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Abstract: Visual object tracking by Siamese networks has achieved favorable performance in
accuracy and speed. However, the features used in Siamese networks have spatially redundant
information, which increases computation and limits the discriminative ability of Siamese networks.
Addressing this issue, we present a novel frequency-aware feature (FAF) method for robust visual
object tracking in complex scenes. Unlike previous works, which select features from different
channels or layers, the proposed method factorizes the feature map into multi-frequency and reduces
the low-frequency information that is spatially redundant. By reducing the low-frequency map’s
resolution, the computation is saved and the receptive field of the layer is also increased to obtain
more discriminative information. To further improve the performance of the FAF, we design an
innovative data-independent augmentation for object tracking to improve the discriminative ability
of tracker, which enhanced linear representation among training samples by convex combinations of
the images and tags. Finally, a joint judgment strategy is proposed to adjust the bounding box result
that combines intersection-over-union (IoU) and classification scores to improve tracking accuracy.
Extensive experiments on 5 challenging benchmarks demonstrate that our FAF method performs
favorably against SOTA tracking methods while running around 45 frames per second.

Keywords: deep learning; computer version; object tracking

1. Introduction

In recent years, visual object tracking as a fundamental problem in the computer vision field
has been widely studied and applied to the unmanned vehicle, traffic surveillance, and intelligent
transportation. As a middle-level semantic problem, object tracking further extracts and process
low-level semantic features (such as image classification) to provide reliable target location and
tracking information for high-level semantic problems (such as action recognition). The tracker can
analyze manually or automatically selected target in a video sequence and effectively predict the
position and corresponding status of the current tracking target. However, the tracking targets have
changed from traditional vehicles, pedestrians, and other large objects to random, small objects in
complex scenes (such as background clutter, illumination variation, scale variation, low resolution,
occlusion, and fast motion), which are harder to predict. To address this issue, strong discriminative
deep learning models have been introduced to design robust and real-time tracking methods in
complex scenes.

Existing deep learning-based trackers can obtain robust tracking results for deep models [1–4]
have strong foreground and background discrimination ability by learning knowledge with massive
parameters. However, targets are changing during the tracking process and these models perform
heavy calculations to adapt to the current target, which limits the tracking speed and cannot meet the
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requirements of real-time tracking. Some methods try to solve this problem by choosing lightweight
models [5], but those methods usually improve tracking speed by sacrificing tracking accuracy.

The robust deep learning-based trackers use huge labeled training samples to train models.
The discriminative ability of the model will be stronger with a larger training dataset. Expansion of
training set requires additional manual annotation, thus some methods [6,7] try to general new training
samples by the geometric transformation of original samples, which can improve the discriminative
ability of the model. However, those data augmentation methods assume that samples share the same
class vicinity without considering the vicinity relation across different classes, which will limit its
improvement. Furthermore, classification or regression-based methods use the highest predicted score
as the object position and some methods choose the object position with both higher classification and
regression scores to improve the tracking accuracy. However, when classification and regression scores
are conflicted, it will reduce tracking robustness and cause tracking failure.

To address those issues, a novel robust real-time tracker FAF is proposed. Different from
existing tracking methods select features by different layers or channels, we innovatively introduce
frequency-aware features into object tracking, which can improve the model’s discrimination ability
while reducing feature calculation. In order to further to improve the model’s ability to distinguish
between background and target, an effective training method based on data fusion is innovatively
designed, which can help the model learns the vicinity relation across different classes. Finally, a joint
judgment algorithm combining regression and classification scores is introduced to further improve
the accuracy of the tracking model in complex scenes. Extensive experiments are evaluated on 5
famous benchmarks: OTB [8], LaSOT [9], GOT10K [10], TrackingNet [11], and VOT18 [12], which show
that our tracker outperforms the state-of-the-art trackers.

