
electronics

Article

ASFIT: AUTOSAR-Based Software Fault Injection
Test for Vehicles

Jihyun Park and Byoungju Choi *

Department of Computer Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
pola0527@ewhain.net
* Correspondence: bjchoi@ewha.ac.kr; Tel.: +82-2-3277-2593

Received: 29 April 2020; Accepted: 18 May 2020; Published: 20 May 2020
����������
�������

Abstract: With recent increases in the amount of software installed in vehicles, the probability of
automotive software faults that lead to accidents has also increased. Because automotive software
faults can lead to serious accidents or even mortalities, vehicle software design and testing must
consider safety a top priority. ISO 26262 recommends fault injection testing as a measure to verify
the functional safety of vehicles. However, the standard does not clearly specify when and where
faults should be injected, and the tools to support fault injection testing for automotive software are
also insufficient. In the present study, we define faults that may occur in Automotive Open System
Architecture (AUTOSAR)-based automotive software and propose a fault injection method to be
applied during the software development process. The proposed method can inject different types of
faults that may occur in AUTOSAR-based automotive software, such as access, asymmetric, and timing
errors, while minimizing performance degradation due to fault injection, and without using any
separate hardware devices. The superior performance of the proposed method is demonstrated
through empirical studies applied to fault injection testing of a range of vehicle electronic control
unit software.

Keywords: software fault injection test; fault injection automation; AUTOSAR

1. Introduction

Recently, automobiles have been embedded with many electronic control systems, which are
connected to and interact with a network to exchange data. As the amount of software in the electronic
control unit (ECU) is rising, the frequency of software faults is also increasing [1]. Because automotive
software faults can lead to serious accidents or even mortalities, vehicle software design and testing
must consider safety the top priority. ISO 26262, the international standard for the functional safety of
road vehicles, recommends fault injection testing as a measure to verify functional safety [2]. However,
the standard does not clearly specify which faults should be injected, or when and where.

In the past, fault injection testing has been used to verify the fault tolerance of hardware or
software [3]. It attempted to verify fault tolerance by checking fault detection, fault isolation, reconfiguration,
and recovery after injecting faults. However, past fault injection tests have mainly focused on hardware
faults. Even software fault injection tests, in most cases, only imitate hardware faults, such as memory,
CPU, and communication faults [4]. However, as the amount of software installed in vehicles and the
importance of safety continue to increase, a practical software fault injection test method has become
necessary to verify the functional safety of software during the development process of automotive
electronics-embedded software (hereinafter referred to as “automotive software”).

Electronics 2020, 9, 0850; doi:10.3390/electronics9050850 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-4478-7565
http://www.mdpi.com/2079-9292/9/5/0850?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9050850
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 0850 2 of 21

In this paper, we propose a fault injection method to be applied during the ECU software
development process, based on Automotive Open System Architecture (AUTOSAR) [5]. AUTOSAR is
a standard platform for automotive software, created to improve automotive software development
productivity. AUTOSAR-based software is generally divided into four layers; calls often occur between
adjacent layers, whereas direct calls are rarely generated between non-adjacent layers. We define types
of software faults that can occur in the call relationship within a software component (hereinafter
referred to as “SWC”) of AUTOSAR as well as between different layers. We propose a method to inject
software faults in the basic software (hereinafter referred to as “BSW”) layer to enable the injection of
all software faults that we define. The main contribution of our method is that it enables the injection
of faults that can occur in automotive software without using any separate hardware devices while
minimizing performance degradation due to fault injection. We demonstrate the high quality of the
proposed method by applying it to a range of actual automotive software.

The paper is organized as follows. Section 2 discusses studies related to fault injection testing.
Section 3 defines AUTOSAR-based automotive software faults. Section 4 proposes a method for
software fault injection testing. Sections 5 and 6 analyze the effects of the proposed method. Finally,
Section 7 presents conclusions and considers future research directions.

2. Background and Related Work

This section introduces the existing research on fault injection testing and software fault types
applicable to AUTOSAR-based automotive software.

2.1. Fault Injection in the Development Process

ISO 26,262 suggests the V-model for automotive system development, as shown in Figure 1.
It recommends using fault injection testing in the entire development process, including the system
development (Hardware(HW)/Software(SW) integration test, system integration test, and vehicle
integration test), the hardware development (HW integration test), and the software development
(SW unit test and SW integration test). In this study, we focus on the fault injection test in SW
unit/integration tests during the software development process.

Electronics 2020, 9, x FOR PEER REVIEW 2 of 21 

 

is a standard platform for automotive software, created to improve automotive software 
development productivity. AUTOSAR-based software is generally divided into four layers; calls 
often occur between adjacent layers, whereas direct calls are rarely generated between non-adjacent 
layers. We define types of software faults that can occur in the call relationship within a software 
component (hereinafter referred to as “SWC”) of AUTOSAR as well as between different layers. We 
propose a method to inject software faults in the basic software (hereinafter referred to as “BSW”) 
layer to enable the injection of all software faults that we define. The main contribution of our method 
is that it enables the injection of faults that can occur in automotive software without using any 
separate hardware devices while minimizing performance degradation due to fault injection. We 
demonstrate the high quality of the proposed method by applying it to a range of actual automotive 
software. 

The paper is organized as follows. Section 2 discusses studies related to fault injection testing. 
Section 3 defines AUTOSAR-based automotive software faults. Section 4 proposes a method for 
software fault injection testing. Sections 5 and 6 analyze the effects of the proposed method. Finally, 
Section 7 presents conclusions and considers future research directions. 

2. Background and Related Work 

This section introduces the existing research on fault injection testing and software fault types 
applicable to AUTOSAR-based automotive software. 

2.1. Fault Injection in the Development Process 

ISO 26,262 suggests the V-model for automotive system development, as shown in Figure 1. It 
recommends using fault injection testing in the entire development process, including the system 
development (Hardware(HW)/Software(SW) integration test, system integration test, and vehicle 
integration test), the hardware development (HW integration test), and the software development 
(SW unit test and SW integration test). In this study, we focus on the fault injection test in SW 
unit/integration tests during the software development process. 

 
Figure 1. ISO 26,262 V-model. 

2.2. AUTOSAR-Based Automotive Software Fault Injection Method 

The fault injection methods that can be used during the software development steps are largely 
divided into fault injection implemented by hardware and fault injection implemented by software 
(software-implemented fault injection, SWIFI). 

