hand gesture recognition system.

2. FMCW MIMO Radar

The employed FMCW radar is millimeter wave radar sensor with three transmitters and four
receivers. We use two transmitters and four receivers to generate a virtual array of eight receiving
antennas. The signals are generated by synthesizer and transmitted by two transmitters. The signal is
received by four receivers after being reflected by target. The received signal is mixed with transmit
signal to obtain IF signal. We used one transmitter and two receivers to show the work process of
FMCW MIMO radar sensor. Figure 2 shows the simplified block diagram.
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Figure 2. Simplified structure of radar sensor.

The employed radar sensor radiates sawtooth modulated waveform. The transmitted saw tooth
FMCW signal consists of several frames, and each frame contains many chirps; a chirp is a sinusoid or
a sin wave whose frequency increases linearly with time. The received IF signal can be expressed as

SIF(t) = AIFe j2π(Ktτ− 1
2 Kτ2)− j∆φ (1)

where K = B
T is the slope of chirp, B is the bandwidth of the transmitted signal, and T is the chirp

duration, AIF is amplitude of IF signal, and τ and ∆φ denote time delay and phase shift caused by
hand, respectively.
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According to Equation (1), the target range R can be calculated by

R =

∣∣∣ fIF∣∣∣× c

2K
(2)

where c is the speed of light and fIF is the principal component of IF signal. For a frame periodicity,
∆R = vT, so the radial velocity v of object can be calculated by

v =
λ∆φ
4πT

=
λ fd
2T

(3)

where fd is the Doppler frequency. The range information could be obtained by performing Range-FFT
along the fast time. The radial velocity information can be obtained by applying Doppler-FFT on the IF
signal along the slow time.

A pair of transceiver antennas can realize the Range Doppler estimation. However, at least two
receiving antennas are needed for azimuth estimation. MIMO radar with multiple TX and multiple RX
antennas provides a cost-effective way to improve the radar angle resolution [28]. We used a 2T4R
MIMO radar to generate a virtual array of eight RX antennas. Transmit antenna TX1 and TX3 are
horizontally spaced at d = 4dr and four receives are horizontally spaced with an interval of dr, as
shown in Figure 3a. The phase difference between adjacent antennas ω is calculated by

ω =
2πdrsinθ

λ
(4)

where θ is the angle of arrival. The unambiguous measurement of angle requires |ω| ≤ π, so dr = λ/2
is for the largest field of view [28].
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Figure 3. The generation of virtual array: (a) MIMO radar with two transmit antennas and four receive
antennas. (b) Virtual array of eight receive antennas.

A transmission from TX1 results in a phase of [0ω 2ω 3ω] at the four RX antennas. Any signal
emanating from TX3 traverses an additional path of length 4drsin θwhen compared to TX1 because the
second TX antenna (TX3) is placed a distance of 4dr from TX1. Correspondingly, the signal at each RX
antenna sees an additional phase-shift of 4ω (with regard to transmission from TX1). The phase of the
signal at the four RX antennas, due to a transmission from TX3, is [4ω 5ω 6ω 7ω]. Concatenating the
phase sequences at the four RX antennas obtains the sequence [0ω 2ω 3ω 4ω 5ω 6ω 7ω], as shown in
Figure 3b. Thus the 2TX–4RX antenna configuration of Figure 3a synthesizes a virtual array of 8 RX
antennas, as shown in Figure 3b. In this work, time division multiplexing (TDM) [29] is employed to
separate different transmit signals.