The contributions of this paper include:

• This paper proposes a novel robust real-time tracker FAF with combines frequency-aware features.
Different from existing tracking methods use linear combinations of shallow and deep layer
features for tracking, which need a more complex network. We innovative decompose the
layer feature into high-frequency and low-frequency features, then compress the redundant
low-frequency features and splice them into multi-frequency features. Without increasing
model complexity, the frequency-aware feature reduces feature calculations and improve feature
discrimination ability.

• To enhance the ability of tracking models to distinguish between foreground and background, we
innovatively design a training data fusion method to enhance the ability of the model to learn
vicinity relations across different classes. Both labels and samples are used to perform weighted
fusion and obtain fusion samples. By training with fusion samples, blurred boundaries between
classes can improve the discriminative ability of the model.

• To improve the tracking bounding box accuracy, a joint judgment strategy combining regression
and classification predicted scores are proposed. Compare with existing trackers use independent
or linearly combined classification and regression scores, the proposed strategy uses confidence
estimation with both predicted scores to improve the tracking accuracy. In particular, we can
solve the conflict of classification and regression scores in complex environments and enhance the
robustness of the model. To comprehensive verify the efficiency of FAF, extensive experiments
are evaluated on 5 famous benchmarks, the results prove that the proposed FAF outperforms the
state-of-the-art trackers while running at 45 fps.

2. Related Work

In this section, we will mainly introduce two categories of tracking methods: correlation filter
(CF)-based methods and deep-learning-based methods.
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2.1. Correlation Filter-Based Method

CF-based methods achieve many successful applications with high-speed features calculations in
recent years. [13] represents objects through hand-craft features (such as HOG) and achieves high-speed
tracking performance. To adapt to object scale changes, scale CFs are also designed [14]. Ref. [6] further
improves tracking speed by mapping feature calculations into Fourier space. With the development of
deep learning, the discrimination ability of deep features has been improved, [15,16] takes advantage
of deep features to track objects. To improve the accuracy of the model, [17,18] combines the deep
features of different layers with semantic and spatial information while [7] combines hand-craft and
deep features to enhance the discriminative ability of the model. However, deep features with better
discrimination ability are obtained through complex calculations by larger models, which limits the
speed performance of CF-based methods.

2.2. Deep Learning-Based Methods

With the rapid development of deep learning in recent years, deep learning models have been
widely used in the computer vision field and their powerful learning and discrimination abilities
have surpassed the traditional methods with state-of-the-art performance. For object tracking, deep
learning-based methods design tracking framework through deep network models, and perform
supervised or semi-supervised pre-training through massive samples to obtain robust tracking
models [19]. Afterward, deep reinforcement learning and Siamese network have also been introduced
into object tracking. Deep reinforcement learning-based methods [20,21] can effectively transfer
the training knowledge to the tracking environments and quickly adapt to the new scenes through
self-learning. To accelerate the tracking process, Siamese network [22–24] uses template matching
and non-update model strategies to reduce feature calculation and model update cost. However,
the existing methods mainly balance speed and accuracy by selecting different deep models without
optimization for deep features. Meanwhile, complex models require massive diverse training samples
while most tracking methods do not have data processing or only use geometric transformation to
increase sample diversity, which also limits the robustness of the model.

3. Proposed Method

In order to solve those issues, a novel robust real-time tracking method called FAF is proposed.
The proposed tracking framework consists of four modules: offline IoU modulation, online IoU
predictor, online classifier, and update modules as shown in Figure 1. For the offline training stage, the
offline IoU modulation is independently pre-trained with massive training datasets to learn the relation
between target scale and position. For the online tracking stage, the offline IoU Modulation will guide
the online IoU Predictor with the IoU regression score, and the classifier will give the classification
score. The joint judgment strategy will provide an optimized target scale and position information
based on the classification and regression score. Then the IoU predictor and classifier will be updated
by the update module. In the proposed method, ResNet18 is chosen as backbone and pre-trained on
ImageNet [25]. To improve the discrimination ability of the backbone, we innovatively optimize the
original backbone through the feature decomposition and sample fusion methods.
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Figure 1. The framework of the proposed frequency-aware feature (FAF).