The hardware-implemented fault injection methods use hardware characteristics to generate 
faults [6]. Principal hardware fault injection tools (FITs) include GOOFI-2 [7] and RIFLE [8]. Fault 
injection is also possible through a hardware probe such as TRACE32. However, these tools are 

Figure 1. ISO 26, 262 V-model.



Electronics 2020, 9, 0850 3 of 21

2.2. AUTOSAR-Based Automotive Software Fault Injection Method

The fault injection methods that can be used during the software development steps are largely
divided into fault injection implemented by hardware and fault injection implemented by software
(software-implemented fault injection, SWIFI).

The hardware-implemented fault injection methods use hardware characteristics to generate
faults [6]. Principal hardware fault injection tools (FITs) include GOOFI-2 [7] and RIFLE [8]. Fault injection
is also possible through a hardware probe such as TRACE32. However, these tools are expensive
because they inject faults using separate hardware devices and are more appropriate for hardware or
system development steps than for software development.

SWIFI is a cost-effective method of running software codes injected with faults, because unlike
hardware-implemented fault injection, it does not require a separate device. SWIFI methods in
AUTOSAR-based automotive software can largely be classified into three types: directly modifying the
software source code, using AUTOSAR’s hook function, and using a wrapper for the fault injection
target function.

Directly modifying the source code entails directly modifying the execution of the binary code
such that faults will be triggered when the corresponding code is executed [9]. This method accurately
injects faults at the position desired by the tester, but the execution flow may become different than that
of the original code because the source code has been changed. As automotive software is sensitive
to execution timing, the code may operate differently from the original intention when the timing is
changed by the modified code.

The hook function of AUTOSAR [10] acts by inserting tracking codes such as pre-task, post-task,
and error hooks in the functions defined in the AUTOSAR standard for the purposes of execution
monitoring or fault injection. This method works well if the functions defined in the standard are used,
but applying it in varied contexts is challenging because the hook function can vary depending on the
degree of implementation of the OS in accordance with the AUTOSAR standard.

Using a wrapper in the fault injection target function [11,12] creates wrapper components in line
with various AUTOSAR hierarchical structures and injects faults while monitoring the execution of the
original components. Most SWIFIs inject faults using a wrapper [13]. This method can inject various
faults, such as in the parameters, return values, and function calls of the fault injection target function,
but it is difficult to implement because it only uses software without the help of a hardware debugger.

2.3. Fault Types in Automotive Software

Before performing a fault injection test, the faults that should be injected must be defined.
AUTOSAR defines five error types that can occur in automotive software: data, program flow, access,
timing, and asymmetric errors [6]. A data error is caused by invalid values of messages exchanged
between function parameters, variables, and/or components. For instance, the sudden unintended
acceleration of Toyota vehicles, which was caused by a change in the data stored in the shared
memory to an invalid value, corresponds to a data error [14]. A program flow error involves the
execution of a program differently than what is expected due to omitted, invalid, or unnecessary
operations. An access error occurs when software attempts to accesses resources for which it does
not have permission. A timing error involves early or late delivery or omission of messages between
components. An asymmetric error is a fault that delivers conflicting messages when multiple software
components simultaneously receive a message. Tools that support the injection of these automotive
software faults include Kayotee [9], CaNoe [10], G-SWFIT [11], and GRINDER [12].

Kayotee is a FIT that directly modifies source codes and can inject a data error fault that changes
the value of a variable. However, other types of fault injection are not supported. A CaNoe-based
FIT uses the hook function provided by AUTOSAR and can inject data errors by intercepting and
changing the signals or messages in communication with external ECUs. However, the fault types that
can be injected are limited because the FIT cannot directly change the parameter or return value of the
function that is currently tracking for fault injection.



Electronics 2020, 9, 0850 4 of 21

G-SWFIT and GRINDER are tools that inject faults using a wrapper. Unlike CaNoe, which uses
the AUTOSAR hook function, a wrapper can be used to inject faults in the parameter or return value
of the fault injection target function or the function call itself. Depending on how the wrapper is
implemented, wrapper-based methods can perform fault injection for all five types of errors that can
occur in automotive software. G-SWFIT and GRINDER can perform fault injection for some types of
data and program flow errors. They can inject invalid values in the variables used in software or inject
faults in the related parameter or function itself when a function call occurs.

As described above, most automotive software FITs focus on data errors. The method we propose
can perform fault injection not just for data errors but for all five error types that can occur in
AUTOSAR-based applications.

3. AUTOSAR-Based Automotive Software Faults

In this section, we describe where and what type of faults can be injected in automotive software.
The fault injection position is derived from the SWCs of AUTOSAR-based automotive software and
the calling relationship between SWCs and other layers, while the error type that can occur at each
position in the AUTOSAR software is reflected in the final definition of AUTOSAR-based automotive
software faults.

3.1. Calling Relationships between AUTOSAR Software Layers

To inject faults into AUTOSAR-based automotive software, we first need to understand the
AUTOSAR platform. AUTOSAR is defined by the standard architecture for productivity improvement
in automotive electronics-embedded software development, as shown in Figure 2.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 21 

 

As described above, most automotive software FITs focus on data errors. The method we 
propose can perform fault injection not just for data errors but for all five error types that can occur 
in AUTOSAR-based applications. 

3. AUTOSAR-Based Automotive Software Faults 

In this section, we describe where and what type of faults can be injected in automotive software. 
The fault injection position is derived from the SWCs of AUTOSAR-based automotive software and 
the calling relationship between SWCs and other layers, while the error type that can occur at each 
position in the AUTOSAR software is reflected in the final definition of AUTOSAR-based automotive 
software faults. 

3.1. Calling Relationships Between AUTOSAR Software Layers 

To inject faults into AUTOSAR-based automotive software, we first need to understand the 
AUTOSAR platform. AUTOSAR is defined by the standard architecture for productivity 
improvement in automotive electronics-embedded software development, as shown in Figure 2. 

 
Figure 2. AUTOSAR software architecture. 

The software architecture defined in AUTOSAR is essentially composed of application software 
(ASW), a runtime environment (RTE), BSW, and a microcontroller abstraction layer (MCAL). The 
RTE layer of the virtual functional bus concept exists for development productivity improvement, 
and various SWCs are installed on top of this layer, in the ASW layer. Runnables are functions used 
to implement functions inside SWCs and to call each other. However, SWCs are implemented using 
different methods. For this reason, direct calls between different SWCs do not occur and SWCs 
instead communicate with other SWCs through the RTE layer. The OS and the software that provides 
services such as memory communication are installed in the BSW layer. Drivers related to the 
hardware device control are installed in the MCAL layer. In general, the calls between the layers of 
AUTOSAR occur between adjacent layers, but in order to maximize software performance, an SWC 
may call the BSW directly without passing through the RTE layer. 

