
electronics

Article

A Multi-Objective Trajectory Planning Method for
Collaborative Robot

Jiangyu Lan 1 , Yinggang Xie 1,*, Guangjun Liu 2 and Manxin Cao 1

1 School of Information and Communication Engineering, Beijing Information Science and Technology
University, Beijing 100101, China; lanjiangyu@mail.bistu.edu.cn (J.L.); cao_mx@mail.bistu.edu.cn (M.C.)

2 Department of Aerospace Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada; gjliu@ryerson.ca
* Correspondence: xieyinggang@bistu.edu.cn

Received: 22 April 2020; Accepted: 18 May 2020; Published: 22 May 2020
����������
�������

Abstract: Aiming at the characteristics of high efficiency and smoothness in the motion process
of collaborative robot, a multi-objective trajectory planning method is proposed. Firstly, the
kinematics model of the collaborative robot is established, and the trajectory in the workspace
is converted into joint space trajectory using inverse kinematics method. Secondly, seven-order
B-spline functions are used to construct joint trajectory sequences to ensure the continuous position,
velocity, acceleration and jerk of each joint. Then, the trajectory competitive multi-objective particle
swarm optimization (TCMOPSO) algorithm is proposed to search the Pareto optimal solutions set of
the robot’s time-energy-jerk optimal trajectory. Further, the normalized weight function is proposed
to select the appropriate solution. Finally, the algorithm simulation experiment is completed in
MATLAB, and the robot control experiment is completed using the Robot Operating System (ROS).
The experimental results show that the method can achieve effective multi-objective optimization,
the appropriate optimal trajectory can be obtained according to the actual requirements, and the
collaborative robot is actually operating well.

Keywords: collaborative robot; trajectory planning; B-spline; multi-objective optimization

1. Introduction

Industrial robots have been used widely in industrial production fields. However, with the
development of society, traditional industrial robots have been unable to meet people’s needs for safe
collaboration and flexible deployment. Robots are required to handle more complex tasks and have
more flexible and precise performance [1]. Collaborative robot (cobot) is one of the most popular
research directions in the field of robotics [2]. Compared with traditional industrial robots working in
fences, collaborative robots can work together with humans and complete various complex tasks in
more scenes [3]. Therefore, collaborative robots need to meet two requirements: (1) higher operate
efficiency and smooth motion to adapt to the requirements of various complex tasks; (2) a simpler and
faster trajectory planning method to facilitate human-robot collaboration.

Trajectory planning refers to planning the trajectory of end-effector and joints of the robot in
order to generate the reference input of the control system [4]. Firstly, the robot uses the interpolation
algorithm to establish the time-trajectory sequence of each axis, including the trajectory position,
speed, acceleration and jerk information. Then, under the constraints of kinematic performance of the
robot, trajectory optimization is performed for efficiency, energy consumption, smoothness and other
factors [5]. Different optimization schemes are selected according to the actual task situation.

In the research of trajectory interpolation, early researchers proposed a quintic polynomial
interpolation method [6] for trajectory interpolation. This method has a small amount of calculation,
but it is prone to distortion. With the enhancement of hardware performance, researchers began to

Electronics 2020, 9, 859; doi:10.3390/electronics9050859 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-1658-3672
http://dx.doi.org/10.3390/electronics9050859
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/5/859?type=check_update&version=2

Electronics 2020, 9, 859 2 of 18

use spline curve to do robot trajectory planning. Alessandro et al. [7] proposed a trajectory planning
method of cubic spline curve. This algorithm has fewer constraints and a faster calculation speed,
but the acceleration curve has jitter, resulting in greater wear of the robot. Kong et al. [8] proposed
cubic b-spline trajectory interpolation, the trajectory curve is relatively smooth, but the initial and
final acceleration and jerk cannot be specified by themselves. Kong et al. [8] proposed a cubic b-spline
trajectory interpolation method, which obtained a relatively smooth trajectory curve, but could not
independently specify the initial and final values of acceleration and jerk.

In the research of trajectory optimization, researchers mainly focus on the optimization of
time, energy consumption, and smoothness [9]. Xidias et al. [10] used a genetic algorithm with
multiple populations to perform time-optimal trajectory planning for super-redundant manipulators.
Luo et al. [11] used Lagrange interpolation and iterative methods for energy optimal trajectory planning.
Lin et al. [12] used particle swarm optimization and clustering algorithms for jerk optimal trajectory
planning. However, the above single-objective trajectory optimization is difficult to meet the application
requirements of complex situations, many researchers begin to pay attention to multi-objective trajectory
optimization. The traditional method transforms the multi-objective problem into the single-objective
problem, and then uses the single-objective optimization method. Gasparetto et al. [13] transformed
the time-jerk objective into a single objective using weight coefficients, and used sequence quadratic
programming (SQP) to achieve trajectory optimization. However, this method is difficult to distribute
weights reasonably, the diversity of solutions is insufficient, and it may fall into a local optimal
solution. For the above problems, multi-objective evolutionary algorithm is an effective method. The
multi-objective optimization algorithm can simultaneously optimize multiple objectives to obtain a set
of Pareto optimal solutions, and then select the appropriate solution according to the specific situation.
In Reference [14], the NSGA-II algorithm was used to obtain a set of Pareto optimal solutions, and an
appropriate solution was selected for trajectory optimization.

Based on the above research, this paper proposed a simple and effective multi-objective trajectory
planning method. In this paper, the higher-order B-spline interpolation method is chosen to replace the
traditional interpolation method, so that the planned trajectory is smoother. Then, we selected three
crucial objectives in the operation of the robot, and used the improved multi-objective optimization
algorithm proposed in this paper to obtain the Pareto optimal solution set. For different scenarios
(such as human-robot collaboration), this paper proposed the normalized weight function that can set
different weight coefficients and select the most appropriate solution in the optimal solution set. Finally,
in order to verify the effect of the method, we designed a trajectory editing software and imported the
optimized trajectory into ROS system for actual control of the robot. The experimental results show
that the obtained trajectory can make the robot run well. And the method can be easily used in various
types of robot manipulators.

The rest of the paper is organized as follows. Section 2 conducts kinematic analysis of collaborative
robots. Section 3 constructs a time-energy-jerk optimization mathematical model, uses seven-order
B-spline functions for joint trajectory interpolation, and designs trajectory competitive multi-objective
particle swarm optimization (TCMOPSO) for trajectory optimization. Section 4 completes the
experiment of multi-objective trajectory planning. Section 5 is the summary and prospect of the work.

2. Kinematics Analysis of Collaborative Robot

2.1. Collaborative Robot Modeling

This section models the collaborative robot AUBO-I5 in the laboratory and performs forward and
inverse kinematic analysis. AUBO-I5 [15] is a lightweight collaborative robot with six rotating joints,
including base, shoulder, elbow and three wrist joints. The structure and dimensions of the robot are
shown in Figure 1.

Electronics 2020, 9, 859 3 of 18
Electronics 2020, 9, x FOR PEER REVIEW 3 of 18

 92
Figure 1. AUBO-I5 structure diagram. 93

The modified Denavit–Hartenberg (DH) method [16] was used to establish the kinematics model 94
of the robot, as shown in Table 1. 95

Table 1. Modified DH parameters. 96

Link i ି࢏ࢇ૚ (mm) ି࢏ࢻ૚ (°) ࢏ࢊ (mm) ࢏ࣂ (°) Range (°)
 ଵ ±175ߠ 98.5 0 0 1
 ଶ ±175ߠ 121.5 90− 0 2
 ଷ ±175ߠ 0 180 408 3
 ସ ±175ߠ 0 180 376 4
 ହ ±175ߠ 102.5 90− 0 5
 ଺ ±175ߠ 94 90 0 6

In addition, in order to ensure that the performance index of the robot is met during operation, 97
the kinematic constraints of each joint of the robot are given, as shown in Table 2. 98

Table 2. Kinematic constraints. 99

Link i ࢞ࢇ࢓࢜/((°)·ି࢙૚) ࢞ࢇ࢓ࢇ/((°)·ି࢙૛) ࢞ࢇ࢓࢐/((°)·ି࢙૜) ࢞ࢇ࢓࣎/(N·m)
1 148 1480 5920 376
2 148 1480 5920 376
3 148 1480 5920 376
4 178 1780 7120 66
5 178 1780 7120 66
6 178 1780 7120 66

The robot toolbox [17] in MATLAB was used to model aubo-i5, as shown in Figure 2. 100

Figure 1. AUBO-I5 structure diagram.