According to Equation (4), θ can be calculated by

θ = sin−1(
λω

2πdr
) (5)

A virtual array of eight receive antennas is constructed and the received raw data are rearranged to
conform to the data processing model of virtual array. The angle information can be obtained by using
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DOA estimation methods based on Equation (5). There are many DOA estimation methods [30–37],
such as MUSIC [30–32], ESPRIT [33], and Capon [34,35]. In this paper, we design a RFBM 2D joint
super-resolution algorithm to obtain information of range and azimuth. We need rearrange the received
data to make it suitable for signal processing. The collected data are reshaped to a cube matrix:

s(n, p, l) = exp( j2π
[(2KR

c
+ fd

)n− 1
N

T +
2 fcR

c
+ fdpT +

(l− 1)drsinθ
λ

]
(6)

where n = 1, 2, · · · , N, p = 1, 2, · · · , PF, l = 1, 2, · · · , L, and N are the samples within the time duration
T, P is the number of consecutive chirps in one frame and F is the total frames, fc is carry frequency,
and L is the number of virtual receiving antennas. In Equation (6), the three dimensions of matrix s
contain information of range R, Doppler fd and azimuth θ.

3. Signal Processing

In this section, we describe the signal processing methods of FMCW MIMO radar, including the
pre-processing method of improved RDM generation to obtain gesture radial information and a RFBM
algorithm for RAM generation to obtain gesture lateral information.

3.1. Generate RDM

This section introduces the generation process of traditional RDM and a pre-processing method,
including window functions and an IF band-pass-filter for improved RDM.

3.1.1. Generate Traditional RDM

Since the matrix s contains Range–Doppler information in all frames, the Range–Doppler-FFT
is performed in each frame to reveal the change of range and velocity in time. Figure 4 shows
the calculation process of Range–Doppler FFT. A range-FFT performed on each column resolves
objects in range, and a Doppler-FFT along each row resolves each column (range-bin) in velocity.
The Doppler-FFT is accumulated in the results of fast-time axis, so that the traditional RDM can be
obtained. The RDM reflects range and velocity information of object. Figure 5a shows the obtained
traditional RDM of real data after Range Doppler FFT.
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3.1.2. Window Functions for Spectrum Leakage Suppression

There will be spectrum leakage when conducting FFT operation. Spectrum leakage will reduce
the spectral resolution and make it hard to detect real object. We consider applying a window
function before FFT operation to reduce spectrum leakage in order to solve this problem. The Hanning
window [38] is able to alleviate spectrum leakage with a good frequency resolution. Therefore,
Hanning is applied to window the signals of Range dimension and Doppler dimension respectively.
The Hanning window calculation formula for time domain signal of Range and Doppler dimensions
of the fifth frame signal is as follows{

srw(N, P, f ) = s(N, P, f ) ×Hanning(N)′

sdw(N, P, f ) = srw(N, P, f ) ×Hanning(P)
(7)

where srw(N, P, f ) is the result of Hanning window for s in range dimension, and sdw(N, P, f ) is the
result of Hanning window for s in Doppler dimension. Figure 5b shows the obtained RDM after
windowing and Range Doppler FFT.

3.1.3. Designed IF Band-Pass-Filter (IF-BPF) for Clutter Suppression

Besides hand gesture echoes, there will be background clutters in real experimental scene. In
addition, there will be interference between the antennas. These situations may cause clutters in RDM.
As can be seen in Figure 5a,b, there are peaks at almost all range bins when the velocity is 0, which are
caused by the interference of antennas. It can be observed that that there are peaks at range from 1.5 m
to 2 m. Based on the analysis of the experimental environment, the peaks are the echo spectrum of
ceiling. The motion range of gesture is approximately 0.1–0.7 m, so the targets beyond this range can
be considered to be interference or clutters.

The Constant False-Alarm Rate (CFAR) detector can be employed to reduce background clutter
and detect target [39]. However, for strong background clutter situation, it is easy to detect false
target by CFAR, and there is incomplete feature extraction of CFAR. The motion range of gesture is
approximately 0.1–0.7 m, and there are still strong peaks beyond this interval in spectrum. According
to Equation (2), we know that the IF signal is proportional to range, we consider filtering clutters by
filtering the low and high frequency in IF signal. Therefore, we designed an IF-BPF to filter background
clutters in RDM. Figure 6 shows the block diagram of this designed IF-BPF.

