
electronics

Article

Optimized Lossless Embedded Compression for
Mobile Multimedia Applications

Sungchul Yoon 1,2, Sungho Jun 1, Yongkwon Cho 1, Kilwhan Lee 1, Hyukjae Jang 1 and
Tae Hee Han 2,3,*

1 System LSI Division, Samsung Electronics Co. Ltd, Hwaseong 18448, Korea; sc76.yoon@samsung.com (S.Y.);
sh1248.jun@samsung.com (S.J.); ykwon.cho@samsung.com (Y.C.); kilwhan.lee@samsung.com (K.L.);
hyukjae.jang@samsung.com (H.J.)

2 Department of Semiconductor and Display Engineering, Sungkyunkwan University, Suwon 16419, Korea
3 Department of Artificial Intelligence, Sungkyunkwan University, Suwon 16419, Korea
* Correspondence: than@skku.edu; Tel.: +82-31-299-4587

Received: 15 April 2020; Accepted: 20 May 2020; Published: 23 May 2020
����������
�������

Abstract: Power consumption is a critical design factor in modern mobile chip design, in which the
memory system with dynamic random-access memory (DRAM) consumes more than half of the
entire system’s power. Without DRAM bandwidth compression, extreme multimedia operations such
as 8K high dynamic range (HDR) recording and 8K video conference calling are not possible without
sacrificing image quality or trimming because of thermal limitations or battery time sustainability
constraints. Since heterogeneous processors are substantially involved in managing various types of
fallbacks or software solutions, complicated compression algorithms for high-compression ratios are
not actually adaptable owing to timing closure problems or high throughput requirements. In this
paper, we propose evaluation metrics to assess lossless embedded compression (LEC) algorithms to
reflect realistic design considerations for mobile multimedia scenarios. Furthermore, we introduce an
optimized LEC implementation for contemporary multimedia applications in mobile devices based
on the proposed metrics. The proposed LEC implementation enhances the compression ratio of LEC
algorithms in other commercial application processors for contemporary premium smartphones by
up to 9.2% on average, while maintaining the same timing closure condition.

Keywords: lossless embedded compression (LEC); prediction; entropy encoding; residual transform;
memory bandwidth compression

1. Introduction

As computing power has increased dramatically and the degree of integration has improved
significantly owing to the development of nanoscale semiconductor processes in recent decades,
the requirements in mobile devices are constantly evolving to satisfy the user experience. For example,
a mobile chip that can acquire an image frame from 200 million pixels, perform 8K high dynamic
range (HDR) recording, and display previews at 144 fps while maximizing the image quality for whole
paths has emerged [1]. However, the bandwidth and capacity of cutting-edge dynamic random-access
memory (DRAM) have not made much progress in terms of thermal design power (TDP) to meet
the aggressive market demands [2,3]. Therefore, it is essential to minimize power consumption by
significantly reducing the DRAM bandwidth in high-end multimedia applications by introducing a
method to resolve thermal problems and extend battery life. Consequently, several proprietary power
reduction features such as ARM (Advanced RISC Machine) frame buffer compression (AFBC), adaptive
scalable texture compression (ASTC), and transaction elimination (TE) have been introduced [4].

Electronics 2020, 9, 868; doi:10.3390/electronics9050868 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-8508-7536
http://dx.doi.org/10.3390/electronics9050868
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/5/868?type=check_update&version=2

Electronics 2020, 9, 868 2 of 16

Among these techniques, lossless embedded compression (LEC) has become essential such that it
loses its competitiveness in the mobile chipset market if it is not actually used. In this regard, several
related studies on LEC have surveyed the cache and memory compression methods, compression
algorithms for various types of data, and interactions with other approaches.

Although lossy compression guarantees constant bandwidth gain, the image quality is inevitably
deteriorated, which can be fatal in multimedia cases. For example, image details obtained through
several painful tuning operations may vanish due to lossy compression, and it is more probable
that image quality would be more deteriorated after repeated memory operations. Therefore,
lossy compression is adaptable in minimal cases where quality is not a high priority.

In high-end mobile devices, the camera and display subsystems, as well as video codecs, are usually
integrated into the same die and compete to occupy more memory bandwidth. However, they all
operate in association with other subsystems even in extreme cases of 8K HDR recordings and 8K
video conference calls via LTE (Long-Term Evolution) or 5G networks, and a given application task
will be distributed in a heterogeneous computing environment to achieve minimum execution time.

In this situation, it is essential to use a unified bandwidth compression that all the necessary system
components, including processors, can decompress. For example, in camera encoding, the neural
processing unit (NPU) can be engaged to manage specific recognitions such as face detection and lane
detection. However, the image data cannot be compressed when acquired from an image sensor if the
processor cannot decompress. As another example, the graphics processing unit (GPU) fallback occurs
whenever the display controller cannot perform even one of the input frames. In this case, if the GPU
cannot decompress, the LEC algorithm is completely ineffective for display paths. As a final example,
a digital signal processor (DSP) can enhance image quality when a movie is decoded via the video
codec standard. Likewise, if a DSP does not know how to decompress the frame, the codec should
write the decoded video frame in a raw format.

The contemporary memory system in mobile chips uses more ranks and banks to maximize the
total bandwidth, with a minimum access size to mitigate the utilization loss of hardware resources
such as bus, cache, and main memory [5,6]. Thus, the achievable compression ratio (CR) is inevitably
quantized in real multimedia applications by burst lengths for a single access. For example, if the block
size is 256 bytes and the bus width of a system is 16 bytes, the actual CR is quantized to 6.25% for each
block. As another example, if the block size is the same and the minimum burst length of a system
for high memory utilization is 64 bytes, the actual CR is quantized to 25% for each block. Therefore,
the best CR of an LEC algorithm does not entirely guarantee the maximum bandwidth gain, and an
efficient LEC algorithm can be affected by other parameters in the mobile chip design.

An optimized and unified LEC for mobile chips should satisfy not only high CR but also many
other metrics, which is a trade-off with CR. In this paper, we suggest some metrics to assess LEC
performance to consider the realistic factors in this dark silicon era [7,8] and propose an optimized
LEC algorithm for mobile multimedia scenarios based on the metrics. With the proposed LEC
implementation, we achieved up to 9.2% enhanced CR on average while satisfying the target frequency
up to 1.4 GHz. The contributions of this paper are summarized as follows:

1. We propose realistic metrics to assess LEC performance that help to evaluate what is needed in
the design of cutting-edge high-performance mobile devices.

2. We develop an efficient encoding method, according to the realistic characteristics of the
residual distribution.

3. We present an efficient metadata structure to minimize the access overhead optionally.
4. We implement an optimized LEC for high-end mobile multimedia based on the metrics, which is

used not only for video codec, but for the entire multimedia scenario in modern mobile devices.

Electronics 2020, 9, 868 3 of 16

2. Related Works

2.1. Data Compression for Cache and Memory Systems

Several data compression techniques were introduced to accomplish the aims of different
approaches [9–11]. Particularly, Mittal et al. [11] summarized the current data compression techniques
for memory systems, including cache. The authors classified the techniques based on the processor
component in which compression is applied using the compression algorithm and the objective.
In addition, the authors explained factors and trade-offs in compression, to which we referred to make
our performance metrics. Although Mittal et al. mentioned that smartphones are used for data-intensive
applications such as multimedia, they did not focus on multimedia data compression itself.

However, in mobile chipsets, memory bandwidth for multimedia applications such as camera,
video codec, and display accounts for most of the total bandwidth. For example, a 200-megapixel
camera and UHD (Ultra High-Definition) (3840 × 2160) 144 Hz display require a few tens of gigabytes
per second, which generally accounts for most of the total memory bandwidth in a mobile system,
and seamless operation is not possible without an efficient data compression algorithm.