The modified Denavit–Hartenberg (DH) method [16] was used to establish the kinematics model
of the robot, as shown in Table 1.

Table 1. Modified DH parameters.

Link i ai−1 (mm) αi−1 (◦) di (mm) θi (◦) Range (◦)

1 0 0 98.5 θ1 ±175
2 0 −90 121.5 θ2 ±175
3 408 180 0 θ3 ±175
4 376 180 0 θ4 ±175
5 0 −90 102.5 θ5 ±175
6 0 90 94 θ6 ±175

In addition, in order to ensure that the performance index of the robot is met during operation,
the kinematic constraints of each joint of the robot are given, as shown in Table 2.

Table 2. Kinematic constraints.

Link i vmax/((◦)·s−1) amax/((◦)·s−2) jmax/((◦)·s−3) τmax/(N·m)

1 148 1480 5920 376
2 148 1480 5920 376
3 148 1480 5920 376
4 178 1780 7120 66
5 178 1780 7120 66
6 178 1780 7120 66

The robot toolbox [17] in MATLAB was used to model aubo-i5, as shown in Figure 2.

Electronics 2020, 9, 859 4 of 18
Electronics 2020, 9, x FOR PEER REVIEW 4 of 18

 101
Figure 2. Robot model in MATLAB. 102

2.2. Forward Kinematics Analysis 103
Forward kinematics is to obtain the end-effector pose relative to the base using the geometric 104

parameters and joint coordinates of the robot. According to the relative relation between link i and 105
link i + 1 of the robot, its relative pose is expressed by 4 × 4 transformation matrix. Using the improved 106
DH parameters in Table 1, the transformation matrix of each link can be obtained as follows, 107

ܶଵ଴ = ቎ܿଵ ଵݏଵݏ− ܿଵ 0 00 00 00 0 1 ݀ଵ0 1 ቏ ܶଶଵ = ൦ ܿଶ – ଶ0ݏ 0 0 01 ݀ଶ−ݏଶ – ܿଶ 0 0 0 00 1 ൪ ܶଷଶ = ൦ ܿଷ ଷݏ−ଷݏ− −ܿଷ 0 ܽଶ0 00 00 0 −1 −݀ଷ0 1 ൪

ܶସଷ = ൦ ܿସ ଵݏ−ସݏ− −ܿସ 0 ܽଷ0 00 00 0 −1 −݀ସ0 1 ൪ ܶହସ = ൦ ܿହ ହ0ݏ− 0 0 01 ݀ହ−ݏହ −ܿହ0 0 0 00 1 ൪ ܶ଺ହ = ൦ܿ଺ ଺0ݏ− 0 0 0−1 −݀଺ݏ଺ ܿ଺0 0 0 00 1 ൪ (1)

where ܶ௜ାଵ௜ is the transformation matrix between adjacent links，ݏ௜ is ߠ݊݅ݏ௜, and ܿ௜ is ܿߠݏ݋௜. 108

Multiply each link matrices of aubo-i5 as; 109 ܶ଺଴ = ܶଵ଴ ଶଵܶ (ଵߠ) ଷଶܶ (ଶߠ) ସଷܶ (ଷߠ) ହସܶ (ସߠ) ଺ହܶ (ହߠ) (2) (଺ߠ)

and the forward kinematics equation is given by: 110

ܶ଺଴ = ቎ ଵଵݎ ଶଵݎଵଶݎ ଶଶݎ ଵଷݎ ଶଷݎ ௫݌ ଷଵݎ ௬݌ ଷଶ0ݎ 0 ଷଷݎ ௭0݌ 1 ቏ (3)

where 111 ݎଵଵ = ܿଵ[(ܿଶܿଷ + ݏଶݏଷ)(ܿସܿହܿ଺ − ݏସݏ଺) − (ݏସܿହܿ଺ + ܿସݏ଺)(ݏଶܿଷ − ܿଶݏଷ)] + ݏଵݏହܿ଺ (4) ݎଵଶ = −ܿଵ[(ܿଶܿଷ + ݏଶݏଷ)(ܿସܿହܿ଺ + ݏସܿ଺) − (ݏଶܿଷ − ܿଶݏଷ)(ݏସܿହܿ଺ − ܿସܿ଺)] − ݏଵݏହݏ଺ (5) ݎଵଷ = ܿଵ[(ܿଶܿଷ + ݏଶݏଷ)ܿସݏହ − ݏସݏହ(ݏଶܿଷ − ܿଶݏଷ)] − ݏଵܿହ (6) ݎଶଵ = ݏଵ[(ܿଶܿଷ + ݏଶݏଷ)(ܿସܿହܿ଺ − ݏସݏ଺) − (ݏସܿହܿ଺ + ܿସݏ଺)(ݏଶܿଷ − ܿଶݏଷ)] − ܿଵݏହܿ଺ (7) ݎଶଶ = −ݏଵ[(ܿଶܿଷ + ݏଶݏଷ)(ܿସܿହܿ଺ + ݏସܿ଺) − (ݏଶܿଷ − ܿଶݏଷ)(ݏସܿହܿ଺ − ܿସܿ଺)] + ܿଵݏହݏ଺ (8)

Figure 2. Robot model in MATLAB.

2.2. Forward Kinematics Analysis

Forward kinematics is to obtain the end-effector pose relative to the base using the geometric
parameters and joint coordinates of the robot. According to the relative relation between link i and link
i + 1 of the robot, its relative pose is expressed by 4 × 4 transformation matrix. Using the improved DH
parameters in Table 1, the transformation matrix of each link can be obtained as follows,

0
1T=


c1 −s1

s1 c1

0 0

0 0

0 0

0 0

1 d1

0 1


1
2T=


c2 –s2

0 0

0 0

1 d2

−s2 –c2

0 0

0 0

0 1


2
3T=


c3 −s3

−s3 −c3

0 a2

0 0

0 0

0 0

−1 −d3

0 1


3
4T=


c4 −s4

−s1 −c4

0 a3

0 0

0 0

0 0

−1 −d4

0 1


4
5T=


c5 −s5

0 0

0 0

1 d5

−s5 −c5

0 0

0 0

0 1


5
6T=


c6 −s6

0 0

0 0

−1 −d6

s6 c6

0 0

0 0

0 1



(1)

where i
i+1T is the transformation matrix between adjacent links, si is sinθi, and ci is cosθi.

Multiply each link matrices of aubo-i5 as;

0
6T= 0

1T(θ1)
1
2T(θ2)

2
3T(θ3)

3
4T(θ4)

4
5T(θ5)

5
6T(θ6) (2)

and the forward kinematics equation is given by:

0
6T=


r11 r12

r21 r22

r13 px

r23 py

r31 r32

0 0
r33 pz

0 1

 (3)

where
r11 = c1[(c2c3 + s2s3)(c4c5c6 − s4s6) − (s4c5c6 + c4s6)(s2c3 − c2s3)] + s1s5c6 (4)

r12 = −c1[(c2c3 + s2s3)(c4c5c6 + s4c6) − (s2c3 − c2s3)(s4c5c6 − c4c6)] − s1s5s6 (5)

r13 = c1[(c2c3 + s2s3)c4s5 − s4s5(s2c3 − c2s3) − s1c5 (6)