The calling relationships that can occur in the AUTOSAR-based automotive software can be 
classified as follows: 

• SW–SW calling relationships: 

o Call between runnables within an SWC; 
o Call between SWC and RTE; 
o Call between SWC and BSW; 
o Call between RTE and BSW. 

• SW–HW calling relationships: 

o Call between BSW and MCAL. 

Figure 2. AUTOSAR software architecture.

The software architecture defined in AUTOSAR is essentially composed of application software
(ASW), a runtime environment (RTE), BSW, and a microcontroller abstraction layer (MCAL). The RTE
layer of the virtual functional bus concept exists for development productivity improvement,
and various SWCs are installed on top of this layer, in the ASW layer. Runnables are functions
used to implement functions inside SWCs and to call each other. However, SWCs are implemented
using different methods. For this reason, direct calls between different SWCs do not occur and SWCs
instead communicate with other SWCs through the RTE layer. The OS and the software that provides
services such as memory communication are installed in the BSW layer. Drivers related to the hardware
device control are installed in the MCAL layer. In general, the calls between the layers of AUTOSAR
occur between adjacent layers, but in order to maximize software performance, an SWC may call the
BSW directly without passing through the RTE layer.

The calling relationships that can occur in the AUTOSAR-based automotive software can be
classified as follows:



Electronics 2020, 9, 0850 5 of 21

• SW–SW calling relationships:

# Call between runnables within an SWC;
# Call between SWC and RTE;
# Call between SWC and BSW;
# Call between RTE and BSW.

• SW–HW calling relationships:

# Call between BSW and MCAL.

• HW–HW calling relationships:

# Call between drivers within MCALs.

3.2. Fault Injection Position

Fault injection positions must be identified in accordance with the unit and integration test steps
for the automotive software. The ISO 26,262 standard specifies that in the unit test, random faults such
as damaging the values of variables, changing the code, or damaging the value of the CPU register
should be injected in the software unit. The standard also specifies that in the integration test, the safety
mechanism should be verified by damaging the software or hardware components [2]. Accordingly,
we derived the positions for injecting faults and finally selected the “position where fault injection
using a wrapper is possible” as the fault injection position, which is our proposed method.

The positions at which fault injection for software unit testing are possible are statements inside
software units, such as a keyword, brace, or sequence; unary/binary operators; variables, such as a
scalar variable, global variable, array, pointer, or structure; and constants [15]. However, fault injection
in all units except the global variable is possible only via a direct code modification. Therefore, in our
proposed fault injection test using a wrapper, the unit test fault injection position is limited to
global variables.

In the software integration test, the position of integration between software components must
be the target of fault injection. As components can be divided by layer in AUTOSAR, the calling
relationship between layers presented in Section 3.1 becomes the fault injection position. A calling
process between layers involves a caller and callee. The fault injection positions were derived by
applying the interface mutation operator to each of the two functions [16,17].

The fault injection positions according to the unit and integration test steps of the automotive
software are as follows:

• SW unit test step:

# Global variables used in the SWC runnable.

• SW integration test step:

# Calling function (caller) in the calling relationship between layers: function call parameter
and call statement itself;

# Called function (callee): parameter received from the caller, variables used inside callee,
and return statement.



Electronics 2020, 9, 0850 6 of 21

3.3. Fault Types

As mentioned in Section 2.3, there are five error types that can occur in AUTOSAR-based
automotive software: data, program flow, access, timing, and asymmetric errors [18]. Accordingly,
we analyzed the causes of errors, derived the fault types, and listed them in Table 1.

3.4. AUTOSAR-Based Automotive Software Faults

We redefined automotive software faults as based on the AUTOSAR interface by applying the fault
types presented in Section 3.3 to each of the fault injection positions derived in Section 3.2. The data
error type is applied to the global variable, function parameter, and return value. Program flow and
timing errors are applied to the calling statement of the caller function and the return statement of the
callee function. Access errors are only applied to the global variables shared in the calling relationships.
Asymmetric errors are applied to return values when the design considered redundancy for fault
tolerance. The details are outlined in Table 2.

Table 1. Fault types.

AUTOSAR Application Error Type SWFIT Faults

Fault Type Description

Data error Fault caused by invalid values of a
parameter, variable, or message Invalid value Data error

Program flow error
Program running differently from what

is expected due to
omitted/invalid/unnecessary operations

Uncalled function Uncalled function

Bypass function call Bypass function call

Illegal instruction Running an invalid command

Access error
Fault generated when an SW

component attempts to accesses
resources for which it has no permission

Invalid address Accessing an invalid address

Invalid register Accessing an invalid register

Timing error Fault caused by early or late delivery or
omission of a message

Data delay Delay of data transmission

Data loss Data loss during transmission

No response No response

CPU clock corruption CPU clock error

Asymmetric error
Fault generated by delivery of different

values when multiple components
receive messages simultaneously

Asymmetric value Receiving asymmetric data



Electronics 2020, 9, 0850 7 of 21

Table 2. Automotive software faults based on the AUTOSAR interface.

Test Step Fault Injection Position Software Fault Fault ID
SW unit test Runnable Variables Global variable Data error Invalid value 1