Where x(n) = srw(N, p, f ), rl, and rh are the minimum range and maximum range of gesture,
respectively. For filter parameter, fl and fh are the lower passband cutoff frequency and the higher
passband cutoff frequency, respectively, where fl ∈

[
fpl, fsl

]
, fh ∈

[
fph, fsh

]
, and fpl, fsl, fph, fsh are the

lower passband cutoff frequency, the lower stopband cutoff frequency, the higher passband cutoff

frequency, and the higher stopband cutoff frequency, respectively. Additionally, fs = N/T is the
sampling frequency (N is the samples within the time duration T), and d·e denotes the ceiling function,
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rounding toward positive infinity. For band-pass filter function, hd(n) are the unit sampling response
sequence, h(n) is the system function of band-pass filter. The output y(n) no longer contains the
frequency components of

∣∣∣ f ∣∣∣ > fl or
∣∣∣ f ∣∣∣ < fh, but only reserves the component of

∣∣∣ f ∣∣∣ ∈ FR.Electronics 2020, 9, 869 7 of 18 
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According to IF-BPF algorithm, most of the frequency components of background are filtered out, and
the frequency components of the responding gestures are enhanced. Figure 5c shows the RDMs of IF-BPF.
We can see in Figure 5 that spectrum leakage is well alleviated by windowing and the background clutter
is suppressed by IF-BPF. The gesture spectrum is enhanced, which makes it obvious for identification.
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3.2. Generate RAM

This section describes a Range FFT based MUSIC 2D joint super-resolution estimation Algorithm
(RFBM). This algorithm can realize range and azimuth joint estimation, so as to obtain the lateral
information of gesture.

The generation of RAM requires joint estimation of range and azimuth. The range azimuth
dimension data of cube matrix s in Equation (6) are selected for estimation. We adopt the first chirp of
each frame in order to generate a RAM for each frame signal. Algorithm 1 introduces the proposed
RFBM 2D joint super-resolution estimation algorithm.

Algorithm 1 RFBM joint super-resolution estimation algorithm

Input: S1 = s(N, p1, L), p1,= P( f − 1) + 1, is the first chirp of the fth frame signal of matrix s.
Initialization: n = 1 is the number of iterations.
(1) Matrix rearrangement. Rearrange 3-D matrix S1 to a 2-D matrix SL×N . Matrix SL×N represents N sampling
points in one signal chirp of the L virtual antennas chirp.
(2) FFT. Conduct Range FFT along the fast time dimension, and get matrix S′L×N .

S′L×N = FFT(SL×N)

(3) Select the nth column of matrix S′L×N .
A = S′L×N(L, n)

(4) Calculate covariance matrix.

Rxx =
1
L

AAH

(5) Obtain the noise subspace EN . Perform the singular value decomposition of the covariance matrix Rxx and
get EN .

Rxx = ESΣsEH
S + ENΣNEH

N

Where ES and EN are signal subspace and noise subspace, respectively.
(6) Determine steering vectors and angle search space.

VecA = [θd,θu]

Where θd and θu indicate the upper and lower bounds of angular search space VecA, respectively.
Steering vectors is shown as

a(θi) =
[
1, e− j2πdrsinθi/λ, · · · , e− j2π(L−1)drsinθi/λ

]
,θi ∈ VecA

(7) Calculate the MUSIC spatial spectrum.

PMUSIC(n,θ) =
1

aH(θ)ENEH
Na(θ)

,θ ∈ VecA

(8) Iteration.
n← n + 1

Repeat from (3) to (7) until n > N
Output: PMUSIC(n,θ)
The obtained spectrum PMUSIC(n,θ) form a 2D range-azimuth space, called Range Azimuth Map (RAM).
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The RAM reflects the range and azimuth information of the real target. Figure 7 shows the RAMs
of target at different angular positions. The peaks in Figure 7 are the spectrum of object, and the
corresponding values of abscissa and vertical axis are the estimated azimuth and range of target.
Figure 7a shows the RAM of target at about −20◦. Figure 7b shows that the estimated azimuth is
approximately 0◦. Figure 7c shows the RAM of target at about 20◦. We can see that RAM can effectively
reflect the range and azimuth information of real target.
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Each frame signal can generate a RDM and a RAM with the above signal processing method.
The RDM and RAM of each frame signal then form a RDMTS and a RAMTS in gesture recording
duration, which represent the continuous radial and transverse motion information of gesture.