Electronics 2020, 9, 859 5 of 18

r21 = s1[(c2c3 + s2s3)(c4c5c6 − s4s6) − (s4c5c6 + c4s6)(s2c3 − c2s3)] − c1s5c6 (7)

r22 = −s1[(c2c3 + s2s3)(c4c5c6 + s4c6) − (s2c3 − c2s3)(s4c5c6 − c4c6)] + c1s5s6 (8)

r23 = s1[(c2c3 + s2s3)c4s5 − s4s5(s2c3 − c2s3) + c1c5 (9)

r31 = (c2s3 − s2c3)(c4c5c6 − s4s6) − (s2s3 + c2c3)(s4c5c6 − c4s6) (10)

r32 = − (c2s3 − s2c3)(c4c5s6 + s4c6) + (s2s3 + c2c3)(s4c5c6 − c4c6) (11)

r33 = (c2s3 − s2c3)c4s5 − s4s5(s2s3 + c2c3) (12)

px= c1[(c2c3 +s2s3)(c4s5d6−s4d5+a3) − (s2c3−c2s3)(s4s5d6−c4d5)] + c2a2] − s1(c5d6+d4+d2−d3) (13)

py= s1[(c2c3 +s2s3)(c4s5d6−s4d5+a3) − (s2c3−c2s3)(s4s5d6−c4d5)] + c2a2] + c1(c5d6+d4+d2−d3) (14)

pz= (c2s3−s2c3)(c4s5d6−s4d5+a3) − (s2s3+c2c3)(s4s6d6+c4d5) − s2a2+d1 (15)

2.3. Inverse Kinematic Analysis

Inverse kinematics is to obtain the joint coordinates using the geometric parameters and end-effector
pose relative to the base of the robot [18]. In this paper, the method in [19] is used to multiply and
invert the transformation matrix above to calculate the joint coordinates as:

θ1= ±arctan(
d6√

(r13d6 − px)
2 + (py − r23d6)

2
− d22

) − arctan(
py − r23d6

r13d6 − px
) (16)

θ2= arctan
{
[Xs3a3 + Y(a2 + a3c3)] / [X(a2 + a3c3) −Ys3a3]} (17)

θ3 = ±arccos[(X2 + Y2
− a3

2
− a2

2) / 2a2a3
]

(18)

θ4 = arctan[(c1s23r13 − s1s23c1 − c23r33) / (c1c23r23 + s1c23r23 − s23r33)] (19)

θ5= ±arccos(−s1r13 + c1r23) (20)

θ6 = arctan[(s1r11 − c1r12)/(c1r22 − s1r21)] (21)

where s23 is sin(θ2 − θ3), c23 is cos(θ2 − θ3) and X, Y are:

X = −d5[s6 (c1r11 +s1r21) + c6(c1r12 +s1r22)] − d6(c1r13 +s1r23) + c1px +s1py (22)

Y = −d5(s2r31 + c5r32) − d6r33 + pz − d1 (23)

Both θ3 and θ5 have positive and negative solutions, indicating that there are different joint
coordinates for the same end-effector pose.

3. Multi-Objective Trajectory Planning

3.1. Problem Statement

From the initial pose to the final pose, the trajectory sequence Ti of the end-effector is obtained.
Use the above inverse kinematics method to calculate the position-time sequence as:

Q =
{
(qi j, ti)

∣∣∣i = 0, 1 . . . , n, j = 1, 2 . . . , N
}

(24)

where n + 1 is the number of time nodes, N is the number of joints, qij is the position of joint j and time i.
In addition, in order to make the movement of each trajectory position smooth transition, a specific

curve is used for interpolation. Construct a trajectory function with time on the horizontal axis and
position on the vertical axis.

Electronics 2020, 9, 859 6 of 18

On the premise of satisfying the performance constraints, the trajectory function is optimized
from three aspects: operating efficiency, energy consumption, and operating smoothness. For these
three aspects, three optimization goals need to be defined, which can be considered as following:

1. Improving the operating efficiency of the robot can be achieved by reducing the overall
operating time;

2. Reducing energy consumption of the robot can be achieved by reducing the average acceleration
of each joint. Because the average acceleration is related to the torque, which is related to the
energy consumption of the motor;

3. Improving the smoothness of the robot can be achieved by reducing the average jerk, because
the average jerk represents the speed of torque change. A smaller jerk can make the torque
change smoother.

Therefore, we define three optimization goals: total motion time S1, average acceleration S2,
and average jerk S3, which respectively correspond to the optimization in the above three aspects.
Meanwhile, define each time interval ∆ti as the optimization variable, and the maximum velocity, vjmax,
acceleration ajmax and jerk jjmax of each joint as constraints;

S1 =
∑n

i=1
∆ti = T (25)

S2 =
∑M

m=1

√
1
T

∫ T

0
ai2dt (26)

S3 =
∑M

m=1

√
1
T

∫ T

0
j2dt (27)


g1 =

∣∣∣vi j
∣∣∣− v jmax ≤ 0

g2 =
∣∣∣ai j

∣∣∣− a jmax ≤ 0
g3 =

∣∣∣ ji j
∣∣∣− j jmax ≤ 0

(28)

where vij, aij, jij are respectively the velocity, acceleration and jerk of joint j and time i.
For the above multi-objective optimization problem, the three optimization goals are contradictory,

and it is impossible to achieve the optimal simultaneously. Generally speaking, the multi-objective
optimization algorithm can be used to obtain an optimal solution set instead of an optimal solution,
and the solutions in the solution set cannot be compared with each other [20]. These solutions, while
improving any objective function, necessarily weaken at least one other objective function. These
solutions are called Pareto solutions, and the set of optimal solutions for a set of objective functions is
called Pareto optimal solution sets [21].

In this paper, the multi-objective optimization algorithm is used to solve the multi-objective
optimization problem satisfying the constraint conditions, and Pareto optimal solution set of joint
trajectories is generated.

3.2. Joint Trajectory Constructed Based on B-Spline

The B-spline curve [22] is used to construct the joint trajectory of the manipulator, which is
uniformly described as:

p(u) =
∑n

i=0
diNi,k(u) (29)

where di is the control vertex, Ni,k(u) is the k order standard B−spline basis function, u =

[u0, u1, . . . , un+2k] is the node vector, and p(u) is the joint position at node u.
In order to interpolate the trajectory, the segment connection points of the trajectory curve

correspond to the nodes in the B-spline definition domain, and the first and last points are consistent

Electronics 2020, 9, 859 7 of 18

with the first and last data points. Using the accumulative chord length parameterization method to
normalize the time node ti to get the inner node value;

ui = ui−1 + |∆ti−k−1|/
∑n−1

j=0
∆t j, i = k + 1, . . . , n + k− 1 (30)

where ∆tk = tk+1 − tk (k = 0, 1, . . . , n− 1) is the chord length.
The n + 1 equation satisfying the interpolation condition is given by:

p(ui+k) =
∑i+k

j=i
d jN j,k(ui+k) = Pi (31)

where ui+k ∈ [uk, un+k], i = 0,1,...,n.
Therefore, k − 1 additional conditions are required to invert the control vertex di. For the

seven-order B-spline curve, 6 tangent boundary conditions are added:
p′(u)

∣∣∣u=u7 = vs, p′(u)
∣∣∣u=un+7 = ve

p′′(u)
∣∣∣u=u7 = as, p′′(u)

∣∣∣u=un+7 = ae

p′′′(u)
∣∣∣u=u7 = js, p′′′(u)

∣∣∣u=un+7 = je
(32)

where p
′

(u), p
′′

(u), p
′′′

(u) are respectively 1, 2, 3 derivative vectors of B−spline. vs, ve, as, ae, js, je
are respectively the velocity, acceleration and jerk at the first and last point of the curve trajectory.
According to the requirements of robot trajectory planning, the six parameters are defined as 0.