SW
integration

test

SW–SW
integration

test

Runnable-Runnable

Caller

Parameter Data error Invalid value 2

Call statement
itself

Program flow
error

Uncalled function 3
Bypass function call 4

Illegal instruction 5

Callee

Global variable
Data error Invalid value 6

Access error Invalid address 7

Return statement

Data error Invalid value 8
Program flow

error Illegal instruction 9

Timing error Data error 10
CPU clock
corruption 11

SWC–RTE

Caller

Parameter
Data error Invalid value 12

Timing error Data delay 13
Data loss 14

Call statement
itself

Program flow
error

Uncalled function 15
Bypass function call 16

Illegal instruction 17

Timing error CPU clock
corruption 18

Callee

Global variable
Data error Invalid value 19

Access error Invalid address 20

Return statement

Data error Invalid value 21
Program flow

error Illegal instruction 22

Timing error
Data loss 23

No response 24
CPU clock
corruption 25

Asymmetric error Asymmetric value 26

SWC–BSW

Caller

Parameter
Data error Invalid value 27

Timing error Data delay 28

Call statement
itself

Program flow
error

Uncalled function 29
Bypass function call 30

Illegal instruction 31

Timing error CPU clock
corruption 32

Callee

Global variable
Data error Invalid value 33

Access error Invalid address 34

Return statement

Data error Invalid value 35
Program flow

error Illegal instruction 36

Timing error
Data loss 37

No response 38
CPU clock
corruption 39

Asymmetric error Asymmetric value 40

SW–HW
integration

test
SWC–ECUHW

Caller

Parameter
Data error Invalid value 41

Timing error Data delay 42

Call statement
itself

Program flow
error

Uncalled function 43
Bypass function call 44

Illegal instruction 45

Timing error CPU clock
corruption 46

Callee

Global variable
Data error Invalid value 47

Access error Invalid address 48

Return statement

Data error Invalid value 49
Program flow

error Illegal instruction 50

Timing error
Data loss 51

No response 52
CPU clock
corruption 53

Asymmetric error Asymmetric value 54

4. ASFIT: AUTOSAR-Based Automotive Software Fault Injection Method

To inject the faults defined in Section 3 in the automotive software, a fault is generated through an
analysis of the binary code execution of the automotive software, as shown in Figure 3; fault injection
is performed by integrating the fault into the automotive software. Fault generation is divided into a
module for extracting the position where fault injection is possible and a module for generating the
“fault injection code” into which the fault has been injected. Integrating the fault into the automotive



Electronics 2020, 9, 0850 8 of 21

software is divided into a module for monitoring the fault injection target and a fault injection module
that actually runs the fault.Electronics 2020, 9, x FOR PEER REVIEW 8 of 21 

 

 

Figure 3. ASFIT: AUTOSAR-based automotive software fault injection method. 

4.1. Extraction of a Fault Injection Position 

Table 2 defines the fault injection positions for each test step. Fault injection positions are derived 
through static analysis of the executable binary file of the fault injection test target software. The most 
important factor in deriving fault injection positions is to extract runnables and tasks. A runnable is 
a unit for running the commands inside an SWC together with a C function. A task is a set of 
runnables; one runnable can be included in multiple tasks [18]. Because runnables form the core of 
the SWC operation, we use the runnable as the minimum unit of fault injection and also as the unit 
for monitoring tasks that call and manage runnables for execution of fault injection. On the basis of 
the tasks and runnables, we extract the global variables used in the runnables, other runnables called 
by runnables, and/or the functions of the RTE/BSW layer.  

Fault injection positions extracted from binary automotive software: 

• Runnables inside SWC; 
• Tasks allocated to each runnable; 
• Global variables used in the runnables; 
• Runnables in the calling relationships (runnable–runnable, runnable (SWC)–RTE, runnable 

(SWC)–BSW) or prototypes of functions (parameter, return value). 

4.2. Generating the Fault Injection Code 

A fault injection code is a wrapper function that injects a fault when the correct time for fault 
injection arrives, while monitoring whether to inject the fault in a function identified as a fault 
injection position. The wrapper function is composed of a task wrapper “T_wrapper” for monitoring 
and an “F_wrapper,” a fault wrapper that actually injects the fault. The T_wrapper monitors whether 
the currently running task is included among the fault injection positions. If so, then the F_wrapper 
is called to inject the fault and the original task is continued.  

Figure 4 shows an example of injecting an uncalled function fault (fault type 15 in Table 2) when 
a function is called between the SWC–RTE layers in the task FuncOSTask_ASW_FW1_100ms. Figure 
4a shows a T_wrapper, which checks whether the fault injection is enabled and then checks whether 
the function called by the current task is the fault injection target function. If so, then the F_wrapper, 
as shown in Figure 4b, is called as described above. 

  

Figure 3. ASFIT: AUTOSAR-based automotive software fault injection method.

4.1. Extraction of a Fault Injection Position

Table 2 defines the fault injection positions for each test step. Fault injection positions are derived
through static analysis of the executable binary file of the fault injection test target software. The most
important factor in deriving fault injection positions is to extract runnables and tasks. A runnable
is a unit for running the commands inside an SWC together with a C function. A task is a set of
runnables; one runnable can be included in multiple tasks [18]. Because runnables form the core of the
SWC operation, we use the runnable as the minimum unit of fault injection and also as the unit for
monitoring tasks that call and manage runnables for execution of fault injection. On the basis of the
tasks and runnables, we extract the global variables used in the runnables, other runnables called by
runnables, and/or the functions of the RTE/BSW layer.

Fault injection positions extracted from binary automotive software:

• Runnables inside SWC;
• Tasks allocated to each runnable;
• Global variables used in the runnables;
• Runnables in the calling relationships (runnable–runnable, runnable (SWC)–RTE, runnable

(SWC)–BSW) or prototypes of functions (parameter, return value).

4.2. Generating the Fault Injection Code

A fault injection code is a wrapper function that injects a fault when the correct time for fault
injection arrives, while monitoring whether to inject the fault in a function identified as a fault injection
position. The wrapper function is composed of a task wrapper “T_wrapper” for monitoring and an
“F_wrapper,” a fault wrapper that actually injects the fault. The T_wrapper monitors whether the
currently running task is included among the fault injection positions. If so, then the F_wrapper is
called to inject the fault and the original task is continued.

Figure 4 shows an example of injecting an uncalled function fault (fault type 15 in Table 2) when a
function is called between the SWC–RTE layers in the task FuncOSTask_ASW_FW1_100ms. Figure 4a
shows a T_wrapper, which checks whether the fault injection is enabled and then checks whether
the function called by the current task is the fault injection target function. If so, then the F_wrapper,
as shown in Figure 4b, is called as described above.



Electronics 2020, 9, 0850 9 of 21Electronics 2020, 9, x FOR PEER REVIEW 9 of 21 

 

  

(a) T_wrapper (b) F_wrapper 

Figure 4. Example of fault injection code. 

4.3. T_Wrapper 

In Section 2.2, we compared directly modifying the code, using an AUTOSAR hook function, 
and using a wrapper as methods for injecting faults in AUTOSAR-based automotive software. 
Among these, we adopt the wrapper-based fault injection method. Using the wrapper function has a 
significant advantage: it generates the various faults defined in Table 2 by calling the wrapper 
function rather than the original function to inject faults. 

When injecting faults using a wrapper, caution should be exercised regarding how much effect 
the fault injection has on the original execution due to the wrapper. As AUTOSAR-based automotive 
software is a hard, real-time embedded system with a large time constraint, the fault injection must 
be performed with a minimum time overhead. 