For the offline training stage as shown in Figure 1, the optimized ResNet18 obtains two-way
frequency-aware features from fusion samples, as the shallow layer feature contains position
information and the deep layer feature contains semantic information, and the connected features
are used to learn the scale and position of the target. The conv and pooling layers are used to further
improve the discrimination ability of features. The IoU Modulation is trained on large video and image
datasets offline and without updates during online tracking. Our pre-training data fusion is described
in Section 3.1 and the frequency-aware feature is detailed in Section 3.2.

For the online tracking stage, the first frame of the object based on data fusion will be used to
initial the IoU predictor and the classifier module. Unlike the offline stage, the IoU predictor will obtain
two-way features: the relevant frame guidance features from IoU Modulation and target features from
the current frame. Then the IoU predictor and classifier will give the IoU and classification scores
of the object in the current frame. Finally, the proposed joint judgment strategy will give the final
prediction based on scores and update the IoU predictor and classifier based on the update module.
The joint judgment strategy is detailed in Section 3.3.

3.1. Training Sample Fusion

Large-scale deep learning has made breakthroughs in recent years, and they have two points in
common: First, more complex network structures are designed. Second, larger training datasets are
proposed. Because the training dataset requires lots of manual labeling, data augmentation methods
based on the existing datasets are used to increase the data. For object tracking problem, some
methods apply the geometric transformation to increase data and enhance the robustness of the model.
However, the existing data augmentation methods are based on the same class, and the relationship
between different classes is not considered, which cannot increase the diversity of the data and limit
its performance.

To solve this issue, we innovatively proposed a training sample fusion method to increase data
diversity. Unlike the classification problem, the object tracking problem only contains two classes: the
target and background, and pays less attention to what category the object belongs to. Inspired by [26],
we enhance the data by weighting the fused samples and sample labels. With such data augmentation,
the model can learn vicinity relations across examples of different classes.
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To be specific, we first generate candidate samples around the ground truth bounding box by
Gaussian distribution. By calculating the intersection-over-union (IoU) overlap with the ground truth,
candidate samples are classified into positive and negative samples. Different from existing methods
directly use the classified samples for model training, we fuse the positive and negative samples to
obtain fusion samples as shown in Figure 2, the size of the fusion sample is the maximum of the two
images. The details are shown in Algorithm 1.

Target
Label：Positive 

Background
Label：Negative

Fusion Sample
Label:

0.5 Negative and 
0.5 Positive

Fusion

Figure 2. Training sample fusion when λ = 0.5.

Algorithm 1 Training Sample Fusion.
Input: the image M, the ground truth bound box P(x, y, w, h), the number of fusion samples N f us, the
number of negative samples Nneg, the number of positive samples Npos, and interpolation strength
parameter α.

1: Generate candidate samples around P(x, y, w, h) using Gaussian distribution in M
2: Calculate IoU for all candidate samples with ground truth
3: Choose Npos positive samples when IoU > 0.7
4: Choose Nneg negative samples when IoU < 0.3
5: for n = 0 to N f us do

6: Random choose positive sample (x1, y1) and negative sample (x2, y2) from the corresponding

sample set, respectively
7: λ = Beta(α, α)
8: x̃ = λx1 + (1.-λ )x2
9: ỹ = λy1 + (1.-λ )y2

10: Obtain fusion sample (x̃, ỹ)
11: end for
12: Obtain N f us fusion samples
13: Loss = λ*criterion(outputs, y1) + (1 - λ)*criterion(outputs, y2)

The α ∈ (0, ∞) controls the interpolation between feature-target pairs, and generate weight λ from
Beta distribution. Finally, when calculating the loss function, we calculate the loss function separately
for the labels of the two samples and then perform a weighted sum of the loss functions according
to the weight λ. The experiment results show that the robustness of the model can be effectively
improved through data fusion.