The above derivative vectors can be expressed as:

pr(u) =
∑i−r

j=i−k
dr

jN j,k−r(u), u ∈ [ui, ui+1] (33)

where the dr
j is given by

dl
j =


d j, l = 0

(k− l + 1)
dl−1

j+1−dl−1
j

u j+k+1−l−u j
, l = 1, 2, . . . , r

j = i− k, i− k + 1, . . . , i− r

(34)

In addition, the B-spline curve has a convex hull property, so the constraints of the B-spline control
vertex are equal to the maximum velocity vjmax, acceleration ajmax, and jerk jjmax of each joint of the
robot: 

max
{∣∣∣∣d1

i j

∣∣∣∣} ≤ v jmax , i = 1, 2, . . . , n + k− 1

max
{∣∣∣∣d2

i j

∣∣∣∣} ≤ a jmax , i = 1, 2, . . . , n + k− 1

max
{∣∣∣∣d3

i j

∣∣∣∣} ≤ j jmax , i = 1, 2, . . . , n + k− 1

(35)

where d1
i j, d2

i j and d3
i j are respectively the control vertex of the joint j and point i in the velocity,

acceleration and jerk curve.
According to the above process, the control vertices are obtained, and then the trajectory

interpolation of the B-spline is completed.

3.3. Trajectory Competitive Multi-Objective Particle Swarm Optimization

Multi-objective particle swarm optimization (MOPSO) [23] is a swarm intelligence algorithm,
which simulates the foraging behavior of birds to search the solution space. The algorithm has
the advantages of simple structure and fast convergence speed. The basic idea is that there are N
particles forming a population in the D-dimensional search space, wherein the particle i is Xi =

(xi1, xi2, . . . , xiD)
T, which represents a potential solution of the problem. The velocity of the particle i is

Vi = (Vi1, Vi2, . . . , ViD)
T, the individual extreme value is Pi = (Pi1, Pi2, . . . , PiD)

T, and the population

Electronics 2020, 9, 859 8 of 18

extreme value of the population is Pg = (Pg1, Pg2, . . . , PgD)
T. Particles update their own speed and

position through individual extreme values and group extreme values:
Vk+1

id = ωVk
id + c1r1(Pk

id −Xk
id) + c2r2(Pk

gd −Xk
gd)

Vk+1
id = Vk

id + Vk+1id

d = 1, 2, . . . , D, i = 1, 2, . . . , n
(36)

where ω is the inertia weight, k is the current iteration number, Vid is the particle speed, c1 and c2 are
the acceleration factors, r1 and r2 are random numbers between (0, 1).

However, when dealing with complex optimization problems, due to the characteristics of fast
convergence, the algorithm is easy to fall into the local optimal and the diversity is poor. In order
to solve the above problems, Zhang [24] proposed a competition multi-objective particle swarm
optimization (CMOPSO), which adopted the elite strategy in NSGA-II [25] algorithm to update the
particles. The algorithm flow is shown in Figure 3.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 18

3.3. Trajectory Competitive Multi-Objective Particle Swarm Optimization 180

Multi-objective particle swarm optimization (MOPSO) [23] is a swarm intelligence algorithm, 181
which simulates the foraging behavior of birds to search the solution space. The algorithm has the 182
advantages of simple structure and fast convergence speed. The basic idea is that there are N particles 183
forming a population in the D-dimensional search space, wherein the particle i is ௜ܺ = ,௜ଵݔ) ,௜ଶݔ … , ௜஽)், 184ݔ
which represents a potential solution of the problem. The velocity of the particle i is ௜ܸ = (௜ܸଵ, ௜ܸଶ, … , ௜ܸ஽)், 185
the individual extreme value is ௜ܲ = (௜ܲଵ, ௜ܲଶ, … , ௜ܲ஽)் , and the population extreme value of the 186
population is ௚ܲ = (௚ܲଵ, ௚ܲଶ, … , ௚ܲ஽)் . Particles update their own speed and position through 187
individual extreme values and group extreme values: 188

ቐ ௜ܸௗ௞ାଵ = ߱ ௜ܸௗ௞ + ܿଵݎଵ(௜ܲௗ௞ − ௜ܺௗ௞) + ܿଶݎଶ(௚ܲௗ௞ − ௚ܺௗ௞) ௜ܸௗ௞ାଵ = ௜ܸௗ௞ + ௞ܸାଵ௜ௗ݀ = 1,2, … , ݅，ܦ = 1,2, … , ݊ (36)

where ߱ is the inertia weight, k is the current iteration number, ௜ܸௗ is the particle speed, ܿଵ and ܿଶ 189
are the acceleration factors, ݎଵ and ݎଶ are random numbers between (0, 1). 190

However, when dealing with complex optimization problems, due to the characteristics of fast 191
convergence, the algorithm is easy to fall into the local optimal and the diversity is poor. In order to 192
solve the above problems, Zhang [24] proposed a competition multi-objective particle swarm 193
optimization (CMOPSO), which adopted the elite strategy in NSGA-II [25] algorithm to update the 194
particles. The algorithm flow is shown in Figure 3. 195

 196
Figure 3. Competition multi-objective particle swarm optimization (CMOPSO) algorithm 197
optimization process. 198

This paper uses this algorithm to optimize the trajectory. However, the algorithm is an 199
unconstrained search mechanism, which needs to be improved by adding constraints when applied 200

Figure 3. Competition multi-objective particle swarm optimization (CMOPSO) algorithm
optimization process.

This paper uses this algorithm to optimize the trajectory. However, the algorithm is an
unconstrained search mechanism, which needs to be improved by adding constraints when applied to
constrained multi-objective optimization problems. In this paper, the feasibility rules in NSGA-II [25]
are used to calculate the constraint violation of particle x in constraint j:

G j =

 max
{
g j(x), 0

}
, 1 ≤ j ≤ q

max
{∣∣∣h j(x)

∣∣∣− δ, 0
}
, q + 1 ≤ j ≤ m

(37)

Electronics 2020, 9, 859 9 of 18

where gj(x) is the inequality constraint, hj(x) is the equality constraint, and δ is the tolerance parameter
of the equality constraint, which is defined as a specific value (generally set to 0.0001). The total
constraint violation of particle x is:

v(x) =
∑m

j=1
G j(x) (38)

According to the constraint violation of particle x, the non-dominated ranking with feasibility
rules is adopted in the step of elite particles selection. Determine the dominance relationship of the
two particles according to the following feasibility rules:

1. xi is feasible solution, xj is infeasible solution, then choose xi;
2. xi and xj are both feasible solutions, xi has better objective function, then choose xi;
3. xi and xj are both infeasible solutions, xi has smaller constraint violation, then choose xi.

In this paper, CMOPSO is combined with the feasibility rules and kinematic constraints to obtain
the trajectory competition multi-objective particle swarm optimization (TCMOPSO). The algorithm
can be widely used in robot multi-objective trajectory optimization. Taking the time interval of
the trajectory sequence as the decision variable, Equations (25)–(27) as the optimization objectives,
and Equation (28) as the constraint conditions, the basic process of using TCMOPSO for trajectory
optimization is as follows:

(1) Parameter setting: trajectory-time sequence and kinematic constraints of each joint are known; set
the range of decision variables (the minimum value is obtained according to known conditions, the
maximum value is user-defined); set the population size N, the maximum iterations number GEN.

(2) Initialization: randomly generate particle position set P and particle velocity set V.
(3) Competitive learning: The elite particle set L is obtained through non-dominated ranking. For

each particle p in P, pick any two particles a and b in L to match and compete, then update the
position and speed of particle p according to the winner. Add the updated p to P’, and perform
polynomial mutation on P’.

(4) Natural selection: Natural selections for P and P ’to get a new P.
(5) Repeat (3) and (4) until the number of iterations gen reaches the maximum iterations number GEN.

Through the above steps, Pareto optimal solution satisfying kinematic constraints is obtained,
and the multi-objective trajectory optimization of the robot is completed.

4. Experiment

4.1. Trajectory Interpolation

In order to verify the effectiveness of the proposed multi-objective trajectory planning method,
the collaborative robot AUBO-I5 is used for the experiment. Firstly, define a space trajectory arbitrarily,
and use inverse kinematics algorithm to convert it into joint space trajectory, as shown in Table 3.

Table 3. Robot joint space trajectory.