To minimize the overhead due to fault injection, we monitor the task that includes the position 
where the fault is injected instead of monitoring the position directly. If the monitored task includes 
a fault injection position, then the fault is injected by calling the wrapper. In other words, we can 
reduce the overhead by checking whether the position is a fault injection target by monitoring only 
the task that consists of multiple runnables, instead of monitoring all the calls between runnables 
inside the SWC, the runnables of the SWC, and all function calls of the RTE/BSW/MCAL layers that 
may constitute the fault injection position. 

In Figure 5, the fault injection position is the call between SWC_runnable_1() and 
SWC_runnable_2(). To monitor all positions selected for fault injection for Task_1, we would need to 
monitor all the runnable calls of Task_1 and all the calling relationships inside SWC_runnable_1() 
and SWC_runnable_3(). In other words, at least six calls must be monitored. However, this method 
has a large overhead because whether a position is a fault injection target must be checked whenever 
a call occurs. 

Figure 4. Example of fault injection code.

4.3. T_Wrapper

In Section 2.2, we compared directly modifying the code, using an AUTOSAR hook function,
and using a wrapper as methods for injecting faults in AUTOSAR-based automotive software.
Among these, we adopt the wrapper-based fault injection method. Using the wrapper function has a
significant advantage: it generates the various faults defined in Table 2 by calling the wrapper function
rather than the original function to inject faults.

When injecting faults using a wrapper, caution should be exercised regarding how much effect
the fault injection has on the original execution due to the wrapper. As AUTOSAR-based automotive
software is a hard, real-time embedded system with a large time constraint, the fault injection must be
performed with a minimum time overhead.

To minimize the overhead due to fault injection, we monitor the task that includes the position
where the fault is injected instead of monitoring the position directly. If the monitored task includes
a fault injection position, then the fault is injected by calling the wrapper. In other words, we can
reduce the overhead by checking whether the position is a fault injection target by monitoring only the
task that consists of multiple runnables, instead of monitoring all the calls between runnables inside
the SWC, the runnables of the SWC, and all function calls of the RTE/BSW/MCAL layers that may
constitute the fault injection position.

In Figure 5, the fault injection position is the call between SWC_runnable_1() and SWC_runnable_2().
To monitor all positions selected for fault injection for Task_1, we would need to monitor all the runnable
calls of Task_1 and all the calling relationships inside SWC_runnable_1() and SWC_runnable_3().
In other words, at least six calls must be monitored. However, this method has a large overhead
because whether a position is a fault injection target must be checked whenever a call occurs.

The method we propose only monitors the task itself and performs monitoring for Task_1 only
once. When Task_1 is run, whether the fault injection position is included in the runnable called by
Task_1 is checked, and in this case the fault is injected immediately. This method saves overhead and
enables lightweight fault injection by not checking every time a call between layers occurs.



Electronics 2020, 9, 0850 10 of 21

Electronics 2020, 9, x FOR PEER REVIEW 10 of 21 

 

 
Figure 5. Example of task monitoring and fault injection. 

The method we propose only monitors the task itself and performs monitoring for Task_1 only 
once. When Task_1 is run, whether the fault injection position is included in the runnable called by 
Task_1 is checked, and in this case the fault is injected immediately. This method saves overhead and 
enables lightweight fault injection by not checking every time a call between layers occurs. 

4.4. F_Wrapper 

Our fault injection method uses a wrapper for the fault injection target function, but it does not 
generate a wrapper for the fault injection position. As described in Section 4.3, our method “injects a 
software fault using a wrapper for the functions of the BSW layer” when the task that includes the 
fault injection target is run. 

In fact, the wrapper-based fault injection method can vary depending on which layer’s function 
is used as the wrapper function, as shown in Table 3. In addition, the calling relationship into which 
a fault can be injected as well as the fault type can vary depending on the layer using the wrapper 
function. 

Only data and program flow errors can be injected when the wrapper function is generated in 
the SWC layer and a fault is injected, because the SWC cannot call the BSW layer functions, which 
are related to communication or memory management. However, if the wrapper function is 
generated in the BSW layer, then all five fault types in all layers of AUTOSAR from SWC to ECUHW 
layers can be injected because BSW-layer functions perform execution control (task module), memory 
management (memory module), and communication control (communication module), as shown in 
Figure 2. 

Table 3. Fault injection method using a wrapper for each AUTOSAR layer. 

Layer using 
Wrapper  

Description 
Calling Relationships in 

Which Faults Can Be 
Injected 

Fault Types That 
Can Be Injected 

SWC 

The SWC layer provides various 
services that run in automotive SW. 

The wrapper function injects faults in 
runnables or functions of the SWC 

layer. 

• Calls inside SWC 
• Calls between SWC and 

RTE 
• Calls between SWC and 

BSW 

• Data error 
• Program flow 

error 

RTE 

The RTE layer is an interface that 
connects the SWC and BSW layers. 

The wrapper function injects faults in 
functions of the RTE layer. 

• Calls between SWC and 
RTE 

• Calls between RTE and 
BSW 

• Data error 
• Program flow 

error 

Figure 5. Example of task monitoring and fault injection.

4.4. F_Wrapper

Our fault injection method uses a wrapper for the fault injection target function, but it does not
generate a wrapper for the fault injection position. As described in Section 4.3, our method “injects a
software fault using a wrapper for the functions of the BSW layer” when the task that includes the
fault injection target is run.

In fact, the wrapper-based fault injection method can vary depending on which layer’s function is
used as the wrapper function, as shown in Table 3. In addition, the calling relationship into which a fault
can be injected as well as the fault type can vary depending on the layer using the wrapper function.

Only data and program flow errors can be injected when the wrapper function is generated in the
SWC layer and a fault is injected, because the SWC cannot call the BSW layer functions, which are
related to communication or memory management. However, if the wrapper function is generated in
the BSW layer, then all five fault types in all layers of AUTOSAR from SWC to ECUHW layers can be
injected because BSW-layer functions perform execution control (task module), memory management
(memory module), and communication control (communication module), as shown in Figure 2.

The SW faults to be injected are related to the fault injection position, which may be a call between
runnables inside the SWC or a call between the SWC and the functions of the RTE/BSW/MCAL layers,
as listed in Table 3. We create a wrapper for each function corresponding to these fault injection
positions and inject faults by “implementing wrappers only for the functions of the BSW layer” rather
than performing fault monitoring and fault injection together. Generating the fault injection wrapper
only for the functions of the BSW layer can achieve the same effect as injecting faults directly to the
SWC or RTE layers. As the wrapper function can minimize the added codes, the execution binary size
can be also minimized.