In modern computing systems, if hardware accelerators cannot perform some multimedia jobs,
then a GPU or central processing unit (CPU) should be engaged to process them, which is known as
GPU fallback or CPU fallback [12,13]. In a similar vein, if there is no hardware accelerator for some
specific functions, then the associated software task should process them using a DSP or NPU. In cases
where the processors cannot manage compressed data in memory, the data compression for memory
bandwidth is applicable to minimal cases in which the GPU is never involved. In other words, an LEC
algorithm for mobile multimedia should be interpreted by processors such as CPU, DSP, and GPU for
software solutions.

2.2. Lossy Compression for Bandwidth and Footprint Reduction

Lossy compression can be a very efficient way to save bandwidth and memory footprint. Efficient
lossy compression algorithms and implementations are proposed previous studies [14–16]. Data loss
can cause significant image quality issues in multimedia applications, thus they are not appropriate
approaches in general. Since the tolerance for image quality loss due to data compression is not
allowed in most cases, this study does not deal with lossy compression. However, as future work,
we plan to develop an optimized lossy compression only for specific cases, which tolerate some image
quality loss to prioritize the sustainable battery time.

2.3. Lossless Compression for Bandwidth Reduction in Multimedia Environments

The LEC algorithms for the video codec system were previously proposed [17–21]. However,
the algorithms mainly enhance CR in video codec applications and use a much more complex
addressing mode, which is not applicable to general multimedia scenarios, including camera, display,
and associated software tasks in processors. The authors proposed efficient LEC algorithms that
can save not only memory bandwidth but also memory footprint by using partition group and
used finer-grained prediction and dynamic k-order unary exponential Golomb (EG) code as entropy
encoding or improved variable length coding (VLC). However, because only the video codec system is
targeted, the LEC algorithms are too complex to obtain frequency higher than 1 GHz and throughput
higher than 16 bytes/clock or 32 bytes/clock; therefore, other architectural alternatives need to be
considered for high-performance mobile devices.

This study is different from previous studies on LEC algorithms and implementations in that we
concentrate on searching for an LEC algorithm supported by all processors with high throughput
and frequency as well as multimedia hardware accelerators. To accomplish the goal, we analyze
the trade-off between algorithm complexity and hardware cost and search for an optimal point with
evaluation metrics to assess an LEC.

Electronics 2020, 9, 868 4 of 16

3. Metrics for LEC Evaluation

In leading-edge mobile application processors, various hardware accelerators for multimedia
applications, and heterogeneous processors such as CPU, GPU, DSP, and NPU share unified system
memory, as shown in Figure 1. It is totally different from high-performance computing systems in
which the GPU has a dedicated high-bandwidth memory. In addition, GPU, NPU, and DSP play
critical roles in mobile multimedia scenarios as various artificial intelligence (AI)-based applications
have emerged. Therefore, bandwidth compression for system memory can provide an appropriate
gain only when the compression algorithm is feasible for the processors. However, according to our
survey, researchers have not realized that the processors should understand the compression algorithm
to obtain the maximum gain from expensive investment in compression and decompression.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 16

3. Metrics for LEC Evaluation

In leading-edge mobile application processors, various hardware accelerators for multimedia
applications, and heterogeneous processors such as CPU, GPU, DSP, and NPU share unified system
memory, as shown in Figure 1. It is totally different from high-performance computing systems in
which the GPU has a dedicated high-bandwidth memory. In addition, GPU, NPU, and DSP play
critical roles in mobile multimedia scenarios as various artificial intelligence (AI)-based applications
have emerged. Therefore, bandwidth compression for system memory can provide an appropriate
gain only when the compression algorithm is feasible for the processors. However, according to our
survey, researchers have not realized that the processors should understand the compression
algorithm to obtain the maximum gain from expensive investment in compression and
decompression.

As mentioned above, previous studies on LEC for multimedia concentrated on achieving the
highest CR by improving their prediction and entropy encoding methods. However, because
functions that require random access, such as motion estimation and geometric distortion
compensation, are more often needed in modern mobile chips, the requirement for random access is
mandatory with minimum overhead. In addition, because modern memory systems support a group
of banks and have a minimum burst to increase DRAM utilization, the final CR is inevitably
quantized at a minimum burst without a huge temporal buffer. This implies that a certain amount of
compression gain can be sacrificed to increase the maximum throughput or random accessibility.

The complexity of a compression algorithm generally increases the hardware cost by increasing
the area or reducing the feasibility of parallelism. Furthermore, random accessibility is crucial in some
multimedia scenarios; however, it affects the actual CR because of metadata information and
redundant access. Likewise, hardware area and performance such as throughput and maximum
frequency, are the main factors to consider. In this section, we define four main metrics used to
evaluate the performance of an LEC. Table 1 shows the list of concerns to consider in an LEC
algorithm.

Main

C
SI

C
SI

GPU

DRAM
Controller

MP w/ L1

L2

CODEC

D
SI

Image Signal Processor

Mobile Application Processor

LP
D

D
R

4/
LP

D
D

R
5

Display Controller

Rear Front

Cover

DSP/NPU

DMA

HW
accelerators

CPU
Big/Mid/Little
w/ L1 and L2

L3

CSI : Camera Serial Interface
DSI : Display Serial Interface

Figure 1. System configuration in the mobile application processor. Abbreviations: CPU, central
processing unit; GPU, graphics processing unit; DSP, digital signal processor; NPU, neural processing
unit; DMA (Direct Memory Access); DRAM (dynamic random-access memory); HW (HardWare);
LPDDR (Low-Power Double Data Rate).

Figure 1. System configuration in the mobile application processor. Abbreviations: CPU, central
processing unit; GPU, graphics processing unit; DSP, digital signal processor; NPU, neural processing
unit; DMA (Direct Memory Access); DRAM (dynamic random-access memory); HW (HardWare);
LPDDR (Low-Power Double Data Rate).

As mentioned above, previous studies on LEC for multimedia concentrated on achieving the
highest CR by improving their prediction and entropy encoding methods. However, because functions
that require random access, such as motion estimation and geometric distortion compensation, are more
often needed in modern mobile chips, the requirement for random access is mandatory with minimum
overhead. In addition, because modern memory systems support a group of banks and have a
minimum burst to increase DRAM utilization, the final CR is inevitably quantized at a minimum
burst without a huge temporal buffer. This implies that a certain amount of compression gain can be
sacrificed to increase the maximum throughput or random accessibility.

The complexity of a compression algorithm generally increases the hardware cost by increasing
the area or reducing the feasibility of parallelism. Furthermore, random accessibility is crucial in some
multimedia scenarios; however, it affects the actual CR because of metadata information and redundant

Electronics 2020, 9, 868 5 of 16

access. Likewise, hardware area and performance such as throughput and maximum frequency, are the
main factors to consider. In this section, we define four main metrics used to evaluate the performance
of an LEC. Table 1 shows the list of concerns to consider in an LEC algorithm.

Table 1. Concerns to consider when developing lossless embedded compression (LEC).

Category Concerns

CR Is the compression ratio (CR) of the LEC sufficiently high?
Software Can processors compress and decompress the LEC to engage software?

Cost Is the implementation cost acceptable?
Overhead Is bandwidth overhead for header access reasonable?

Throughput Is the throughput of the LEC achievable in the design budget?

3.1. Compression Ratio (CR)

The CR is the most crucial metric for the LEC algorithm, since a higher CR provides a greater
chance to reduce memory bandwidth and power. The bigger the block size, the more complicated
the prediction algorithm, and more adaptive entropy encoding generally helps to achieve high CR.
In addition, efficient entropy encoding with residual values is one of the key factors for high CR.