3.2. Frequency-Aware Feature

The current models used for object tracking are fixed structures with fixed-scale convolutional
layers. However, the shallow convolution contains the apparent features, while the deep convolution
features contain the advanced semantic features. Therefore, the features included in traditional
convolution currently have information redundancy, which increases network calculation, and the
redundant information will reduce the network’s ability to discriminate targets.

To address this issue, we innovatively introduce frequence-aware features into object tracking.
Inspire by [27], unlike other tracking methods that distinguish between the features of different
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convolution layers, we decompose the features of each convolution layer. The features in a convolution
layer are divided into high-frequency features and low-frequency features, and high-frequency
features contain semantic details and low-frequency features contain rough structure. By combining
high-frequency features with compressed low-frequency features to reduce the network calculations
and improve the network’s ability to identify targets, as shown in Figure 3.

In Figure 3, the common features are divided into high-frequency and low-frequency features.
Compressing the low-frequency part, processing the data of the high-frequency and low-frequency
parts, and exchanging information between them, thereby can reduce the consumption of storage and
calculation by the convolution operation. The size of the low-frequency part is (0.5h, 0.5w), and the
length and width are exactly half of the high-frequency part (h, w). Although the low-frequency part
is compressed, it also effectively expands the receptive field in the original pixel space, which can
improve the recognition performance. We control the high and low-frequency feature segmentation
ratio by setting the hyperparameter α as follows,

X ∈ Rc×h×w

XH ∈ R(1−α)c×h×w

XL ∈ Rαc× h
2×

w
2

(1)

where X means common feature, w, and h are the width and height of the feature, c is the channel
number, and XH and XL is high-frequency and low-frequency features, respectively.

High 
Frequency
Feature

Low 
Frequency
Feature

High
Frequency
Feature

Low
Frequency
Feature

Update Exchange Update

Common Feature Frequency-Aware Feature

Figure 3. Frequency-aware feature.

For feature update operation, high-frequency and low-frequency features will update within
the corresponding frequency. And features exchange operation will update the high-frequency and
low-frequency features information between the different frequencies. Therefore, the high-frequency
feature includes not only its information process, but also maps from low frequency to high frequency,
and vice versa. Another advantage of the frequency-aware feature is that it has a large receptive field of
low frequency-feature maps. Compared with the ordinary feature, it effectively doubles the receptive
field, which will further help each frequency-aware feature capture more contextual information to
improve recognition performance. As far as we know, this is the first time to design a frequency-aware
feature-based Siamese network for object tracking.

3.3. Joint Judgment Strategy

The motivation of the proposed strategy comes from the classification confidence (CC) and
regression confidence (RC) is separately used by tracking methods, which cannot reflect the positioning
accuracy of the bounding box. Because the RC and the CC are not positively related, the existing
tracking methods can only solve the high CC with high RC, but for the other three types: low CC with
low RC, high CC with low RC, and low CC with high RC cannot be solved.

To solve this problem, a joint judgment strategy is designed based on [28]. Through a joint analysis
of classification and regression confidence, the final prediction result has both higher classification and
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regression confidences. We assume the bounding box is a Gaussian distribution PΘ(x) = 1
2πσ2 e−

(x−xe)
2σ2

2

,
and the ground truth bounding box is a Dirac delta distribution PD(x) = δ(x− xg). The KL divergence
is used to measure the asymmetry of two probability distributions. The position problem is converted
to minimize the KL divergence between PD(x) and PΘ(x), the closer the KL divergence is to 0, the
more similar the two probability distributions are, which is shown as follows,

Θ̂ = argmin
Θ

DKL(PD(x)||PΘ(x)) (2)

where the KL divergence makes the bounding box distribute by Gaussian and closer to the ground
truth. The IoU of the predicted bounding box is regarded as regression confidence. To further improve
the accuracy of the bounding box, the candidate bounding boxes within the threshold IoU will be
averaged based on their neighbor bounding boxes to obtain the final bounding box. Take the new x1
object position for ith box x1i as an example,

x1i :=
∑j x1j/σ2

x1,j

∑j 1/σ2
x1,j

(3)

where the final bounding box with both higher RC and higher CC is obtained. By combining the RC
and the CC, we effectively solve the three situations mentioned above. Furthermore, the more accurate
final bounding box will be generated based on the predicted neighbor bounding boxes, which can
alleviate the loss of object due to interference information, and improve the robustness of the model in
complex scenes.