The wrappers for fault injection are generated by the memory and communication modules of
the BSW layer. Even if data are changed in the SWC or RTE, the data are stored and managed by the
BSW-layer monitoring module. In this way, the corresponding wrappers are generated and the faults
are injected by them. Furthermore, calls between layers or communication with another ECU are
performed through the communication module of the BSW layer. Thus, even if a call is made in the
SWC, it is performed internally through the BSW-layer communication module. Therefore, the core
concept of our method is that fault injection for all layers is possible even if a fault injection wrapper is
not generated in each layer.



Electronics 2020, 9, 0850 11 of 21

Table 3. Fault injection method using a wrapper for each AUTOSAR layer.

Layer Using
Wrapper Description Calling Relationships in Which

Faults Can Be Injected
Fault Types That Can

Be Injected

SWC

The SWC layer provides various
services that run in automotive SW.

The wrapper function injects faults in
runnables or functions of the SWC layer.

• Calls inside SWC
• Calls between SWC and RTE
• Calls between SWC and BSW

• Data error
• Program flow error

RTE

The RTE layer is an interface that
connects the SWC and BSW layers.

The wrapper function injects faults in
functions of the RTE layer.

• Calls between SWC and RTE
• Calls between RTE and BSW

• Data error
• Program flow error

BSW
(our method)

The BSW layer performs service
execution control, memory

management, and device management.
The wrapper function injects faults in

functions of the BSW layer.

• Calls of all layers from SWC to
ECUHW layers

• Data error
• Program flow error
• Access error
• Timing error
• Asymmetric error

To illustrate further, in Figure 6 we use an “invalid address” for the global variable—the callee-side
runnable in a runnable–runnable call corresponding to fault ID 7. Before the call is injected,
when SWC_runnable_1() calls SWC_runnable_2() as shown in Figure 6a, the address of the global
variable accessed from callee SWC_runnable_2 exists in the unprotected memory area and can be
accessed from SWC_runnable_2. However, when the fault is injected by the proposed method,
the T_wrapper of the BSW layer is run before Task_1(), as shown in Figure 6b, and the F_wrapper for
fault injection is called ( 1O). The F_wrapper registers the memory ( 2O) in which the variable_1 accessed
from SWC_runnable_2 is registered as a protected memory in the OS. Then, while the original Task_1 is
performed ( 3O), an access error occurs when SWC_runnable_2() accesses variable_1 because it occupies
a memory area that is not allowed to access the variable.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 21 

 

BSW  
(our 

method) 

The BSW layer performs service 
execution control, memory 
management, and device 

management. 
The wrapper function injects faults in 

functions of the BSW layer. 

• Calls of all layers from 
SWC to ECUHW layers 

• Data error 
• Program flow 

error 
• Access error 
• Timing error 

• Asymmetric error 

The SW faults to be injected are related to the fault injection position, which may be a call 
between runnables inside the SWC or a call between the SWC and the functions of the 
RTE/BSW/MCAL layers, as listed in Table 3. We create a wrapper for each function corresponding to 
these fault injection positions and inject faults by “implementing wrappers only for the functions of 
the BSW layer” rather than performing fault monitoring and fault injection together. Generating the 
fault injection wrapper only for the functions of the BSW layer can achieve the same effect as injecting 
faults directly to the SWC or RTE layers. As the wrapper function can minimize the added codes, the 
execution binary size can be also minimized. 

The wrappers for fault injection are generated by the memory and communication modules of 
the BSW layer. Even if data are changed in the SWC or RTE, the data are stored and managed by the 
BSW-layer monitoring module. In this way, the corresponding wrappers are generated and the faults 
are injected by them. Furthermore, calls between layers or communication with another ECU are 
performed through the communication module of the BSW layer. Thus, even if a call is made in the 
SWC, it is performed internally through the BSW-layer communication module. Therefore, the core 
concept of our method is that fault injection for all layers is possible even if a fault injection wrapper 
is not generated in each layer. 

To illustrate further, in Figure 6 we use an “invalid address” for the global variable—the callee-
side runnable in a runnable–runnable call corresponding to fault ID 7. Before the call is injected, when 
SWC_runnable_1() calls SWC_runnable_2() as shown in Figure 6a, the address of the global variable 
accessed from callee SWC_runnable_2 exists in the unprotected memory area and can be accessed 
from SWC_runnable_2. However, when the fault is injected by the proposed method, the T_wrapper 
of the BSW layer is run before Task_1(), as shown in Figure 6b, and the F_wrapper for fault injection 
is called (①). The F_wrapper registers the memory (②) in which the variable_1 accessed from 
SWC_runnable_2 is registered as a protected memory in the OS. Then, while the original Task_1 is 
performed (③ ), an access error occurs when SWC_runnable_2() accesses variable_1 because it 
occupies a memory area that is not allowed to access the variable. 

  

(a) Before fault injection (b) Fault injection 

Figure 6. Invalid address fault injection for variables in a runnable–runnable call. 

It is worth noting that if faults are injected by generating a wrapper for SWC_runnable_2() (the 
fault injection position in this example) without using the F_wrapper in the BSW, then a fault of 

Figure 6. Invalid address fault injection for variables in a runnable–runnable call.

It is worth noting that if faults are injected by generating a wrapper for SWC_runnable_2()
(the fault injection position in this example) without using the F_wrapper in the BSW, then a fault of
changing the value of variable_1 can be injected, but a fault that changes the address of the variable to
a protected memory area of the OS to make it an inaccessible address cannot be injected.



Electronics 2020, 9, 0850 12 of 21

5. Empirical Study

For the fault types that we defined, we compared the options of injecting faults in the automotive
software using ASFIT versus using the existing fault injection method.

5.1. Experiment Design

The purpose of this experiment is to demonstrate the superior performance of our method by
comparing how well the faults defined in Table 2 are supported by the existing fault injection methods
and the proposed method. As shown in Table 4, fault injection methods using hardware [19–21] and
using SWIFI [9–12], as mentioned in Section 2.2, were selected for comparison.

Table 4. Fault injection method for performing the experiment.