A square block such as 16 × 16 generally shows the best CR due to high spatial locality, but higher
blocks cost more area for line memories in real-time subsystems such as camera and display. In addition,
a loop filter in video codec such as high efficiency video codec (HEVC) requires a read-and-write
operation for the below four lines by re-reading the compression result of the above block. In this
case, a 16 × 16 block shape is inefficient for the read-modify operation, thus twice accessing the
whole compressed region. Therefore, in the case of multimedia operations involving camera, display,
and codec, selecting a long horizontal block shape, such as 64 × 4, is a better choice when considering
the overall system.

Numerous prediction algorithms for image compression have been reported [22–24]. As a more
sophisticated prediction algorithm refers to more neighborhood pixels, it becomes difficult to reach
the maximum target frequency and process it in parallel. Meanwhile, a simple prediction algorithm
cannot guarantee that it can satisfy the target CR because it refers to very few pixels. In this study,
CR is defined as the equation below; a low number implies better performance from the compression
perspective. In addition, to conduct experiments with various types of real images, we purchased test
images from NHK (Nippon Hikikomori Kyokai) [25] and categorized them into five groups according
to their characteristics, as shown in Table 2.

Compression Ratio =
Compressed size

Uncompressed(Original) size
× 100(%)

Table 2. Description of test image groups [25].

Test Image Class Characteristics

A Outdoor bright images with complex textures such as leaves and grass
B Outdoor bright images with simple textures such as sky and skin
C Outdoor bright images with mid-range textures between class A and B
D Dark indoor images with complex textures such as some light sources
E Dark indoor images with simple textures

Electronics 2020, 9, 868 6 of 16

3.2. Metadata Overhead (MO)

Compressed data can be divided into payloads for encoded data and metadata for compression
information. Metadata provides information to efficiently access compressed data, which is essential for
random access. However, if the metadata is too large, even if the compression rate is large, the overall
CR may drop due to the metadata overhead. Therefore, metadata should contain concise and essential
information. The metadata overhead is defined as follows:

Header Overhead =
Metadata size f or a block
Uncompressed block size

× 100(%)

For example, if the size of metadata is 16 bytes for each 16× 16 block with an 8-bit pixel component,
the overall CR is likely to increase; however, the metadata overhead accounts for 6.25%. The reason
why large metadata size can cause higher CR is that it contains as much information as possible to
compress the data, for example, uniform color in graphic user interface (GUI) images. Meanwhile,
if the metadata is only 1 byte, then the overhead is only 0.4%. This study proposes a method to increase
random accessibility with only 0.4% of metadata overhead.

3.3. Achievable Frequency (AF)

A modern mobile CPU operates at almost 3 GHz, and a GPU operates at 1.4 GHz; NPU and
DSP usually require a frequency higher than 1 GHz. For such processors to be able to compress and
decompress the same algorithm to other multimedia accelerators, the algorithm should be as simple as
possible to meet the maximum frequency of the processors. Alternatively, other architectural designs,
such as a parallel operation for multiple blocks should also be considered, but this is not always
possible for the processors. Therefore, the achievable frequency should be 1 if the LEC algorithm is to
be applied to a specific system. In other words, if the AF metric is 0, it means that the compression
algorithm is not appropriate for the system.

3.4. Area Overhead (AO)

The total area overhead (AO) is an important metric to assess an LEC algorithm. In general,
larger block size and complexity of the algorithm provide a better CR, but this has a high cost in
terms of huge area overhead due to register slices, temporal buffers, number of reference pixels, etc.
Therefore, the unit area of an encoder and decoder engine affects the total area overhead of an LEC
implementation. In addition, the height of the block is tightly coupled to area overhead in real-time
operations such as camera and display subsystems. As the resolution increases, the number of line
memories due to the height of the LEC block significantly affects the chip area. The area overhead can
be calculated as the percentage of the total area increased by LEC support.

4. Proposed LEC

The aim of the proposed design is that all hardware accelerators are related to entire multimedia
scenarios, and general processors such as GPU and DSP support the proposed LEC algorithm.
Alternatively, very restricted paths can be used for compression, because the software cannot distinguish
whether the frame buffer is compressed or not and hence cannot reach the total memory bandwidth
requirement. The maximum target frequency is 1.4 GHz at nominal voltage, and the maximum
throughput is 64 bytes/cycle for compression and 32 bytes/cycle for decompression. Figure 2 shows the
compression and decompression flows in the proposed LEC.

Electronics 2020, 9, 868 7 of 16

Electronics 2020, 9, x FOR PEER REVIEW 7 of 16

Input Block

Pixel Unpacking

Prediction
(MED)

Entropy Encoding
(EG)

Packing

Header and
Payload

(a) Compression flow

Payload Fetch

Payload Decoding

Data Re-ordering

Output Block

(b) Decompression flow

Header Prefetch

Figure 2. (a) Compression and (b) decompression flow in proposed LEC. Abbreviations: MED,
median edge detection; EG, exponential Golomb.

4.1. Prediction

Gradient adaptive prediction (GAP) [22] tends to show higher performance than delta
modulation and median edge detection (MED) prediction [23], but its maximum frequency is limited
to a certain extent because of the number of reference neighborhood pixels, as shown in Figure 3.
According to our evaluation result, MED with LOCO-I (Low Complexity Lossless Compression for
Images) algorithm shows a similar CR as GAP and provides a better chance to enhance the critical
path by removing dependencies of neighborhood pixels. In addition, the max frequency of GAP is
under 1 GHz (actually around 800 MHz) according to our implementation. The MED algorithm refers
to four neighborhood pixels, but the prediction stage can be pipelined by grouping input pixels and
changing the order of reference pixels. With the parallelization, we can enhance the critical path and
total throughput. Therefore, we adapted the parallelized MED with LOCO-I algorithm as a prediction
method.

Given a value X in MED prediction, and its left, upper, and upper-left neighbors A, B, and C,
respectively, the prediction value is determined based on the following equation:

1. If C is greater than the maximum value out of A and B, the prediction value for X is the minimum
value out of A and B.

2. If C is smaller than or equal to the minimum value out of A and B, the prediction value for X is
the maximum value out of A and B.

3. Otherwise, the prediction value for X is A + B – C.
For boundary pixels that do not have a neighbor, MED prediction is the same as delta

modulation.

Figure 2. (a) Compression and (b) decompression flow in proposed LEC. Abbreviations: MED, median
edge detection; EG, exponential Golomb.

4.1. Prediction

Gradient adaptive prediction (GAP) [22] tends to show higher performance than delta modulation
and median edge detection (MED) prediction [23], but its maximum frequency is limited to a certain
extent because of the number of reference neighborhood pixels, as shown in Figure 3. According to our
evaluation result, MED with LOCO-I (Low Complexity Lossless Compression for Images) algorithm
shows a similar CR as GAP and provides a better chance to enhance the critical path by removing
dependencies of neighborhood pixels. In addition, the max frequency of GAP is under 1 GHz (actually
around 800 MHz) according to our implementation. The MED algorithm refers to four neighborhood
pixels, but the prediction stage can be pipelined by grouping input pixels and changing the order
of reference pixels. With the parallelization, we can enhance the critical path and total throughput.
Therefore, we adapted the parallelized MED with LOCO-I algorithm as a prediction method.

Given a value X in MED prediction, and its left, upper, and upper-left neighbors A, B, and C,
respectively, the prediction value is determined based on the following equation:

1. If C is greater than the maximum value out of A and B, the prediction value for X is the minimum
value out of A and B.