4. Experiments

The proposed method is implemented in python with the PyTorch toolbox, which runs at 45 fps
on a PC with a 4-cores 4.2 GHz Intel 8700k CPU and two NVIDIA 2080 Ti GPU with 11G memory.
TrackingNet, OxUvA, and LaSOT datasets are used for pre-training and the network parameters
remain the same for all evaluation datasets. All hyperparameters are set according to related works.
The training parameters are described as follows. For the backbone network, we freeze all weight
during training. For the network , the weight decay is 0.00005, and momentum is 0.9. Dropout (50%)
is used in the first two fc layers. We use the mean-squared error loss function and train for 40 epochs
with 64 image pairs per batch. The ADAM optimizer is employed with initial learning rate of 10−3,
and using a factor 0.2 decay every epochs. The experiments are carefully designed based on the same
protocols and parameters.

4.1. Evaluation Otb100

The proposed FAF is first evaluated on a famous benchmark dataset OTB100 dataset. Eight
state-of-the-art trackers are compared with the proposed method, including ECO [7], MDNet [19],
ATOM [29], DeepSRDCF [30], CF2 [17], HDT [18], and KCF [6]. These methods include CF-based
methods, deep learning-based methods, and reinforcement learning-based methods.

The tracking results of state-of-the-art methods under one-pass evaluation (OPE) on OTB100.
As shown in Figure 4, the proposed FAF exhibits high precision and success rates. Compared with
state-of-the-art real-time tracker ATOM with 30 FPS, our tracker achieves 90.1% and 67.3% in the
precision and success rates, which are 1.9% and 1.4% higher than ATOM. KCF uses a handcraft feature
and can track at 160 FPS. However, due to the weak discrimination ability, lower tracking accuracy
is obtained. ECO and MDNet both use deep models with optimization, and achieve better tracking
performance, but they cannot meet the real-time tracking requirements. In addition, our tracker
outperforms them in both speed and accuracy in the following datasets experiments.
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Figure 4. The precision and success rate plots on the OTB100 dataset are performed using the one pass
evaluation (OPE) method. The proposed method performs well compared to state-of-the-art methods.

4.2. Ablation Analysis

To analysis the accuracy and speed depend on alpha, we compare different alpha value on OTB100
dataset. As shown in Table 1, we only increase positive or negative samples and no mixup samples
obtained when alpha is 0 or ∞. The tracker speed will be improved without mixup process. The tracker
performs better when alpha = 1, it gains 0.015 and 0.013 improvement than alpha = 0.5 on precision
and AUC rates, respectively. For mixup samples are hard samples when when alpha = 1, it can help
the trained model to have better robustness.

Table 1. Analysis the accuracy and speed of the proposed method depend on α. The best results are
in bold.

0 0.5 1 10 ∞

Prec. 0.875 0.886 0.901 0.891 0.883

AUC 0.654 0.660 0.673 0.664 0.659

FPS 48 45 45 45 48

To demonstrate the effectiveness of each component in the proposed method FAF, ablation
experiments are performed on OTB2015. The baseline means the original model without any
optimization, “I” means the baseline with training sample fusion optimization, and “I + II” denotes
the baseline with both training sample fusion and frequency-aware feature optimizations. For the
version of the full components “I + II + III” denotes the complete model with all training sample
fusion, frequency-aware feature, and joint judgment strategy optimizations. The performance of
all those variations is shown in Table 2, and every component can improve the performance of the
proposed method.
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Table 2. Ablation results of the FAF on the OTB100, which shows the effectiveness of each component
of the proposed method. The best results are in bold.