Node Joint 1 (◦) Joint 2 (◦) Joint 3 (◦) Joint 4 (◦) Joint 5 (◦) Joint 6 (◦)

1 16.99 −33.12 43.89 25.70 110.36 −25.95
2 17.23 −13.88 47.70 60.69 105.23 −28.51
3 17.88 −19.60 55.23 79.05 103.25 −16.05
4 14.39 −28.46 63.88 75.21 97.78 −5.21
5 11.25 −41.72 68.35 72.70 86.04 6.50
6 3.10 −45.34 72.41 67.45 79.94 12.20
7 −20.13 −42.69 79.65 53.54 72.76 16.24
8 −25.78 −40.34 82.17 47.80 78.16 13.55

Electronics 2020, 9, 859 10 of 18

After obtaining the robot trajectory in Table 3, the interpolation function is used to construct the
time-joint sequence. The trajectory to be planned by the collaborative robot is relatively complex, and
it requires higher accuracy and stability. It is necessary to select an interpolation function suitable for
the collaborative robot. In recent years, some researchers have used B-spline functions to interpolate
robots, for example, quintic B-spline functions are used to interpolate trajectories [26]. However, this
method has the disadvantage that the jerk value at the beginning and the end cannot be specified. For
collaborative robots, the unsmooth jerk value may cause a sudden change in torque, which threatens
the safety of the collaborators.

Select the trajectory of the robot joint 4, use cubic spline curve [7], quintic B-spline curve [26] and
seven-order B-spline curve to construct the trajectory curve. Compare the jerk curves obtained by the
three methods, as shown in Figure 4.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 18

Table 3. Robot joint space trajectory. 238

Node Joint 1 (°) Joint 2 (°) Joint 3 (°) Joint 4 (°) Joint 5 (°) Joint 6 (°)
1 16.99 −33.12 43.89 25.70 110.36 −25.95
2 17.23 −13.88 47.70 60.69 105.23 −28.51
3 17.88 −19.60 55.23 79.05 103.25 −16.05
4 14.39 −28.46 63.88 75.21 97.78 −5.21
5 11.25 −41.72 68.35 72.70 86.04 6.50
6 3.10 −45.34 72.41 67.45 79.94 12.20
7 −20.13 −42.69 79.65 53.54 72.76 16.24
8 −25.78 −40.34 82.17 47.80 78.16 13.55

After obtaining the robot trajectory in Table 3, the interpolation function is used to construct the 239
time-joint sequence. The trajectory to be planned by the collaborative robot is relatively complex, and 240
it requires higher accuracy and stability. It is necessary to select an interpolation function suitable for 241
the collaborative robot. In recent years, some researchers have used B-spline functions to interpolate 242
robots, for example, quintic B-spline functions are used to interpolate trajectories [26]. However, this 243
method has the disadvantage that the jerk value at the beginning and the end cannot be specified. 244
For collaborative robots, the unsmooth jerk value may cause a sudden change in torque, which 245
threatens the safety of the collaborators. 246

Select the trajectory of the robot joint 4, use cubic spline curve [7], quintic B-spline curve [26] and 247
seven-order B-spline curve to construct the trajectory curve. Compare the jerk curves obtained by the 248
three methods, as shown in Figure 4. 249

 250

Figure 4. The comparison of three spline method. 251

It can be seen from Figure 4 that the jerk curve of the cubic spline is not continuous. The jerk 252
curve of the quintic B-spline is not smooth and the value at the beginning and the end are not 0. The 253
operation time of the three methods in MATLAB is compared, as shown in Table 4. 254

Table 4. The operation time of the three methods. 255

Spline Cubic Spline Quintic B-Spline Seven-Order B-Spline
Time (ms) 2.884 3.734 4.232

Figure 4. The comparison of three spline method.

It can be seen from Figure 4 that the jerk curve of the cubic spline is not continuous. The jerk
curve of the quintic B-spline is not smooth and the value at the beginning and the end are not 0. The
operation time of the three methods in MATLAB is compared, as shown in Table 4.

Table 4. The operation time of the three methods.

Spline Cubic Spline Quintic B-Spline Seven-Order B-Spline

Time (ms) 2.884 3.734 4.232

The calculation times of the three methods in MATLAB are all small enough, so it is no
computational burden to choose high-order B-spline for trajectory interpolating. In this paper,
the seven-order B-spline function is used to set the first and last trajectories, acceleration, and jerk to
0, to ensure the continuity of speed, acceleration, and jerk. In this paper, the seven-order B-spline
function is used to construct the trajectory equation, and the velocity, acceleration and jerk value of the
first and last are all set to 0.

4.2. Trajectory Optimization

After constructing the joint trajectory curve, the time interval of the trajectory is used as the
decision variable, and the optimal variable value is selected by the optimization algorithm. The

Electronics 2020, 9, 859 11 of 18

time interval of the joint sequence is used as the decision variable. The upper bound of the decision
variable is six, and the lower bound is calculated. The population size is set to 100 and the maximum
evolutionary algebra is 10,000 generations.

Figure 5 shows the Pareto front obtained by the algorithm proposed in this paper. The solution
closer to A has the better energy and jerk performance, and the worse time performance. In contrast,
the solution closer to B has the better time performance, and the worse energy and jerk performance.
Therefore, energy is positively correlated with jerk performance and negatively correlated with
time performance.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 18

The calculation times of the three methods in MATLAB are all small enough, so it is no 256
computational burden to choose high-order B-spline for trajectory interpolating. In this paper, the 257
seven-order B-spline function is used to set the first and last trajectories, acceleration, and jerk to 0, 258
to ensure the continuity of speed, acceleration, and jerk. In this paper, the seven-order B-spline 259
function is used to construct the trajectory equation, and the velocity, acceleration and jerk value of 260
the first and last are all set to 0. 261

4.2. Trajectory Optimization 262
After constructing the joint trajectory curve, the time interval of the trajectory is used as the 263

decision variable, and the optimal variable value is selected by the optimization algorithm. The time 264
interval of the joint sequence is used as the decision variable. The upper bound of the decision 265
variable is six, and the lower bound is calculated. The population size is set to 100 and the maximum 266
evolutionary algebra is 10,000 generations. 267

Figure 5 shows the Pareto front obtained by the algorithm proposed in this paper. The solution 268
closer to A has the better energy and jerk performance, and the worse time performance. In contrast, 269
the solution closer to B has the better time performance, and the worse energy and jerk performance. 270
Therefore, energy is positively correlated with jerk performance and negatively correlated with time 271
performance. 272

 273

Figure 5. Pareto front of the proposed algorithm. 274

The objective function of each point is shown in Table 5. Both A and B are close to the boundary 275
of the constraint. The optimal solution obtained by the algorithm proposed in this paper covers the 276
whole solution space well. 277

Table 5. Comparison of trajectory optimization performance. 278

Result S1/s S2/((°)/࢙૛) S3/((°)/࢙૜)
A 41.5781 0.1027 0.1158
B 3.2637 468.6523 4728.5563

Several popular multi-objective optimization algorithms are added with the kinematic 279
constraints of the collaborative robot. Figure 6 shows the Pareto front obtained by these multi-280
objective optimization algorithms. 281

Figure 5. Pareto front of the proposed algorithm.

The objective function of each point is shown in Table 5. Both A and B are close to the boundary
of the constraint. The optimal solution obtained by the algorithm proposed in this paper covers the
whole solution space well.

Table 5. Comparison of trajectory optimization performance.

Result S1/s S2/((◦)/s2) S3/((◦)/s3)

A 41.5781 0.1027 0.1158
B 3.2637 468.6523 4728.5563

Several popular multi-objective optimization algorithms are added with the kinematic constraints
of the collaborative robot. Figure 6 shows the Pareto front obtained by these multi-objective
optimization algorithms.

For the trajectory optimization problem, the solution set obtained by MOPSO [23] has some
disconnections. The solution set obtained by NSGAII [25] and SPEA2 [27] does not cover the entire
solution space. The range of solution set obtained by MOEA/D [28] is relatively small. Compared with
these algorithms, the solution set obtained by the algorithm proposed in this paper is more uniformly
distributed and has better continuity.