Fault Injection Method

SW-based method

ASFIT
Kayotee [9]

CaNoe-based FIT [10]
G-SWFIT [11]

GRINDER [12]

HW-based method
TRACE32 [19]

GreenHills Debug Probes (hereinafter, GHS Probe) [20]
Code Warrior IDE (hereinafter, CW IDE) [21]

The software faults that can occur also differ according to the characteristics of the ECU. Therefore,
various ECUs were used to inject all the automotive software fault types defined in Table 2. As shown in
Figure 7, the ECUs used in this experiment were a wiper control system, which is a body control module
for vehicle interior convenience facility control; an electronic steering column lock (ESCL) control
system, which acts as a smart key control; and a vehicle control unit (VCU), which is a vehicle driving
system based on a mobile open platform for experimental development of cyber-physical systems.Electronics 2020, 9, x FOR PEER REVIEW 13 of 21 

 

 
Figure 7. Target ECU for the experiment. 

5.2. Experiment Results 

The software faults that can be injected by each fault injection mechanism are listed in Table 5. 
The proposed ASFIT can inject all 54 faults, but other methods can inject only 12 to 42 faults. 

Table 5. Software faults that can be injected. 

Fault 
Injecting 
Method 

Software Fault ID # 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

54 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
36 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

SW-based method 

ASFIT 
o o o o o o o o o o o o o o o o o o 

54 o o o o o o o o o o o o o o o o o o 
o o o o o o o o o o o o o o o o o o 

Kayotee 
o x x x x o x x x x x o x x x x x x 

5 x x x x x x x X o x x x x x x x x x 
x x x x o x x x x x x x x x x x x x 

CaNoe 
x o x x x o x o x x x o x x x x x x 

12 o x o x x x x x o x x x x x o x o x 
x x x x o x x x x x o x o x x x x x 

G-SWFIT 
x o x x x o x o x x x o x x x x x x 

12 o x o x x x x x o x x x x x o x o x 
x x x x o x x x x x o x o x x x x x 

GRINDER 
x o x x x o x o x o x o o o x x x x 

23 o x o x o o x x o o x x x x o x o x 
o o x x o o x x x x o x o x o o x x 

HW-based method 

TRACE32 
o o o o o o x o o o o o x o o o o o 

42 o x o o o x o x O x o o o o o x o o 
o x o x o x o o o o o x o o o o o x 

GHS Probe 
o o o o o o x o o o o o x o o o o o 

42 o x o o o x o x o x o o o o o x o o 
o x o x o x o o o o o x o o o o o x 

Code Warrior o o o o o o x o o o o o x o o o o o 42 

Figure 7. Target ECU for the experiment.



Electronics 2020, 9, 0850 13 of 21

5.2. Experiment Results

The software faults that can be injected by each fault injection mechanism are listed in Table ??.
The proposed ASFIT can inject all 54 faults, but other methods can inject only 12 to 42 faults.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 22 

 

 
Figure 7. Target ECU for the experiment. 

5.2. Experiment Results 

The software faults that can be injected by each fault injection mechanism are listed in Table 5. 
The proposed ASFIT can inject all 54 faults, but other methods can inject only 12 to 42 faults. 

Table 5. Software faults that can be injected. 

Fault 
Injecting 
Method 

Software Fault ID # 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

54 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
36 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

SW-based method 

ASFIT 
o o o o o o o o o o o o o o o o o o 

54 o o o o o o o o o o o o o o o o o o 
o o o o o o o o o o o o o o o o o o 

Kayotee 
o x x x x o x x x x x o x x x x x x 

5 x x x x x x x X o x x x x x x x x x 
x x x x o x x x x x x x x x x x x x 

CaNoe 
x o x x x o x o x x x o x x x x x x 

12 o x o x x x x x o x x x x x o x o x 
x x x x o x x x x x o x o x x x x x 

G-SWFIT 
x o x x x o x o x x x o x x x x x x 

12 o x o x x x x x o x x x x x o x o x 
x x x x o x x x x x o x o x x x x x 

GRINDER 
x o x x x o x o x o x o o o x x x x 

23 o x o x o o x x o o x x x x o x o x 
o o x x o o x x x x o x o x o o x x 

HW-based method 

TRACE32 
o o o o o o x o o o o o x o o o o o 

42 o x o o o x o x O x o o o o o x o o 
o x o x o x o o o o o x o o o o o x 

GHS Probe 
o o o o o o x o o o o o x o o o o o 

42 o x o o o x o x o x o o o o o x o o 
o x o x o x o o o o o x o o o o o x 

Code Warrior 
o o o o o o x o o o o o x o o o o o 

42 o x o o o x o x o x o o o o o x o o 
o x o x o x o o o o o x o o o o o x 

5.3. Analysis

Figure 8f compares the numbers of faults that can be injected by ASFIT and other fault injection
methods out of a total of 54 faults. ASFIT can inject all 54 faults, whereas the software-based FIT tools
can inject 5–23 faults and the hardware-based FIT tools can inject 42 faults. Figure 8a–e shows the
results for the 54 faults by error type.

The software-based FIT tools Kayotee, CaNoe, and G-SWFIT can inject 5, 12, and 12 faults,
respectively, related to data error, as shown in Figure 8a. As shown in Table 4, CaNoe and G-SWFIT
can only inject faults related to data errors that change the variables, change the parameters, or return
values used in calling relationships between functions. Kayotee can only inject data error faults for
variables used in the software. However, these three tools cannot inject software faults related to
program flow, access, timing, or asymmetric errors.

According to ISO 26262, GRINDER, another software-based FIT tool, can inject bit flips, data
type-based corruption, and timing faults for every layer of AUTOSAR [12]. However, bit flips and data
type-based corruption faults can be injected only in the calling relationship functions; data errors for
global variables cannot be injected. Moreover, CPU clock corruption, a timing error fault that can be
injected by the CPU clock control corresponding to the MCAL layer, cannot be injected by GRINDER



Electronics 2020, 9, 0850 14 of 21

either. In addition, fault injection for access, program flow, and asymmetric errors, excluding data or
timing errors, was not supported.

TRACE32, GHS Probe, and CW IDE, which inject faults using a hardware debugger, can inject
faults at the desired position by adding a breakpoint in the source code [19–21]. These tools can
inject most faults but cannot inject some timing errors or access and asymmetric errors. In the case of
timing errors, they can inject data loss and CPU clock corruption faults through data manipulation
after stopping the execution through a breakpoint, but cannot inject faults such as data delay and no
response that occur during execution.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 21 

 

o x o o o x o x o x o o o o o x o o 
o x o x o x o o o o o x o o o o o x 

5.3. Analysis 

Figure 8f compares the numbers of faults that can be injected by ASFIT and other fault injection 
methods out of a total of 54 faults. ASFIT can inject all 54 faults, whereas the software-based FIT tools 
can inject 5–23 faults and the hardware-based FIT tools can inject 42 faults. Figure 8a–e shows the 
results for the 54 faults by error type. 