Baseline I I + II I + II + III

Prec. 0.882 0.887 0.893 0.901
AUC 0.659 0.662 0.667 0.673
FPS 30 30 45 45

Training sample fusion: Training sample fusion increases the diversity of samples and enhances
the ability of the model to learn vicinity relation across different classes, which can enhance the
discrimination ability of model without extra cost. The results show that 1.1% and 0.8% have been
improved on precision and AUC rates, respectively.

Frequency-aware feature: Frequency-aware feature increases the precision and AUC rates by
2.0% and 2.2%, and dramatically improves tracking speed by 1.5 times. Because we innovatively
decompose the layer feature into high-frequency and low-frequency features, and compress the
redundant low-frequency feature and splice them into multi-frequency features. Without increasing
model complexity, the frequency-aware feature can reduce redundant in low-frequency feature
calculations and further improves the feature discrimination ability of the proposed model.

Joint judgment strategy: Finally, to obtain a more accurate target position, the joint judgment
strategy is proposed by considering both classification and regression results. As shown in Table 2, the
precision and AUC rates are improved by 0.7% and 0.6%, respectively.

4.3. State-Of-The-Art Comparison

We compare our tracker FAF with state-of-the-art methods on four challenging tracking datasets.
VOT2018: VOT2018 consists of 60 test video sequences and the performance are evaluated by

failure rate (R), average overlap (A), and Expected Average Overlap (EAO) to provide the overall
performance ranking. We choose short-term tracking tests with state-of-the-art methods for comparison.
As shown in Table 3, we compare our method with the five top methods in the VOT2018 dataset.
Our method achieves the best R and EAO scores while having a competitive A score. Among the
top trackers, only SiamRPN++ achieves a 0.003 higher accuracy score than the proposed method.
Compared with ATOM, our method obtains 2.1%, 2.5%, and 0.7% improvements on EAO, R, and A
score, respectively.

GOT10K: GOT10K includes more than 10,000 video sequences and the target frames are over
1.5 million, all of which are manually annotated. The data set consists of five categories: animals,
man-made objects, people, natural scenery, and part, which can be subdivided into 563 target categories.
Only the GOT10K dataset is used to train model and 180 test video sequences are used to evaluate the
performance of FAF with five state-of-the-art methods. As shown in Table 4. FAF achieves the best
scores with 0.581, 0.453 and 0.672 on AUC, precision (0.5) and precision (0.75) rates. Compared with
non-real-time methods ECO and MDNet, the proposed method achieves huge improvements in all
three evaluation indexes.

TrackingNet: TrackingNet uses the video sequences in Youtube-BB and divides the original
23 categories into 27 categories. The video sequence is divided into 15 attributes by automatically
estimated and visually inspected. Use the DCF tracker to label missing target boxes. There are 12
chunks of 2511 sequences for the training and 1 chunk of 511 sequences for the testing. Table 5 shows
the results in terms of precision, normalized precision, and AUC. In terms of precision, normalized
precision, and AUC, C-RPN achieves scores of 0.619, 0.749, and 0.669, respectively. The proposed
method FAF outperforms the second method ATOM with 1.9%, 1.5%, and 2.4% in terms of precision,
normalized precision, and AUC rates, respectively.

LaSOT: LaSOT collects 1,400 sequences and 3.52 million frames of YouTube videos with an
average video length of 2512 frames. It contains 70 categories and each category contains 20 sequences,
the training subset contains 1120 videos, 2.83m frames, and the test subset contains 280 sequences,



Electronics 2020, 9, 854 10 of 13

690k frames. We evaluate the proposed method with five state-of-the-art methods on the test dataset
with 280 sequences. The results in terms of normalized precision and success are shown in Table 6.
Among those state-of-the-art methods, FAF achieves the best AUC and precision scores with 0.537 and
0.601. Compared with SiamRPN++, our method significantly improves the AUC and precision rates
with 4.1% and 3.2%, respectively.