Electronics 2020, 9, 859 12 of 18

Electronics 2020, 9, x FOR PEER REVIEW 12 of 18

(a)

(b)

(c)

(d)

Figure 6. Several multi-objective optimization algorithms are used for trajectory optimization, where 282
(a) multi-objective particle swarm optimization (MOPSO), (b) nondominated sorting genetic 283
algorithm II (NSGAII), (c) Strength Pareto Evolutionary Algorithm 2 (SPEA2), and (d) Multi-objective 284
evolutionary algorithm based on decomposition (MOEA/D). 285

For the trajectory optimization problem, the solution set obtained by MOPSO [23] has some 286
disconnections. The solution set obtained by NSGAII [25] and SPEA2 [27] does not cover the entire 287
solution space. The range of solution set obtained by MOEA/D [28] is relatively small. Compared 288
with these algorithms, the solution set obtained by the algorithm proposed in this paper is more 289
uniformly distributed and has better continuity. 290

In the actual robot operation, three objectives should be considered comprehensively to obtain 291
the required solution. For some specific scenarios and tasks, such as human-robot collaboration, the 292
maximum velocity, acceleration and jerk are required to set in particular values to meet the actual 293
needs. The optimal objective values need to satisfy the specified maximum range simultaneously. 294

This paper defines the normalized weight function and sets the weight coefficients for the three 295
objectives. 296

݂ = ଵߪ ܵ1 − ܵ1௠௜௡ܵ1௠௔௫ − ܵ1௠௜௡ + ଶߪ ܵ2 − ܵ2௠௜௡ܵ2௠௔௫ − ܵ2௠௜௡ + ଷߪ ܵ3 − ܵ3௠௜௡ܵ3௠௔௫ − ܵ3௠௜௡ (39)

where ߪଵ, ߪଶ and ߪଷ are the weight coefficients of each objective function, and ܵ1௠௔௫ and ܵ1௠௜௡ 297
are the maximum and minimum values of objective S1. The function maps the three objectives values 298
to the interval [0,1], and then multiplies the customized weight coefficient to obtain the actual optimal 299
solution. In brief, if higher efficiency is required, give ߪଵ a larger value. If a lower energy 300
consumption and a higher smoothness are required, give ߪଶ and ߪଷ larger values. This paper 301
conducts experiments on several sets of typical weight coefficients, as shown in Table 6. Further, the 302
results C to G are shown in Figure 5. 303

Figure 6. Several multi-objective optimization algorithms are used for trajectory optimization, where (a)
multi-objective particle swarm optimization (MOPSO), (b) nondominated sorting genetic algorithm II
(NSGAII), (c) Strength Pareto Evolutionary Algorithm 2 (SPEA2), and (d) Multi-objective evolutionary
algorithm based on decomposition (MOEA/D).

In the actual robot operation, three objectives should be considered comprehensively to obtain
the required solution. For some specific scenarios and tasks, such as human-robot collaboration, the
maximum velocity, acceleration and jerk are required to set in particular values to meet the actual
needs. The optimal objective values need to satisfy the specified maximum range simultaneously.

This paper defines the normalized weight function and sets the weight coefficients for the
three objectives.

f = σ1
S1− S1min

S1max − S1min
+ σ2

S2− S2min
S2max − S2min

+ σ3
S3− S3min

S3max − S3min
(39)

where σ1, σ2 and σ3 are the weight coefficients of each objective function, and S1max and S1min are the
maximum and minimum values of objective S1. The function maps the three objectives values to
the interval [0,1], and then multiplies the customized weight coefficient to obtain the actual optimal
solution. In brief, if higher efficiency is required, give σ1 a larger value. If a lower energy consumption
and a higher smoothness are required, give σ2 and σ3 larger values. This paper conducts experiments
on several sets of typical weight coefficients, as shown in Table 6. Further, the results C to G are shown
in Figure 5.

Electronics 2020, 9, 859 13 of 18

Table 6. Comparison of different weight coefficients.

Result σ1 σ2 σ3 S1/s S2/((◦)/S2) S3/((◦)/S3)

C 10 1 1 4.0497 63.6947 466.5722
D 5 1 1 4.4629 51.5607 205.0956
E 1 1 1 5.8017 16.8444 195.3287
F 1 5 5 9.8286 8.0456 36.1065
G 1 10 10 11.4246 2.5995 15.8354

In some human-robot collaboration scenarios, the safety of collaborators must be carefully
considered. Under the premise of ensuring the operation efficiency, more consideration is given to
the stability and smoothness to ensure the smooth progress of human-robot collaboration. Therefore,
the solution at point F is adopted as the optimal solution in this paper. The optimal objective value is
[9.8286, 8.0456, 36.1065], and the optimal time node is [0, 1.7779, 2.9080, 4.7470, 5.9863, 7.0328, 8.5141,
9.8286]. The trajectory-time curves of each joints are shown in Figure 7.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 18

Table 6. Comparison of different weight coefficients. 304

Result ࣌૚ ࣌૛ ࣌૜ S1/s S2/((°)/࢙૛) S3/((°)/࢙૜)
C 10 1 1 4.0497 63.6947 466.5722
D 5 1 1 4.4629 51.5607 205.0956
E 1 1 1 5.8017 16.8444 195.3287
F 1 5 5 9.8286 8.0456 36.1065
G 1 10 10 11.4246 2.5995 15.8354

In some human-robot collaboration scenarios, the safety of collaborators must be carefully 305
considered. Under the premise of ensuring the operation efficiency, more consideration is given to 306
the stability and smoothness to ensure the smooth progress of human-robot collaboration. Therefore, 307
the solution at point F is adopted as the optimal solution in this paper. The optimal objective value is 308
[9.8286, 8.0456, 36.1065], and the optimal time node is [0, 1.7779, 2.9080, 4.7470, 5.9863, 7.0328, 8.5141, 9.8286]. 309
The trajectory-time curves of each joints are shown in Figure 7. 310

 311

Figure 7. Joint trajectory-time sequence. 312

The velocity, acceleration and jerk curves of each joints are shown in Figure 8. The curves are 313
continuous and smooth, with no shocks or sudden changes. The range of the maximum and 314
minimum values are consistent with the kinematic constraints of the robot. In addition, the value of 315
velocity, acceleration and jerk at the beginning and the end are all 0. It will not cause a sudden change 316
of torque, which meets the needs of collaborative robot operation. 317

For collaborative robots, the operation safety of collaborators during operation is particularly 318
important. The trajectory constructed by the algorithm proposed in this paper makes the robot 319
running process more efficient and stable. The possibility of abnormal situations is reduced, and the 320
safety of collaborators is well guaranteed. In addition, the robot’s reducer, motor and other 321
components are well protected, which is beneficial to extend the service life. 322

Figure 7. Joint trajectory-time sequence.

The velocity, acceleration and jerk curves of each joints are shown in Figure 8. The curves are
continuous and smooth, with no shocks or sudden changes. The range of the maximum and minimum
values are consistent with the kinematic constraints of the robot. In addition, the value of velocity,
acceleration and jerk at the beginning and the end are all 0. It will not cause a sudden change of torque,
which meets the needs of collaborative robot operation.

For collaborative robots, the operation safety of collaborators during operation is particularly
important. The trajectory constructed by the algorithm proposed in this paper makes the robot running
process more efficient and stable. The possibility of abnormal situations is reduced, and the safety of
collaborators is well guaranteed. In addition, the robot’s reducer, motor and other components are
well protected, which is beneficial to extend the service life.

Electronics 2020, 9, 859 14 of 18

Electronics 2020, 9, x FOR PEER REVIEW 14 of 18

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. Velocity, acceleration and jerk curves of each joint, where Figure (a–f) represent Joint 1 to 323
Joint 6 respectively. 324

4.3. Collaborative Robot Control 325
The ROS system is a system framework developed for robots, based on the Ubuntu system 326

environment [29]. The ROS system uses the TCP/IP to connect to the controller of the collaborative 327
robot, and transmits trajectory planning data in real time [30]. MoveIt is a robot simulation control 328
software in the ROS system, which can build a robot model and make motion planning for the robot. 329
Establish the kinematics model of the AUBO-I5 in MoveIt, as shown in Figure 9. 330

Figure 8. Velocity, acceleration and jerk curves of each joint, where Figure (a–f) represent Joint 1 to
Joint 6 respectively.