4. Dual Stream 3DCNN-LSTM Networks

3DCNN can extract temporal information of a few consecutive pictures, but is not enough to learn
long term information from a long picture sequence. When compared with 3DCNN, Long Short Term
Memory (LSTM) network is more suitable for learning long-term temporal information. In this paper,
there are 30 frames in a gesture duration and 30 consecutive RDMs and RAMs respectively. 3DCNNs
are employed to extract short-term spatiotemporal features first, and then LSTMs are employed to
learn long-term spatiotemporal features of RDMST and RAMTS. Deeper spatiotemporal information
can be learned in this way.

Inspired by [15], we proposed a dual stream 3DCNN-LSTM networks for feature extraction.
When compared to [15], we have two different points. Firstly, only RDM was obtained in [15], in this
paper, we can not only obtain the RDMTS, but also get the RAMTS by proposing the RFBM algorithm.
Therefore, we proposed a dual-stream concept. Dual-stream refers to the use of two-way network to
extract the features of RDMTS and RAMTS separately and then merge them.

Secondly, in [15], an I3D network and LSTMs were employed to extract RDM features. In this
paper, since both RDMTS and RAMTS contain spatiotemporal features of gestures, 3DCNNs are
employed to extract short-term spatiotemporal features first, and then LSTMs are employed in order to
learn long-term spatiotemporal features of RDMST and RAMTS. Finally, the features are fused.

The detailed feature extraction process of proposed network contains two parts: First, two 3DCNNs
are employed to learn short-term spatiotemporal features of RDMTS and RAMTS. The learned features
of RDMTS and RAMTS are called fd1 and fa1. Second, two LSTMs are employed to extract long-term
spatiotemporal features accumulated in fd1 and fa1. The extracted features of fd1 and fa1 by LSTMs are
vectors called fd2 and fa2. The fd2 and fa2 with size of 1600 contain radial and transversal information of
gesture. After LSTMs feature extraction, the extracted features fd2 and fa2 are fused in order to form a
fusion feature vector fda with a 3200 size. The fusion feature fda contains distance, velocity, and azimuth
information for continuous gestures. The fusion feature fda is input to the two-layer fully connected (FC)
layers to reduce the dimensionality of features and output 10 categories. A softmax function is employed
in the final FC layer for classification. Figure 8 shows an overview of proposed deep learning architecture.
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4.1. 3DCNN

In this paper, 3DCNNs are employed. Since two 3DCNNs are employed to learn short-term
spatiotemporal features of RDMTS and RAMTS, the employed 3DCNNs does not need to be particularly
deep, different from [15], only three Conv3D layers are therefore constructed. The kernel size of each
Conv3D layer is 7 × 7 × 5 with stride 1 × 1 × 1. Batch normalization [40] is utilized to accelerate the
training process. The batch norm is followed by an activate function, restricted linear units (relu).
The number of filters of 3DCNN are set to be 32, 64, 64, respectively. The last Conv3D layers is
connected to the two-stacked pooling layers to reduce the output size of 3DCNN component. Figure 7:
Part A shows the 3DCNN component of this paper.

4.2. LSTM

The output of 3DCNN reshapes the formatting of LSTM. The LSTM component of proposed
architecture is displayed in Part B of Figure 7. The LSTM network is composed of LSTM cells, which
contains memory cell Ct, forget gate ft, input gate it, and output gates ot. The cell stores information
of previous steps and determine output of current step. Subsequently, the connection of each step is
maintained. The LSTM cell can be formulated as

ft = σ
(
Wxi ×Xt + Wh f ×Ht−1 + b f

)
it = σ(Wxi ×Xt + Whi ×Ht−1 + bi)

C̃t = tanh(WxC ×Xt + Whc ×Ht−1 + bC)

C̃t = tanhh(WxC ×Xt + Whc ×Ht−1 + bC
ot = σ(Wxo ×Xt + Who ×Ht−1 + bo)