2. If C is smaller than or equal to the minimum value out of A and B, the prediction value for X is
the maximum value out of A and B.

3. Otherwise, the prediction value for X is A + B – C.

For boundary pixels that do not have a neighbor, MED prediction is the same as delta modulation.
Table 3 shows the CR comparison of four prediction algorithms with the same entropy encoding

and data packing; that is, the MED and GAP with test image classes shown in Table 2.

Electronics 2020, 9, 868 8 of 16

Electronics 2020, 9, x FOR PEER REVIEW 8 of 16

C

A

B

X

C

A

B D

XA X

(b) MED prediction (c) GAP prediction(a) DM prediction

X The current pixel

Reference pixel(s)

Figure 3. Reference pixels for each prediction algorithm. Abbreviations: DM, delta modulation; MED,
median edge detection; GAP, gradient adaptive prediction. (a) Delta modulation prediction uses one
neighborhood pixel; (b) MED prediction uses three neighborhood pixels; (c) GAP prediction uses four
neighborhood pixels.

Table 3 shows the CR comparison of four prediction algorithms with the same entropy encoding
and data packing; that is, the MED and GAP with test image classes shown in Table 2.

Table 3. CR comparison according to the prediction algorithm.

Test Image Class CR with MED (%) CR with GAP (%)
A 65.34 64.85

B 47.91 48.06

C 51.89 50.75

D 54.39 53.9

E 52.23 51.6

To increase the throughput of MED processing, we propose a per-sector decompression method
that requires three or four independent MED decompressions in a cycle, as shown in Figure 4. Due
to the shape of the block, some pixels need to be processed through delta modulation instead of MED.
By grouping up to 16 pixels and changing the order of pixels, we can achieve the desirable throughput
for MED processing. With the synthesis results shown in Table 4, we decided to use the three-step
MED because implementation of the four-step MED cannot satisfy the AF metric, even though it
might show slightly higher prediction performance because of the minimum delta modulation (DM)
predictions.

Table 4. Synthesis result of MED implementations to check achievable frequency.

Number of Steps
Max Frequency (GHz)

at 5 nm Process
1 1.4
2 1.4
3 1.4
4 1.36
5 1.03

Figure 3. Reference pixels for each prediction algorithm. Abbreviations: DM, delta modulation; MED,
median edge detection; GAP, gradient adaptive prediction. (a) Delta modulation prediction uses one
neighborhood pixel; (b) MED prediction uses three neighborhood pixels; (c) GAP prediction uses four
neighborhood pixels.

Table 3. CR comparison according to the prediction algorithm.

Test Image Class CR with MED (%) CR with GAP (%)

A 65.34 64.85
B 47.91 48.06
C 51.89 50.75
D 54.39 53.9
E 52.23 51.6

To increase the throughput of MED processing, we propose a per-sector decompression method
that requires three or four independent MED decompressions in a cycle, as shown in Figure 4. Due to
the shape of the block, some pixels need to be processed through delta modulation instead of MED.
By grouping up to 16 pixels and changing the order of pixels, we can achieve the desirable throughput
for MED processing. With the synthesis results shown in Table 4, we decided to use the three-step MED
because implementation of the four-step MED cannot satisfy the AF metric, even though it might show
slightly higher prediction performance because of the minimum delta modulation (DM) predictions.

Table 4. Synthesis result of MED implementations to check achievable frequency.

Number of Steps Max Frequency (GHz)
at 5 nm Process

1 1.4
2 1.4
3 1.4
4 1.36
5 1.03

Electronics 2020, 9, 868 9 of 16

Electronics 2020, 9, x FOR PEER REVIEW 9 of 16

(a) MED 3 step case

subsector
Sector

subsector subsector subsector

...

subsectorsubsector
Sector

base Delta
encoding

MED
Step
4

MED
Step
1

MED
Step
2

MED
Step
3

Pixel group
processed in a cycle

(b) MED 4 step case

subsector
Sector

subsector subsector subsector

...

subsectorsubsector
Sector

, ,
Figure 4. MED prediction sequence for three-step and four-step cases. (a) Three step prediction
implementation uses delta modulation at the boundary of blocks; (b) Four step prediction
implementation removes some delta modulations by referring the neighborhood block’s pixels.

4.2. Entropy Encoding

After prediction using an enhanced MED, the residual values of pixels are derived from the
prediction engine. First, because an 8-bit input pixel is between 0 and 255, the residual value is
between −255 and 255. To avoid the case that small residual value is encoded with a long code, we
adapted the following residual transform. For example, let us consider that the current pixel is 0x00
(0 in decimal) and, the previous one is 0xff (255 in decimal). If we predict the current pixel using DM,
the residual becomes −255. The transformed residual is 0x01, and the decompressed pixel value is
obtained by adding 0x01 (the transformed residual) and the previous pixel value (0xff) and then
removing the most significant byte (MSB), which is the same as 0x00.

To encode the transformed residual values, we considered run-length, quad-tree, EG [26], and

Golomb–Rice (GR) coding [27]. Out of these, run-length and quad-tree coding showed insufficient
performance, and we excluded them from our entropy encoding. However, we considered that run-
length coding can be used to encode zero values separately in MSB of the residual values, because
zero values significantly account for the MSB part of the transformed residuals as shown in Table 5.
EG encoding uses a nonnegative integer parameter k to encode more significant numbers in fewer
bits. Parameter k indicates the order of EG, and the EG algorithm exhaustively searches for the
optimal k value after encoding with several k values.

Table 5. Portion of zero values in most significant byte (MSB) of residual.

𝑠𝑖𝑔𝑛 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 7 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 𝑠𝑖𝑔𝑛? ~𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 6: 0 : 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 6: 0 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = {𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒, 𝑠𝑖𝑔𝑛}

Figure 4. MED prediction sequence for three-step and four-step cases. (a) Three step prediction
implementation uses delta modulation at the boundary of blocks; (b) Four step prediction
implementation removes some delta modulations by referring the neighborhood block’s pixels.

4.2. Entropy Encoding

After prediction using an enhanced MED, the residual values of pixels are derived from the
prediction engine. First, because an 8-bit input pixel is between 0 and 255, the residual value is between
−255 and 255. To avoid the case that small residual value is encoded with a long code, we adapted the
following residual transform. For example, let us consider that the current pixel is 0x00 (0 in decimal)
and, the previous one is 0xff (255 in decimal). If we predict the current pixel using DM, the residual
becomes −255. The transformed residual is 0x01, and the decompressed pixel value is obtained by
adding 0x01 (the transformed residual) and the previous pixel value (0xff) and then removing the most
significant byte (MSB), which is the same as 0x00.

sign = residual[7]magnitude = sign? ∼ residual[6 : 0] : residual[6 : 0]residualtrans f orm =
{
magnitude, sign

}
To encode the transformed residual values, we considered run-length, quad-tree, EG [26],

and Golomb–Rice (GR) coding [27]. Out of these, run-length and quad-tree coding showed insufficient
performance, and we excluded them from our entropy encoding. However, we considered that
run-length coding can be used to encode zero values separately in MSB of the residual values, because
zero values significantly account for the MSB part of the transformed residuals as shown in Table 5.
EG encoding uses a nonnegative integer parameter k to encode more significant numbers in fewer bits.
Parameter k indicates the order of EG, and the EG algorithm exhaustively searches for the optimal k
value after encoding with several k values.

Electronics 2020, 9, 868 10 of 16

Table 5. Portion of zero values in most significant byte (MSB) of residual.