4.3. Collaborative Robot Control

The ROS system is a system framework developed for robots, based on the Ubuntu system
environment [29]. The ROS system uses the TCP/IP to connect to the controller of the collaborative
robot, and transmits trajectory planning data in real time [30]. MoveIt is a robot simulation control
software in the ROS system, which can build a robot model and make motion planning for the robot.
Establish the kinematics model of the AUBO-I5 in MoveIt, as shown in Figure 9.

Electronics 2020, 9, 859 15 of 18

Electronics 2020, 9, x FOR PEER REVIEW 15 of 18

 331
Figure 9. Collaborative robot model in MoveIt. 332

In order to quickly generate Cartesian space trajectories for collaborative robots, a trajectory 333
editor software was designed. As shown in Figure 10. The editor can input end-effector position and 334
pose to insert trajectory points. The trajectory points are listed in the table, and the generated 335
trajectory list can be edited. In addition, the editor displays the designed trajectory in three 336
dimensions for easy adjustment. The trajectory editing tool is based on a web page. The interface is 337
simple, and it can be used across platforms to meet various scenarios of collaborative robot operation. 338

 339

Figure 10. Editor interface. 340

The joint trajectory information is transferred to the ROS system, and ROS node information is 341
released. Use MoveIt to load the trajectory time node, position, speed, acceleration and other 342
information to control the collaborative robot in real time. The experiment proves that the 343
collaborative robot runs smoothly without vibration or other conditions, as shown in Figure 11. 344

Figure 9. Collaborative robot model in MoveIt.

In order to quickly generate Cartesian space trajectories for collaborative robots, a trajectory editor
software was designed. As shown in Figure 10. The editor can input end-effector position and pose to
insert trajectory points. The trajectory points are listed in the table, and the generated trajectory list
can be edited. In addition, the editor displays the designed trajectory in three dimensions for easy
adjustment. The trajectory editing tool is based on a web page. The interface is simple, and it can be
used across platforms to meet various scenarios of collaborative robot operation.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 18

 331
Figure 9. Collaborative robot model in MoveIt. 332

In order to quickly generate Cartesian space trajectories for collaborative robots, a trajectory 333
editor software was designed. As shown in Figure 10. The editor can input end-effector position and 334
pose to insert trajectory points. The trajectory points are listed in the table, and the generated 335
trajectory list can be edited. In addition, the editor displays the designed trajectory in three 336
dimensions for easy adjustment. The trajectory editing tool is based on a web page. The interface is 337
simple, and it can be used across platforms to meet various scenarios of collaborative robot operation. 338

 339

Figure 10. Editor interface. 340

The joint trajectory information is transferred to the ROS system, and ROS node information is 341
released. Use MoveIt to load the trajectory time node, position, speed, acceleration and other 342
information to control the collaborative robot in real time. The experiment proves that the 343
collaborative robot runs smoothly without vibration or other conditions, as shown in Figure 11. 344

Figure 10. Editor interface.

The joint trajectory information is transferred to the ROS system, and ROS node information
is released. Use MoveIt to load the trajectory time node, position, speed, acceleration and other
information to control the collaborative robot in real time. The experiment proves that the collaborative
robot runs smoothly without vibration or other conditions, as shown in Figure 11.

Electronics 2020, 9, 859 16 of 18
Electronics 2020, 9, x FOR PEER REVIEW 16 of 18

 345

Figure 11. Collaborative robot operation. 346

5. Conclusions 347
This paper proposed a trajectory planning method for collaborative robots. The seven order B-348

spline is utilized to construct a continuous trajectory to ensure the continuous position, velocity, 349
acceleration and jerk of each joint. Then, we proposed a trajectory competitive multi-objective particle 350
swarm optimization (TCMOPSO) algorithm to optimize the joint trajectory to obtain the Pareto 351
optimal solution set. For different scenarios and tasks, we proposed the normalized weight function, 352
which can be used to select the most suitable solution from the solution set. Finally, we design a 353
trajectory editor software to generate Cartesian space trajectories and use the method proposed in 354
this paper to conduct actual robot control experiments. The experimental results show that the 355
obtained trajectory is smooth and controllable. The algorithm proposed in this paper can be widely 356
used in various collaboration robots, and provide ideas for the study of trajectory planning 357
algorithms. 358

In future work, we are planning to improve the method proposed in this paper so that it can be 359
used in more scenarios and tasks. In addition, we will continue to research the motion planning of 360
collaborative robots, include how to avoid obstacles and collaborate with humans safely. This paper 361
does not consider the dynamics and robot pose accuracy, which are very important in human-robot 362
collaboration. We need to control the robot torque precisely to ensure the smooth completed of the 363
task and the safety of human beings. 364

Author Contributions: Conceptualization, J.L. and Y.X.; methodology, J.L.; software, J.L.; validation, J.L. and 365
Y.X.; formal analysis, J.L.; writing—original draft preparation, J.L.; writing—review and editing, J.L., Y.X., M.C. 366
and G.L.; supervision, Y.X.; project administration, J.L. All authors have read and agreed to the published 367
version of the manuscript. 368
Funding: This work is supported by Beijing Natural Science Foundation (Grant No.4192023 and 4202024); 369
Natural Science Foundation of China (Grant NO.61603047); the Qin Xin Talents Cultivation Program of Beijing 370
Information Science and Technology University (Grant No. QXTCPC201704). 371
Conflicts of Interest: The authors declare no conflicts of interest. 372

References 373
1. Li, T.; Zhang, Y.; Zhou, J.; Ma, B.; Dui, G.; Yang, S.; Xin, L. Trajectory Planning of High Precision 374

Collaborative Robots. CMES Comput. Model. Eng. Sci. 2019, 118, 583–598. 375
2. Zanchettin, A.M.; Rocco, P.; Chiappa, S.; Rossi, R. Towards an optimal avoidance strategy for collaborative 376

robots. Robot. Comput. Manuf. 2019, 59, 47–55. 377
3. Kanazawa, A.; Kinugawa, J.; Kosuge, K. Adaptive Motion Planning for a Collaborative Robot Based on 378

Prediction Uncertainty to Enhance Human Safety and Work Efficiency. IEEE Trans. Robot 2019, 35, 817–832. 379

Figure 11. Collaborative robot operation.

5. Conclusions

This paper proposed a trajectory planning method for collaborative robots. The seven order
B-spline is utilized to construct a continuous trajectory to ensure the continuous position, velocity,
acceleration and jerk of each joint. Then, we proposed a trajectory competitive multi-objective particle
swarm optimization (TCMOPSO) algorithm to optimize the joint trajectory to obtain the Pareto optimal
solution set. For different scenarios and tasks, we proposed the normalized weight function, which can
be used to select the most suitable solution from the solution set. Finally, we design a trajectory editor
software to generate Cartesian space trajectories and use the method proposed in this paper to conduct
actual robot control experiments. The experimental results show that the obtained trajectory is smooth
and controllable. The algorithm proposed in this paper can be widely used in various collaboration
robots, and provide ideas for the study of trajectory planning algorithms.

In future work, we are planning to improve the method proposed in this paper so that it can be
used in more scenarios and tasks. In addition, we will continue to research the motion planning of
collaborative robots, include how to avoid obstacles and collaborate with humans safely. This paper
does not consider the dynamics and robot pose accuracy, which are very important in human-robot
collaboration. We need to control the robot torque precisely to ensure the smooth completed of the task
and the safety of human beings.