Ht = ot � tanh(Ct)

(8)

where� denote the Hadamard product, σ = 1
1+e−x is the sigmoid function, Wx∼, Wh∼ are 2D convolution

kernels, and bi, b f , bo are the offset.
Deep LSTM structure with two LSTM layers stacked, as illustrated in Figure 7, are constructed to

learn the long-term spatiotemporal features of fd1 and fa1 in order to better learn long-term features.
Each LSTM layer is composed of 1600 cells, so the sizes of learned features are 1600. For fd1 and fa1,
the two LSTM structures are identical. The two learned deep spatiotemporal features by LSTMs, fd2
and fd2, are concatenated to a fusion feature fda of 3200 × 1. Two-layer FC layers are constructed



Electronics 2020, 9, 869 11 of 18

in order to reduce dimensionality and map fusion features to 10 categories. A softmax function is
employed in the final FC layer to output classification results.

5. Experiments and Result Analysis

The employed devices for hand gesture recognition are IWR1443millimeter wave radar sensor [41]
and DCA1000 [42], a data capture adapter, made by Texas Instruments. Figure 9 shows the radar
signal data acquisition module. Table 1 shows the experiments setup and parameters configuration of
FMCW MIMO radar. Two stream 3DCNN and LSTM built under tensorflow are used for training and
testing. The number of epochs, batch size, and learning rate are set to 20, 16, and 5× 10−4, respectively.
The host for signal processing and deep learning training and testing is configured with the Inter
i7-9700K processor and GIGABYTE-RTX2080 super graphics card.
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Table 1. Parameters Configuration of frequency modulated continuous wave (FMCW) radar.

Parameter Symbol Value

Carrier frequency fc 77 GHz
Bandwidth B 4 GHz

Time window Tchirp 100 µs
Idle Time between chirps Tidle 100 µs

Wavelength λ 3.90 mm
Transmitting antenna distance dt 7.8 mm

Receiving antenna dr 1.9 5 mm
Number of Frames Fra 30

Number of chirps in a frame Chp 128
Samples in one chirp Sp 512

Frame period Tp 80 ms

5.1. Experimental Setup and Data Collection

We designed 10 gestures in pairs that are easily confused in a single dimension, radial, or transversal
dimension. The 10 types of hand gestures are (1) Clockwise(CW), (2) Counter Clockwise(CCW),
(3) Drawing V(DV), (4) Drawing verse V(DVV), (5) Push(PS), (6) Pull(PL), (7) Push and Pull(PSPL), (8) Pull
and Push(PLPS), (9) Sliding Right to Left(SRL), and (10) Sliding Left to Right(SLR), as shown in Figure 10.
The above gestures can provide potential applications in many HCI applications. For instance, CW and
CCW are used to turn up or turn down the volume, and SRL and SLR are able to switch channels.
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Figure 10. Gestures considered in the experiments. (a) CW: Clockwise; (b) CCW: Counter Clockwise;
(c) DV: Drawing V; (d) DVV: Drawing verse V; (e) PS: Push; (f) PL: Pull; (g) PSPL: Push and Pull;
(h) PLPS: Pull and Push; (i) SRL: Sliding Right to Left; and, (j) SLR: Sliding Left to Right.

The gesture data of different experimenters are collected in order to generate data set for good
robustness. Five volunteers, three men and two women, were recruited to participate in the experiment.
Every participant performed every gesture for 20 times, and each gesture was performed 100 times, so a
total of 1000 hand gesture data sets were obtained. The data sets are divided into two parts: training set
and testing set. The ratio of training set and testing set are set to be 8:2. The data sets are divided into
two parts: training set and testing set. There are 800 hand gesture data sets for training and 200 hand
gesture data sets for testing. Each gesture contains two sequences (RDMTS and RAMTS), so there are
1600 training sequences and 400 testing sequences. Radar sensor and data capture adapter are fixed to
a table towards the ceiling in order to reduce the interference of the human body on the spectrum.