Test Image Class Portion of Zero Values in
MSB 4-bit of Residual (%)

Portion of Zero Values in
MSB 3-bit of Residual (%)

A 79.08 92.79
B 97.00 98.95
C 94.31 97.37
D 97.41 99.30
E 98.43 99.55

Average 93.25 97.59

In EG encoding, the number of codes is the number of leading zeros plus 1 plus k, and the number
of bits for encoding is the number of leading zeros plus the number of codes. Table 6 shows an EG
encoding example according to k values.

Table 6. Exponential Golomb (EG) encoding example according to k values.

X k = 0 k = 1 k = 2 k = 3 k = 4

0 1 10 100 1000 10000
1 010 11 101 1001 10001
2 011 0100 110 1010 10010
3 00100 0101 111 1011 10011
4 00101 0110 01000 1100 10100
5 00110 0111 01001 1101 10101
6 00111 001000 01010 1110 10110
7 0001000 001001 01011 1111 10111

For lossless compression, it is assumed that the size of the compressed data is smaller than, or at
least equal to, that of the original data for a block. Therefore, if the number of payload bits for a block
is higher than the original bits, then it should be written with the uncompressed data. Otherwise,
random accessibility is not guaranteed, and the metadata should contain more information to identify
it because the block size varies. Based on this fact, if a long codeword is allocated and encoded,
the probability that a block will be processed as uncompressed data increases. Instead, by initially
restricting the type of codeword within the same k value, encoding only the least significant byte (LSB),
and processing larger values as uncompressed data, the overall CR is similar to the full codeword case.
Therefore, we decided to use restricted codeword-types with the same k value. This restriction makes
the hardware implementation much simpler than rigid implementation, which helps to increase the
overall pixel throughput.

Tables 7–10 show CR results with different k and codewords for 8-bit and 10-bit images with
GR and EG. Although the CR results seem similar, the complexity of GR is higher than EG because
more lengths of codewords are possible. According to our analysis, EG has the following advantages
compared to GR:

1. Higher CR with the same k value
2. Fewer codewords
3. Higher maximum frequency

If we use a single k value, hardware encoding and decoding become simpler, and the hardware
latency gets shorter because it does not need to parse the k value. In this regard, we adapted EG for
entropy encoding with a predefined but configurable k value.

Electronics 2020, 9, 868 11 of 16

Table 7. CR comparison with Golomb–Rice (GR) coding with different codewords for 8-bit images.

Test Image Class
(8-Bit)

CR (%) with GR
(k = 2 and 64 Codes)

CR (%) with GR
(k = 2 and 32 Codes)

CR (%) with GR
(k = 2 and 24 Codes)

CR (%) with GR
(k = 2 and 16 Codes)

A 71.92 72.41 72.9 74.97
B 54.04 54.37 54.67 55.59
C 56.67 57.44 58.17 60.09
D 54.17 54.91 55.64 57.76
E 51.76 52.03 52.4 53.28

Average 57.71 58.23 58.76 60.34

Table 8. CR comparison with EG with different codewords for 8-bit images.

Test Image Class
(8-Bit)

CR (%) with EG
(k = 1 and 8 Codes)

CR (%) with EG
(k = 2 and 7 Codes)

CR (%) with EG
(k = 3 and 6 Codes)

CR (%) with EG
(k = 4 and 5 Codes)

A 73.71 70.71 71.64 78.12
B 54.53 54.42 63.8 75.6
C 55.42 56.29 64.86 75.99
D 55.98 55.84 63.53 75.4
E 52.64 52.67 63.15 75.43

Average 58.46 57.99 65.4 76.11

Table 9. CR comparison with GR with different codewords for 10-bit images.

Test Image Class
(10-Bit)

CR (%) with GR
(k = 2 and 64 Codes)

CR (%) with GR
(k = 3 and 32 Codes)

CR (%) with GR
(k = 4 and 16 Codes)

CR (%) with GR
(k = 5 and 8 Codes)

A 90.93 82.74 77.24 76.03
B 66.96 59.25 62.86 70.95
C 70.62 64.21 64.89 71.72
D 73.73 63.78 63.1 70.57
E 67.29 59.64 61.31 70.49

Average 73.91 65.92 65.88 71.95

Table 10. CR comparison with EG with different codewords for 10-bit images.

Test Image Class
(10-Bit)

CR (%) with EG
(k = 2 and 7 Codes)

CR (%) with EG
(k = 3 and 6 Codes)

CR (%) with EG
(k = 4 and 5 Codes)

CR (%) with EG
(k = 5 and 4 Codes)

A 82.85 79.21 76.9 77.75
B 64.44 63.4 63.6 71.2
C 64.84 64.07 65.14 72.04
D 66.88 64.55 64.66 70.87
E 64.04 61.96 62.11 70.55

Average 68.61 66.64 66.48 72.48

4.3. Metadata/Payload Structure

To minimize the metadata overhead, we propose 1-byte metadata that contains only the amount of
data for the compressed block. The metadata indicates how many bytes the compressed data occupies.
For example, if metadata is 1, then the compressed data is 32 bytes after compression when the basic
unit is 32 bytes. If metadata is 0, then the block is not compressed.

For random access, a block size of 64 × 4 is too large to reduce the access overhead. Therefore,
we define a partial encoding to minimize the access overhead during random access, as shown in
Figure 5b. In partial mode, the superblock is 64 × 4 in size, whereas the subblock is 32 × 4 and the
whole superblock is composed of two subblocks. The LSB 4-bit and MSB 4-bit metadata identify the
sizes of subblock0 and superblock, respectively. The size of subblock1 can be calculated by subtracting
LSB 4-bit from MSB 4-bit.

Electronics 2020, 9, 868 12 of 16

Electronics 2020, 9, x FOR PEER REVIEW 12 of 16

sizes of subblock0 and superblock, respectively. The size of subblock1 can be calculated by
subtracting LSB 4-bit from MSB 4-bit.

Sub-block 0 Sub-block1

64

4

64

4

(a) 64 × 4 encoding case

(b) 32 × 4 partial encoding case

1 byte

4-bit 4-bit

The size of sub-block0 The size of super-block

Figure 5. Metadata structure: (a) 64 × 4 encoding case; (b) 32 × 4 encoding case

Figure 6 illustrates the payload structure. It contains a k value and EG encoded data. As
mentioned above, if the encoded data exceeds the original size, it is marked as an uncompressed
block, and the original data is written as is. In addition, if a partial update is necessary, some specific
blocks can be written in uncompressed data, which is very useful for boundary processing.

Entropy k

2-bit

Pixel 0

Variable

Pixel 1 Pixel N-1 Zero padding

Variable

Figure 6. Payload structure.

Figure 7 shows the metadata and payload layout of the proposed LEC algorithm. Since the
positions of the metadata and payload are deterministic, the metadata can be pre-fetched into a buffer
and the payload can also be pre-fetched when the metadata is not available, but the IP (Intellectual
Property) is sensitive to latency immunity. However, the payload should generally be fetched
according to the metadata information to reduce memory bandwidth.

128 pixels

32
lines

4
64

64x4

After compression,
Y Plane Payload buffer

Y plane of YUV 128x32
uncompressed image

YYYY...

CR

50%

100%

25%

50%

8'h26 8'h0 …...

Metadata

64x4

64x4

64x4

Total payload size
(4'h2 = 128bytes)

Sub-block0 payload size
(4'h5 = 40byte)

compression

After compression,
Y Plane Header buffer

8'h14 8'h25 Metadata

Figure 7. Metadata and payload layout of proposed LEC.

Figure 5. Metadata structure: (a) 64 × 4 encoding case; (b) 32 × 4 encoding case.