Author Contributions: Conceptualization, J.L. and Y.X.; methodology, J.L.; software, J.L.; validation, J.L. and Y.X.;
formal analysis, J.L.; writing—original draft preparation, J.L.; writing—review and editing, J.L., Y.X., M.C. and
G.L.; supervision, Y.X.; project administration, J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by Beijing Natural Science Foundation (Grant No.4192023 and 4202024); Natural
Science Foundation of China (Grant NO.61603047); the Qin Xin Talents Cultivation Program of Beijing Information
Science and Technology University (Grant No. QXTCPC201704).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Li, T.; Zhang, Y.; Zhou, J.; Ma, B.; Dui, G.; Yang, S.; Xin, L. Trajectory Planning of High Precision Collaborative
Robots. CMES Comput. Model. Eng. Sci. 2019, 118, 583–598. [CrossRef]

2. Zanchettin, A.M.; Rocco, P.; Chiappa, S.; Rossi, R. Towards an optimal avoidance strategy for collaborative
robots. Robot. Comput. Manuf. 2019, 59, 47–55. [CrossRef]

3. Kanazawa, A.; Kinugawa, J.; Kosuge, K. Adaptive Motion Planning for a Collaborative Robot Based on
Prediction Uncertainty to Enhance Human Safety and Work Efficiency. IEEE Trans. Robot 2019, 35, 817–832.
[CrossRef]

http://dx.doi.org/10.31614/cmes.2018.04891
http://dx.doi.org/10.1016/j.rcim.2019.01.015
http://dx.doi.org/10.1109/TRO.2019.2911800

Electronics 2020, 9, 859 17 of 18

4. Abbasnejad, G.; Yoon, J.; Lee, H. Optimum kinematic design of a planar cable-driven parallel robot with
wrench-closure gait trajectory. Mech. Mach. Theory 2016, 99, 1–18. [CrossRef]

5. Schuetz, C.; Baur, J.; Pfaff, J.; Buschmann, T.; Ulbrich, H. Evaluation of a Direct Optimization Method for
Trajectory Planning of a 9-DOF Redundant Fruit-Picking Manipulator. In Proceedings of the 2015 IEEE
International Conference on Robotics and Automation, Seattle, WA, USA, 26–30 May 2015.

6. Duditza, F.; Diaconescu, D.; Gogu, G. Structural and Geometrical Systematization of Spatial Positioning Kinematic
Chains Employed in Industrial Robots; Springer: Berlin/Heidelberg, Germany, 1987.

7. Gasparetto, A.; Zanotto, V. A technique for time-jerk optimal planning of robot trajectories. Robot. Comput.
Manuf. 2008, 24, 415–426. [CrossRef]

8. Kong, M.-X.; Ji, C.; Chen, Z.; Li, R.-F. Smooth and near time-optimal trajectory planning of robotic manipulator
with smooth constraint based on cubic B-spline. In Proceedings of the 2013 IEEE International Conference
on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013.

9. Bureerat, S.; Pholdee, N.; Radpukdee, T.; Jaroenapibal, P. Self-adaptive MRPBIL-DE for 6D robot multiobjective
trajectory planning. Expert Syst. Appl. 2019, 136, 133–144. [CrossRef]

10. Xidias, E.K. Time-optimal trajectory planning for hyper-redundant manipulators in 3D workspaces. Robot.
Comput. Manuf. 2018, 50, 286–298. [CrossRef]

11. Luo, L.-P.; Yuan, C.; Yan, R.-J.; Yuan, Q.; Wu, J.; Shin, K.-S.; Han, C.-S. Trajectory planning for energy
minimization of industry robotic manipulators using the Lagrange interpolation method. Int. J. Precis. Eng.
Manuf. 2015, 16, 911–917. [CrossRef]

12. Lin, H.-I. A Fast and Unified Method to Find a Minimum-Jerk Robot Joint Trajectory Using Particle Swarm
Optimization. J. Intell. Robot. Syst. 2013, 75, 379–392. [CrossRef]

13. Gasparetto, A.; Zanotto, V. A new method for smooth trajectory planning of robot manipulators. Mech. Mach.
Theory 2007, 42, 455–471. [CrossRef]

14. Shi, X.; Fang, H.; Guo, L. Multi-objective optimal trajectory planning of manipulators based on quintic
NURBS. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin,
China, 7–10 August 2016.

15. Yang, L. Research on Modeling and Control Algorithm of AUBO-I5 Manipulator. Master’s Thesis, North
University of China, Taiyuan, China, 2019.

16. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics: Modeling, Planning and Control; Springer: London,
UK, 2009; pp. 86–88.

17. Corke, P.I. Robotics, Vision & Control; Springer: Berlin/Heidelberg, Germany, 2017.
18. Hoai Nam, H. Robotic Machining: Development and Validation of a Numerical Model of Robotic Milling to

Optimise the Cutting Parameters. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada,
2019.

19. Paul, R.; Shimano, B. Kinematic control equations for simple manipulators. In Proceedings of the Decision
and Control including the 17th Symposium on Adaptive Processes, San Diego, CA, USA, 10–12 January 1979.

20. Sathiya, V.; Chinnadurai, M. Evolutionary Algorithms-Based Multi-Objective Optimal Mobile Robot Trajectory
Planning. Robotica 2019, 37, 1363–1382. [CrossRef]

21. Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective
Optimization. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [CrossRef]

22. Wang, H.F.; Zhu, S.Q.; Wu, W.-X. INSGA-II based multi-objective trajectory planning for manipulators. J.
Zhejiang Univ. 2012, 46, 622–628.

23. Coello, C.A.C.; Lechuga, M.S. MOPSO: A proposal for multiple objective particle swarm optimization. In
Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002.

24. Zhang, X.; Zheng, X.; Cheng, R.; Qiu, J.; Jin, Y. A competitive mechanism based multi-objective particle
swarm optimizer with fast convergence. Inf. Sci. 2018, 427, 63–76. [CrossRef]

25. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]

26. Li, Y.; Huang, T.; Chetwynd, D.G. An approach for smooth trajectory planning of high-speed pick-and-place
parallel robots using quintic B-splines. Mech. Mach. Theory 2018, 126, 479–490. [CrossRef]

27. Kim, M.; Hiroyasu, T.; Miki, M.; Watanabe, S. SPEA2+: Improving the Performance of the Strength Pareto
Evolutionary Algorithm 2. In Proceedings of the International Conference on Parallel Problem Solving from
Nature, Birmingham, UK, 18–22 September 2004.

http://dx.doi.org/10.1016/j.mechmachtheory.2015.12.009
http://dx.doi.org/10.1016/j.rcim.2007.04.001
http://dx.doi.org/10.1016/j.eswa.2019.06.033
http://dx.doi.org/10.1016/j.rcim.2017.10.005
http://dx.doi.org/10.1007/s12541-015-0119-9
http://dx.doi.org/10.1007/s10846-013-9982-8
http://dx.doi.org/10.1016/j.mechmachtheory.2006.04.002
http://dx.doi.org/10.1017/S026357471800156X
http://dx.doi.org/10.1109/MCI.2017.2742868
http://dx.doi.org/10.1016/j.ins.2017.10.037
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.mechmachtheory.2018.04.026

Electronics 2020, 9, 859 18 of 18

28. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans.
Evol. Comput. 2008, 11, 712–731. [CrossRef]

29. Roveda, L.; Pedrocchi, N.; Beschi, M.; Tosatti, L.M. High-accuracy robotized industrial assembly task control
schema with force overshoots avoidance. Control. Eng. Pr. 2018, 71, 142–153. [CrossRef]

30. Mokaram, S.; Aitken, J.; Martinez-Hernandez, U.; Eimontaite, I.; Cameron, D.; Rolph, J.; Gwilt, I.; McAree, O.;
Law, J. A ROS-integrated API for the KUKA LBR iiwa collaborative robot. IFAC PapersOnLine 2017, 50,
15859–15864. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1016/j.conengprac.2017.10.015
http://dx.doi.org/10.1016/j.ifacol.2017.08.2331
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Kinematics Analysis of Collaborative Robot
	Collaborative Robot Modeling
	Forward Kinematics Analysis
	Inverse Kinematic Analysis

	Multi-Objective Trajectory Planning
	Problem Statement
	Joint Trajectory Constructed Based on B-Spline
	Trajectory Competitive Multi-Objective Particle Swarm Optimization

	Experiment
	Trajectory Interpolation
	Trajectory Optimization
	Collaborative Robot Control

	Conclusions
	References