5.2. Signal Processing Results and Analysis

5.2.1. RDMTS with Windowing and IF-BPF

In this experiment, there are total 30 frames for a gesture duration. Each frame of signal will obtain
a RDM; there will be 30 frames RDM to form a RDMTS. We employed 30 frames RDM to represent a
gesture. Several RDMs without windowing and IF-BPF of a push gesture are obtained as an example,
as shown in Figure 11. In Figure 12, there are RDMs after windowing and IF-BPF of the same push
gesture. When comparing Figures 11 and 12, we can find that after windowing and IF-BPF, the target in
RDM is more obvious. The highlight in RDM is the gesture echo spectrum. We can learn from frame 1,
frame 7, frame 12, frame 7, frame 12, frame 22, and frame 28 that the range is decreasing, which means
the hand is approaching the radar. Additionally, the velocity changes from zero to negative and then
becomes zeros, which is also consistent with the trend of velocity of real hand gesture.
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Figure 11. Traditional RDMs without windowing and IF-BPF of a push hand gesture. (a) Traditional
RDM of frame 1. (b) Traditional RDM of frame 7. (c) Traditional RDM of frame 12. (d) Traditional
RDM of frame 22. (e) Traditional RDM of frame 28.
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Figure 12. Improved RDMs with windowing and IF-BPF of a push hand gesture. (a) Improved RDM of
frame 1. (b) Improved RDM of frame 7. (c) Improved RDM of frame 12. (d) Improved RDM of frame
22. (e) Improved RDM of frame 28.

5.2.2. RDMTS with RFBM Algorithm

According to Algorithm 1, each frame of signal will obtain a RAM, there will be 30 frames RAM
to form a RAMTS. We employed 30 frames RAM to represent a gesture. There are several RAMs of
different frames of a sliding left to right gesture as example, as shown in Figure 13. The RAMTS reflects
hand location change relative to radar during the movement of the hand. We can see from RAMTS
that the azimuth changes from about −40◦ to 0◦ and then to about 20◦, reflecting the location change of
the hand during the hand motion.
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5.3. Classification Accuracy

Table 2 presents the confusion matrix of 10 types of hand gestures to analyze the misclassification
of 10 gestures. It can be seen that the proposed system is able to recognize 10 types hand gestures
with high accuracy, ranging from 85.7% to 100%. There are seven types of gestures that achieved 100%
gesture recognition accuracy, and three other gestures achieved a recognition rate of 94.4%, 85.7%,
and 88.9%, corresponding to three complex gestures, CW, DV, and PLPS, respectively. The recognition
accuracy of the entire data set has reached 97.66%.

Table 2. Confusion matrix of 10 types of hand gesture.

Gestures CW CCW DV DVV PL PLPS PS PSPL SLR SRL

CW 0.944 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.056
CCW 0.00 1.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DV 0.00 0.00 0.857 0.143 0.00 0.00 0.00 0.00 0.00 0.00

DVV 0.00 0.00 0.00 1.000 0.00 0.00 0.00 0.00 0.00 0.00
PL 0.00 0.00 0.00 0.00 1.000 0.00 0.00 0.00 0.00 0.00

PLPS 0.00 0.00 0.00 0.00 0.111 0.889 0.00 0.00 0.00 0.00
PS 0.00 0.00 0.00 0.00 0.00 0.00 1.000 0.00 0.00 0.00

PSPL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 0.00 0.00
SLR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 0.00
SRL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000



Electronics 2020, 9, 869 14 of 18

5.4. Impact of Signal Processing Method on Accuracy

5.4.1. Impact of RFBM Algorithm

A very important contribution of this paper is the addition of RAMTS to represent the lateral
change of gestures, which is rarely involved in other papers. Several different training strategies are
utilized to evaluate the combination of both RDMTS and RAMTS in order to verify the effectiveness of
lateral information on the accuracy of gesture recognition.

Strategy 1: training 3DCNN-LSTM with only RDMTS. Since only RDMTS is considered in
experiments, only one 3DCNN-LSTM but not DS-3DCNN-LSTM is need. There is no step of feature
fusion, and the features of RDMTS are directly input to the fully connected layer for classification.