Figure 6 illustrates the payload structure. It contains a k value and EG encoded data. As mentioned
above, if the encoded data exceeds the original size, it is marked as an uncompressed block, and the
original data is written as is. In addition, if a partial update is necessary, some specific blocks can be
written in uncompressed data, which is very useful for boundary processing.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 16

sizes of subblock0 and superblock, respectively. The size of subblock1 can be calculated by
subtracting LSB 4-bit from MSB 4-bit.

Sub-block 0 Sub-block1

64

4

64

4

(a) 64 × 4 encoding case

(b) 32 × 4 partial encoding case

1 byte

4-bit 4-bit

The size of sub-block0 The size of super-block

Figure 5. Metadata structure: (a) 64 × 4 encoding case; (b) 32 × 4 encoding case

Figure 6 illustrates the payload structure. It contains a k value and EG encoded data. As
mentioned above, if the encoded data exceeds the original size, it is marked as an uncompressed
block, and the original data is written as is. In addition, if a partial update is necessary, some specific
blocks can be written in uncompressed data, which is very useful for boundary processing.

Entropy k

2-bit

Pixel 0

Variable

Pixel 1 Pixel N-1 Zero padding

Variable

Figure 6. Payload structure.

Figure 7 shows the metadata and payload layout of the proposed LEC algorithm. Since the
positions of the metadata and payload are deterministic, the metadata can be pre-fetched into a buffer
and the payload can also be pre-fetched when the metadata is not available, but the IP (Intellectual
Property) is sensitive to latency immunity. However, the payload should generally be fetched
according to the metadata information to reduce memory bandwidth.

128 pixels

32
lines

4
64

64x4

After compression,
Y Plane Payload buffer

Y plane of YUV 128x32
uncompressed image

YYYY...

CR

50%

100%

25%

50%

8'h26 8'h0 …...

Metadata

64x4

64x4

64x4

Total payload size
(4'h2 = 128bytes)

Sub-block0 payload size
(4'h5 = 40byte)

compression

After compression,
Y Plane Header buffer

8'h14 8'h25 Metadata

Figure 7. Metadata and payload layout of proposed LEC.

Figure 6. Payload structure.

Figure 7 shows the metadata and payload layout of the proposed LEC algorithm. Since the
positions of the metadata and payload are deterministic, the metadata can be pre-fetched into a buffer
and the payload can also be pre-fetched when the metadata is not available, but the IP (Intellectual
Property) is sensitive to latency immunity. However, the payload should generally be fetched according
to the metadata information to reduce memory bandwidth.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 16

sizes of subblock0 and superblock, respectively. The size of subblock1 can be calculated by
subtracting LSB 4-bit from MSB 4-bit.

Sub-block 0 Sub-block1

64

4

64

4

(a) 64 × 4 encoding case

(b) 32 × 4 partial encoding case

1 byte

4-bit 4-bit

The size of sub-block0 The size of super-block

Figure 5. Metadata structure: (a) 64 × 4 encoding case; (b) 32 × 4 encoding case

Figure 6 illustrates the payload structure. It contains a k value and EG encoded data. As
mentioned above, if the encoded data exceeds the original size, it is marked as an uncompressed
block, and the original data is written as is. In addition, if a partial update is necessary, some specific
blocks can be written in uncompressed data, which is very useful for boundary processing.

Entropy k

2-bit

Pixel 0

Variable

Pixel 1 Pixel N-1 Zero padding

Variable

Figure 6. Payload structure.

Figure 7 shows the metadata and payload layout of the proposed LEC algorithm. Since the
positions of the metadata and payload are deterministic, the metadata can be pre-fetched into a buffer
and the payload can also be pre-fetched when the metadata is not available, but the IP (Intellectual
Property) is sensitive to latency immunity. However, the payload should generally be fetched
according to the metadata information to reduce memory bandwidth.

128 pixels

32
lines

4
64

64x4

After compression,
Y Plane Payload buffer

Y plane of YUV 128x32
uncompressed image

YYYY...

CR

50%

100%

25%

50%

8'h26 8'h0 …...

Metadata

64x4

64x4

64x4

Total payload size
(4'h2 = 128bytes)

Sub-block0 payload size
(4'h5 = 40byte)

compression

After compression,
Y Plane Header buffer

8'h14 8'h25 Metadata

Figure 7. Metadata and payload layout of proposed LEC. Figure 7. Metadata and payload layout of proposed LEC.

Electronics 2020, 9, 868 13 of 16

5. Performance Evaluation and Implementation

5.1. Performance Evaluation with the Proposed Metrics

For the performance evaluation, we compared three LEC algorithms in commercial AP products
with the performance metrics shown in Section 3. Due to confidentiality issues, we cannot expose
exactly. The first commercial LEC algorithm shows the best performance in area overhead; however,
it cannot reach the achievable frequency metric and shows the worst CR. The second commercial
LEC algorithm satisfies AF, but CR and AO are not competent. The proposed LEC algorithm shows
better performance in every metric, except area overhead. The pipelined MED algorithm and two
encoding methods according to MSB and LSB partitioning, enhance overall CR, keeping hardware
reasonably simple. Moreover, the efficient metadata information shows the lower metadata overhead.
As the minimum access unit is 32 bytes or 64 bytes in modern mobile chips due to multi-rank memory
systems with high bandwidth, we calculated CR in the 64-byte minimum access case.

As shown in Table 11, the proposed LEC algorithm has the best performance in CR and metadata
overhead. In addition, it meets the achievable frequency that targets 1.4 GHz. Even though the area
overhead is worse than algorithm 1, algorithm 1 is not feasible for the target system, because the
achievable frequency metric is not satisfied.

Table 11. Performance comparison according to the proposed metrics.

Metrics Commercial LEC
Algorithm 1

Commercial LEC
Algorithm 2

Proposed LEC
Algorithm

CR average (%) 71.8 71.2 62.0
CR min (%) 64.5 62.4 56.3
CR max (%) 81.9 83.4 73.8

Metadata overhead (MO) (%) 6.25 0.4 0.4
Achievable frequency (AF) 0 1 1

Area overhead (AO) (%) 2.03 8.21 4.05

5.2. Implementation Results

Figures 8 and 9 show the proposed LEC compression and decompression engines. Each hardware
accelerator uses them in its way. For example, as the scan order is fixed in the display panel side,
a display controller and a camera interface, which are representative real-time IPs, need four-line
memories to decompress and a huge metadata buffer to pre-fetch metadata. As another example,
codec utilizes random access to perform motion estimation and is very sensitive to memory latency;
therefore, it should sometimes pre-fetch the payload data even when the metadata is not ready. It has
huge metadata and payload caches to reuse them.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 16

5. Performance Evaluation and Implementation

5.1. Performance Evaluation with the Proposed Metrics

For the performance evaluation, we compared three LEC algorithms in commercial AP products
with the performance metrics shown in Section 3. Due to confidentiality issues, we cannot expose
exactly. The first commercial LEC algorithm shows the best performance in area overhead; however,
it cannot reach the achievable frequency metric and shows the worst CR. The second commercial LEC
algorithm satisfies AF, but CR and AO are not competent. The proposed LEC algorithm shows better
performance in every metric, except area overhead. The pipelined MED algorithm and two encoding
methods according to MSB and LSB partitioning, enhance overall CR, keeping hardware reasonably
simple. Moreover, the efficient metadata information shows the lower metadata overhead. As the
minimum access unit is 32 bytes or 64 bytes in modern mobile chips due to multi-rank memory
systems with high bandwidth, we calculated CR in the 64-byte minimum access case.