Table 3. Comparison with state-of-the-art trackers on the VOT 2018 dataset. The results are presented
in terms of expected average overlap (EAO), accuracy value (A), and robustness value (R). The best
and second results are in red and blue, respectively.

SiamRPN++ [22] ATOM UPDT [31] DaSiamRPN [32] DRT [33] FAF

EAO 0.414 0.401 0.378 0.383 0.356 0.422
R 0.234 0.204 0.184 0.276 0.201 0.179
A 0.6 0.59 0.536 0.586 0.519 0.597

FPS 35 30 - 160 - 45

Table 4. Comparison with the state-of-the-art trackers on the GOT10K dataset. The results are presented
in terms of precision (0.5), precision (0.75), and robustness value (R). The best and second results are in
red and blue, respectively.

ATOM SiamFC [34] ECO MDNet CCOT [35] FAF

Prec.(0.5) 0.634 0.404 0.309 0.303 0.328 0.672
Prec.(0.75) 0.402 0.144 0.111 0.099 0.104 0.453

AUC 0.556 0.374 0.316 0.299 0.325 0.581
FPS 30 80 8 1 1 45

Table 5. Comparison with state-of-the-art trackers on the TrackingNet dataset. The results are
presented in terms of precision, normal.precision, and AUC. The best and second results are in red and
blue, respectively.

ATOM GFS-DCF [36] UDT [37] C-RPN [23] CACF [38] FAF

Prec. 0.648 0.566 0.557 0.619 0.536 0.667
Norn.Prec 0.771 0.718 0.702 0.749 0.467 0.786

AUC 0.703 0.609 0.611 0.669 0.608 0.727
FPS 30 8 55 32 35 44

Table 6. Comparison with state-of-the-art trackers on the LaSOT dataset. The results are presented in
terms of precision and AUC. The best and second results are in red and blue, respectively.

GradNet [39] ATOM SiamRPN++ [22] SPM [40] C-RPN FAF

Prec. 0.351 0.576 0.569 0.471 0.459 0.601
AUC 0.365 0.515 0.496 0.485 0.455 0.537
FPS 80 30 35 120 32 44

4.4. Failure Case Analysis

As shown in Figure 5, the first row is the Singer2 sequence, and the second row is the Tran
sequence, the proposed method does not perform well on those two sequences. For the Singer2
sequence, the the target and the background are too similar, the proposed method does not distinguish
between them accurately and looses the target. For the Tran sequence, the scale and appearance of
the target has changed drastically during the tracking process. Our tracker does not learn the target
characteristics accurately during the rapid and dramatic change of the target, which eventually caused
the target to be lost. We will try to design size-aware module and use handcraft features to solve those
problems in future work.



Electronics 2020, 9, 854 11 of 13

Figure 5. Failure case analysis. The red and green bounding boxes are the ground truth and results of
the proposed method, respectively.

5. Conclusions

In this paper, we present a novel tracking method FAF based on frequency-aware feature and
sample fusion. Our method innovatively factorizes feature map into different frequency features
and reduce the redundant information. The frequency-aware feature can improve the discrimination
ability by enlarging the receptive field of layers, while reducing calculations by compressing the
low-frequency feature. Further, our method designs a data-independent augmentation for object
tracking model training. The model can learn vicinity relations across different classes by convex
combination of both tags and images, which can improve the discrimination ability of model. Finally,
a joint judgment strategy based on regression and classification scores is proposed to fine-tune the
bounding box of the target, which can solve the conflict of regression and classification scores in
complex scenes and improve the robustness of the model. Extensive experiments on five famous
benchmarks show that our proposed FAF performs favorably against SOTA tracking methods while
running around 45 frames per second.
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