Strategy 2: training 3DCNN-LSTM with only RAMTS. As with the RAMTS training process, there is no
feature fusion step. The features of RAMTS are directly input to the fully connected layer for classification.

Strategy 3: training DS-3DCNN-LSTM with RDMTS and RAMTS. RAMTS and RDMTS are input
to the network at the same time, and the features after DS-3DCNN-LSTM are concatenated to the fully
connected layer for classification.

Table 3 shows the recognition accuracy comparison of different training strategies. It is observed
that the accuracies of Strategy 1 and Strategy 2 are lower than Strategy 3, which verifies the effectiveness
of the combination of RDMTS and RAMTS.

Table 3. Recognition Accuracy Comparison of Different Training Strategies.

Training Strategy Modality Accuracy

Strategy 1 RDMTS only 82.03%
Strategy 2 RAMTS only 93.97%
Strategy 3 RAMTS + RDMTS 97.66%

5.4.2. Impact of Window Function and IF-BPF

We compared the traditional RDM and improved RDM with windowing and IF-BPF (WBP-RDM)
and keep other parts unchanged in order to analyze the impact of preprocessing method of windowing
and IF-BPF. The same training and testing processes were carried out. Figure 14 shows the recognition
results. As steps increase, both data can converge to a stable accuracy. However, the convergence
speed of traditional RDM is much slower than that of WBP-RDM. It can be seen in Figure 13 that
traditional RDM converge at step 400, while WBP-RDM reach convergence at step 200. In terms of
final accuracy, WBP-RDM achieves an accuracy of 97.66%, showing an improvement of about 3.91% by
contrast with traditional RDM with accuracy of 93.75%.
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5.5. Impact of Different Networks on Accuracy

In this work, we combined 3DCNN and LSTM to extract features, and 3DCNNs are employed to
learn short-term features and LSTMs are used to learn long features. We compared the accuracy of
extracting features using 3DCNN-LSTM and extracting features using only 3DCNN or LSTM in order
to verify the validity of the combination of 3DCNN and LSTM. For fair comparison, the structure
and parameters of 3DCNN and LSTM are set to be consistent. The experiments are conducted on the
same training and testing sets. Figure 15 shows the recognition results of different networks. It is
observed that the recognition accuracy of the three networks improved with the increase of steps
and accuracy of DS-3DCNN-LSTM is the best, higher than 3DCNN and LSTM. The final recognition
accuracy of DS-3DCNN-LSTM, LSTM and 3DCNN are 97.66%, 91.41%, and 88.28%, respectively, which
suggests that the combination of 3DCNN and LSTM for the extraction of both short and long term
spatial-temporal features is effective for hand gesture recognition.
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6. Conclusions

This work proposed a DS-3DCNN-LSTM gesture recognition system based on RDMTS and
RAMTS fusion of FMCW MIMO radar. Firstly, a windowed RDM with IF-BPF was presented for hand
range and velocity estimation. Secondly, a RFBM 2D joint super-resolution algorithm was proposed
in order to generate RAM for range and azimuth estimation. Finally, a DS-3DCNN-LSTM network
was presented for the feature extraction and fusion of RDMTS and RAMTS with gesture radial and
transversal information preserved. Several comparative experiments were conducted on 10 complex
gestures. The Windowed RDM with IF-BPF obtains a 3.91% improvement over traditional RDM, which
verifies the effectiveness of presented signal preprocessing method. The dual-stream 3DCNN-LSTM
network that is based on the feature fusion of RDMTS and RAMTS achieves better performance than
single stream 3DCNN-LSTM. It improves 15.63% than single RDMTS input and 3.69% than single
RAMTS input. The average recognition accuracy of the proposed method reached 97.66%, showing
that the method can effectively distinguish different gestures.

Future work will consider the interference suppression of human body in more complex scenarios,
and focus on the state-of-the-art deep learning network to excavate complex gestures feature.
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