As shown in Table 11, the proposed LEC algorithm has the best performance in CR and metadata
overhead. In addition, it meets the achievable frequency that targets 1.4 GHz. Even though the area
overhead is worse than algorithm I, algorithm I is not feasible for the target system, because the
achievable frequency metric is not satisfied.

Table 11. Performance comparison according to the proposed metrics.

Metrics Commercial LEC
Algorithm I

Commercial LEC
Algorithm II

Proposed LEC
Agorithm

CR average (%) 71.8 71.2 62.0
CR min (%) 64.5 62.4 56.3
CR max (%) 81.9 83.4 73.8

Metadata overhead
(MO) (%) 6.25 0.4

0.4

Achievable frequency
(AF)

0 1 1

Area overhead (AO) (%) 2.03 8.21 4.05

5.2. Implementation Results

Figures 8 and 9 show the proposed LEC compression and decompression engines. Each
hardware accelerator uses them in its way. For example, as the scan order is fixed in the display panel
side, a display controller and a camera interface, which are representative real-time IPs, need four-line
memories to decompress and a huge metadata buffer to pre-fetch metadata. As another example,
codec utilizes random access to perform motion estimation and is very sensitive to memory latency;
therefore, it should sometimes pre-fetch the payload data even when the metadata is not ready. It has
huge metadata and payload caches to reuse them.

ENCODER

IP R
eq I/F

LowPixelReg

IP Pixel I/F

UpperPixelReg

InputBuffer

BufferCtrl

MED_TOP BitCounter
Est.

Residual

K
_V

A
LU

E

EG_ENCODER

PAYLOAD
PACKING

BestK

MetadataGenBitCount

Payload I/F
M

etadata O
ut I/F

Block1 Block0

ForceUncompress

Info

MED

Residual

P2

Reg

P0 P1

Figure 8. Proposed LEC compression engine. Figure 8. Proposed LEC compression engine.

Electronics 2020, 9, 868 14 of 16

Electronics 2020, 9, x FOR PEER REVIEW 14 of 16

For the decompression side, each hardware accelerator can have metadata and payload access
patterns as well as memory structure for the dedicated efficient storage to pre-fetch them. After pre-
fetching the metadata, the hardware decides how many bursts it should request according to the
metadata value. Furthermore, it reads the exact amount of payload data from memory and feeds the
payload to the decompression engine.

DECODER

EG_DECODER

Payload I/F

OutputBuffer

Block1 Block0

IP Pixel I/F

.

Figure 9. Proposed LEC decompression engine.

Table 12 shows the implementation result of the compression and decompression engines. The
pipelined MED prediction (Figure 4) and a simplified encoding method achieve the target frequency
of 1.4 GHz. The compression and decompression engines are integrated with each hardware
accelerator and processor, so that the total area overhead is about 4.05%, as shown in Table 12.

Table 12. Implementation results.

Condition Compression Engine Decompression Engine
Area (mm2) at 5 nm process 0.0047 0.0037

Max frequency at nominal voltage 1.4 GHz 1.4 GHz

6. Conclusion

We present essential metrics to assess the LEC algorithm, show efficient encoding for metadata
and payload, and propose an optimized LEC implementation for the most recent mobile multimedia
scenarios. For GPU and DSP to support the same LEC algorithm in software IP, the algorithm should
reach the target frequency and throughput. In addition, since the latest memory systems usually have
a minimum burst length due to multiple bank structures to maximize utilization, the CR value is
inevitably quantized to the minimum burst length. In this regard, the adequately simplified LEC
algorithm can show improved performance over the complicated algorithm only for the best CR in
the realistic metrics presented in this paper. The proposed algorithm enhances the actual CR of the
LEC algorithm in a commercial chip up to 9.2% on average, while being able to keep the complexity
to meet the timing closure condition.

For future work, a centralized LEC implementation is an exciting topic of research. After the
memory management unit, since the address exists in the physical address space and the block data
should be gathered to a certain point, the centralized LEC implementation does not seem to be
beneficial. However, from an area perspective, the centralized LEC can give a better option than the
distributed LEC implementation if the above-mentioned issues are resolved.

7. Patents

Jun, S.H. and Lim, Y.H., Samsung Electronics Co. Ltd. 2019. Image processing device and
method for operating image processing device. U.S. Patent Application 16/205,900.

Jun, S.H., Park, C.S., Song, M.K., Lee, K.K., Lee, K.W., Jang, H.J., and Jeong, K.A., Samsung
Electronics Co. Ltd. 2019. Image processing device. U.S. Patent Application 16/252,806.

Jun, S.H. and Lim, Y.H., Samsung Electronics Co. Ltd. 2019. Image processing device. U.S. Patent
Application 16/252,796.

Figure 9. Proposed LEC decompression engine.

For the decompression side, each hardware accelerator can have metadata and payload access
patterns as well as memory structure for the dedicated efficient storage to pre-fetch them. After
pre-fetching the metadata, the hardware decides how many bursts it should request according to the
metadata value. Furthermore, it reads the exact amount of payload data from memory and feeds the
payload to the decompression engine.

Table 12 shows the implementation result of the compression and decompression engines.
The pipelined MED prediction (Figure 4) and a simplified encoding method achieve the target
frequency of 1.4 GHz. The compression and decompression engines are integrated with each hardware
accelerator and processor, so that the total area overhead is about 4.05%, as shown in Table 12.

Table 12. Implementation results.

Condition Compression Engine Decompression Engine

Area (mm2) at 5 nm process 0.0047 0.0037
Max frequency at nominal voltage 1.4 GHz 1.4 GHz

6. Conclusions

We present essential metrics to assess the LEC algorithm, show efficient encoding for metadata
and payload, and propose an optimized LEC implementation for the most recent mobile multimedia
scenarios. For GPU and DSP to support the same LEC algorithm in software IP, the algorithm should
reach the target frequency and throughput. In addition, since the latest memory systems usually
have a minimum burst length due to multiple bank structures to maximize utilization, the CR value
is inevitably quantized to the minimum burst length. In this regard, the adequately simplified LEC
algorithm can show improved performance over the complicated algorithm only for the best CR in the
realistic metrics presented in this paper. The proposed algorithm enhances the actual CR of the LEC
algorithm in a commercial chip up to 9.2% on average, while being able to keep the complexity to meet
the timing closure condition.

For future work, a centralized LEC implementation is an exciting topic of research. After the
memory management unit, since the address exists in the physical address space and the block
data should be gathered to a certain point, the centralized LEC implementation does not seem to be
beneficial. However, from an area perspective, the centralized LEC can give a better option than the
distributed LEC implementation if the above-mentioned issues are resolved.

7. Patents

Jun, S.H. and Lim, Y.H., Samsung Electronics Co. Ltd. 2019. Image processing device and method
for operating image processing device. U.S. Patent Application 16/205,900.

Jun, S.H., Park, C.S., Song, M.K., Lee, K.K., Lee, K.W., Jang, H.J., and Jeong, K.A., Samsung
Electronics Co. Ltd. 2019. Image processing device. U.S. Patent Application 16/252,806.

Jun, S.H. and Lim, Y.H., Samsung Electronics Co. Ltd. 2019. Image processing device. U.S. Patent
Application 16/252,796.

Electronics 2020, 9, 868 15 of 16

Author Contributions: Conceptualization, S.J. and H.J.; software, S.J. and H.J.; investigation, S.Y., Y.C., and K.L.;
writing—original draft preparation, S.Y.; writing—review and editing, T.H.H. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by Samsung Electronics.

Acknowledgments: This work was partly supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2019-0-00421, AI Graduate
School Support Program (Sungkyunkwan University)) and the KSRC (Korea Semiconductor Research Consortium)
grant funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) (No. 10080594, The development of the
future semiconductor device).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Snapdragon 865 Features Detailed. Available online: https://wccftech.com/qualcomm-snapdragon-865-
features-200mp-cameras-144hz-displays-8k-video-support/ (accessed on 2 February 2020).

2. Furtunato, A.F.; Georgiou, K.; Eder, K.; Xavier-de-Souza, S. When parallel speedups hit the memory wall.
arXiv 2019, arXiv:1905.01234.

3. Sun, X.H.; Liu, Y.H. Utilizing Concurrency: A New Theory for Memory Wall. In International Workshop on
Languages and Compilers for Parallel Computing; Springer: Cham, Switzerland, 2016; pp. 18–23.

4. Bratt, I. The arm mali-t880 mobile gpu. In Proceedings of the 2015 IEEE Hot Chips 27 Symposium (HCS),
Cupertino, CA, USA, 22–25 August 2015; pp. 1–27.

5. Seongil, O.; Son, Y.H.; Kim, N.S.; Ahn, J. Row-buffer decoupling: A case for low-latency DRAM
microarchitecture. In Proceedings of the 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, USA, 14–18 June 2014; pp. 337–348.

6. Asghari-Moghaddam, H.; Son, Y.H.; Ahn, J.H.; Kim, N.S. Chameleon: Versatile and practical near-DRAM
acceleration architecture for large memory systems. In Proceedings of the 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, 15–19 October 2016; pp. 1–13.

7. Pedram, A.; Richardson, S.; Horowitz, M.; Galal, S.; Kvatinsky, S. Dark memory and accelerator-rich system
optimization in the dark silicon era. IEEE Des. Test 2016, 34, 39–50. [CrossRef]

8. Kanduri, A.; Rahmani, A.M.; Liljeberg, P.; Hemani, A.; Jantsch, A.; Tenhunen, H. A perspective on dark
silicon. In The Dark Side of Silicon; Springer: Cham, Switzerland, 2017; pp. 3–20.

9. Tang, S.; Tan, H.; Li, L. A novel memory compression technique for embedded system. In Proceedings of
the 2012 Second International Conference on Digital Information and Communication Technology and it’s
Applications (DICTAP), Bangkok, Thailand, 16–18 May 2012; pp. 287–292.

10. Pekhimenko, G.; Mowry, T.C.; Mutlu, O. Linearly compressed pages: A main memory compression
framework with low complexity and low latency. In Proceedings of the 2013 21st International Conference
on Parallel Architectures and Compilation Techniques (PACT), Davis, CA, USA, 7–11 December 2013; p. 489.

11. Mittal, S.; Vetter, J.S. A survey of architectural approaches for data compression in cache and main memory
systems. IEEE Trans. Parallel Distrib. Syst. 2015, 27, 1524–1536. [CrossRef]

12. Klimovic, A.; Anderson, J.H. Bitwidth-optimized hardware accelerators with software fallback. In Proceedings
of the 2013 International Conference on Field-Programmable Technology (FPT), Kyoto, Japan, 9–11 December
2013; pp. 136–143.

13. Renderscript | Android Open Source Project. Available online: https://source.android.com/devices/architecture/

vndk/renderscript (accessed on 22 March 2020).
14. Zhou, X.; Lian, X.; Zhou, W.; Liu, Z.; Zhang, X. A low power lossy frame memory recompression algorithm.

In Proceedings of the 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference (APSIPA), Jeju, Korea, 13–16 December 2016; pp. 1–4.

15. Guo, L.; Zhou, D.; Zhou, J.; Kimura, S. Embedded frame compression for energy-efficient computer vision
systems. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS),
Florence, Italy, 27–30 May 2018; pp. 1–5.

16. Guo, L.; Zhou, D.; Zhou, J.; Kimura, S.; Goto, S. Lossy compression for embedded computer vision systems.
IEEE Access 2018, 6, 39385–39397. [CrossRef]

17. Lian, X.; Liu, Z.; Zhou, W.; Duan, Z. Lossless frame memory compression using pixel-grain prediction and
dynamic order entropy coding. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 223–235. [CrossRef]

https://wccftech.com/qualcomm-snapdragon-865-features-200mp-cameras-144hz-displays-8k-video-support/
https://wccftech.com/qualcomm-snapdragon-865-features-200mp-cameras-144hz-displays-8k-video-support/
http://dx.doi.org/10.1109/MDAT.2016.2573586
http://dx.doi.org/10.1109/TPDS.2015.2435788
https://source.android.com/devices/architecture/vndk/renderscript
https://source.android.com/devices/architecture/vndk/renderscript
http://dx.doi.org/10.1109/ACCESS.2018.2852809
http://dx.doi.org/10.1109/TCSVT.2015.2469572

Electronics 2020, 9, 868 16 of 16

18. Wang, Z.; Hou, Z.; Hu, R.; Xiao, J. A lossless recompression approach for video streaming transmission.
IEEE Access 2019, 7, 35162–35172. [CrossRef]

19. Li, S.; Yin, H.; Fang, X.; Lu, H. Lossless image compression algorithm and hardware architecture for
bandwidth reduction of external memory. IET Image Proc. 2017, 11, 379–388. [CrossRef]

20. Kanakagiri, R.; Panda, B.; Mutyam, M. MBZip: Multiblock data compression. ACM Trans. Archit. Code Optim.
2017, 14, 1–29. [CrossRef]

21. Lal, S.; Lucas, J.; Juurlink, B. E2MC: Entropy Encoding Based Memory Compression for GPUs. In Proceedings
of the IEEE International Parallel and Distributed Processing Symposium (IPDPS), Orlando, FL, USA, 29
May–2 June 2017; pp. 1119–1128.

22. Wu, X.; Memon, N. Context-based, adaptive, lossless image coding. IEEE Trans. Commun. 1997, 45, 437–444.
[CrossRef]

23. Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and
standardization into JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [CrossRef] [PubMed]

24. Li, X.; Orchard, M.T. Edge-directed prediction for lossless compression of natural images. IEEE Tran.
Image Process. 2001, 10, 813–817.

25. ITE/ARIB HDTV Test Materials—Second Edition B-Series. Available online: http://www.nes.or.jp/en/wwd/

distribution.html (accessed on 2 February 2020).
26. Exponential-Golomb Coding. Available online: https://en.wikipedia.org/wiki/Exponential-Golomb_coding

(accessed on 2 February 2020).
27. Golomb Coding. Available online: https://en.wikipedia.org/wiki/Golomb_coding (accessed on 2 February 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2902227
http://dx.doi.org/10.1049/iet-ipr.2016.0636
http://dx.doi.org/10.1145/3151033
http://dx.doi.org/10.1109/26.585919
http://dx.doi.org/10.1109/83.855427
http://www.ncbi.nlm.nih.gov/pubmed/18262969
http://www.nes.or.jp/en/wwd/distribution.html
http://www.nes.or.jp/en/wwd/distribution.html
https://en.wikipedia.org/wiki/Exponential-Golomb_coding
https://en.wikipedia.org/wiki/Golomb_coding
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Data Compression for Cache and Memory Systems
	Lossy Compression for Bandwidth and Footprint Reduction
	Lossless Compression for Bandwidth Reduction in Multimedia Environments

	Metrics for LEC Evaluation
	Compression Ratio (CR)
	Metadata Overhead (MO)
	Achievable Frequency (AF)
	Area Overhead (AO)

	Proposed LEC
	Prediction
	Entropy Encoding
	Metadata/Payload Structure

	Performance Evaluation and Implementation
	Performance Evaluation with the Proposed Metrics
	Implementation Results

	Conclusions
	Patents
	References