  
(a) Data error (b) Access error 

  
(c) Program flow error  (d) Timing error 

  
(e) Asymmetric error  (f) All errors 

Figure 8. Comparison of numbers of faults that can be injected by AUTOSAR error type. 

The software-based FIT tools Kayotee, CaNoe, and G-SWFIT can inject 5, 12, and 12 faults, 
respectively, related to data error, as shown in Figure 8a. As shown in Table 4, CaNoe and G-SWFIT 
can only inject faults related to data errors that change the variables, change the parameters, or return 
values used in calling relationships between functions. Kayotee can only inject data error faults for 
variables used in the software. However, these three tools cannot inject software faults related to 
program flow, access, timing, or asymmetric errors. 

According to ISO 26262, GRINDER, another software-based FIT tool, can inject bit flips, data 
type-based corruption, and timing faults for every layer of AUTOSAR [12]. However, bit flips and 
data type-based corruption faults can be injected only in the calling relationship functions; data errors 
for global variables cannot be injected. Moreover, CPU clock corruption, a timing error fault that can 

Figure 8. Comparison of numbers of faults that can be injected by AUTOSAR error type.

The greatest advantage of ASFIT is that, unlike other methods, it can inject all faults related to
access, timing, and asymmetric errors. As automotive software is a hard, real-time system composed
of various ECUs, the management of shared memory is critical and delays should be prevented when
interacting with these ECUs. Furthermore, a fault that occurs during execution of the software must
be accurately communicated to other interacting ECUs. Therefore, functional safety must be verified
through fault injection for related access, timing, and asymmetric errors. In the following, we analyze
the proposed ASFIT more concretely with particular cases of these faults.



Electronics 2020, 9, 0850 15 of 21

1 Case 1 (ESCL access error): fault ID 7—invalid address fault injection for global variables in the
callee of the runnable–runnable integration test level.

The ESCL locks or unlocks the wheel using the vehicle’s smart key. The fault that we injected
checks consistency for the handle lock state of the vehicle between the ESCL hardware and the control
system and then changes the address of a variable used to supply power to the ESCL to an invalid
value. When this fault occurs, normal power supply to the ESCL is impossible because the variable
value cannot be read, and the task that contains the runnable related to the ESCL control is rebooted
for safety.

This fault is injected in the step when the runnables inside the SWC are integrated. The fault
that we inject changes the address of the global variable b_ESCLPowerSupplied, which is used in
ESCLPowerSupply(), corresponding to the callee when the runnable EsclConsistencyCheck() calls the
runnable ESCLPowerSupply(), as shown in Figure 9.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 21 

 

be injected by the CPU clock control corresponding to the MCAL layer, cannot be injected by 
GRINDER either. In addition, fault injection for access, program flow, and asymmetric errors, 
excluding data or timing errors, was not supported. 

TRACE32, GHS Probe, and CW IDE, which inject faults using a hardware debugger, can inject 
faults at the desired position by adding a breakpoint in the source code [19–21]. These tools can inject 
most faults but cannot inject some timing errors or access and asymmetric errors. In the case of timing 
errors, they can inject data loss and CPU clock corruption faults through data manipulation after 
stopping the execution through a breakpoint, but cannot inject faults such as data delay and no 
response that occur during execution. 

The greatest advantage of ASFIT is that, unlike other methods, it can inject all faults related to 
access, timing, and asymmetric errors. As automotive software is a hard, real-time system composed 
of various ECUs, the management of shared memory is critical and delays should be prevented when 
interacting with these ECUs. Furthermore, a fault that occurs during execution of the software must 
be accurately communicated to other interacting ECUs. Therefore, functional safety must be verified 
through fault injection for related access, timing, and asymmetric errors. In the following, we analyze 
the proposed ASFIT more concretely with particular cases of these faults. 

1. Case 1 (ESCL access error): fault ID 7—invalid address fault injection for global 
variables in the callee of the runnable–runnable integration test level. 

The ESCL locks or unlocks the wheel using the vehicle’s smart key. The fault that we injected 
checks consistency for the handle lock state of the vehicle between the ESCL hardware and the control 
system and then changes the address of a variable used to supply power to the ESCL to an invalid 
value. When this fault occurs, normal power supply to the ESCL is impossible because the variable 
value cannot be read, and the task that contains the runnable related to the ESCL control is rebooted 
for safety. 

This fault is injected in the step when the runnables inside the SWC are integrated. The fault that 
we inject changes the address of the global variable b_ESCLPowerSupplied, which is used in 
ESCLPowerSupply(), corresponding to the callee when the runnable EsclConsistencyCheck() calls 
the runnable ESCLPowerSupply(), as shown in Figure 9. 

 
Figure 9. Case 1: access error fault injection using ASFIT. 

The call between ESCLConsistencyCheck() and ESCLPowerSupply() occurs when the task 
FuncOSTask_BSW_FG3_AppModeRequest() is executed. Therefore, the T_wrapper of the 
corresponding task checks whether it is the fault injection target, then injects the fault by calling the 
F_wrapper (①), and finally calls the original task (②). As the access error is a fault that accesses an 
address for which it does not have access permission, the address in the global variable 

Figure 9. Case 1: access error fault injection using ASFIT.

The call between ESCLConsistencyCheck() and ESCLPowerSupply() occurs when the task
FuncOSTask_BSW_FG3_AppModeRequest() is executed. Therefore, the T_wrapper of the corresponding
task checks whether it is the fault injection target, then injects the fault by calling the F_wrapper ( 1O),
and finally calls the original task ( 2O). As the access error is a fault that accesses an address for which it
does not have access permission, the address in the global variable b_ESCLPowerSupplied is registered
in the protected memory managed by the OS. Then, when ESCLPowerSupply() attempts to access the
variable, an access error occurs because it does not have the access permission.

To check the results of fault injection using ASFIT, we operated LEDs when the fault injection
code was executed in an environment wherein the automotive software operated. When a fault is
not injected and the operation is normal, the initial state of the LED (all LEDs are on) is maintained,
and when a fault is injected, a specific LED is turned off in the fault injection function. As with the
initial state of the LED, all LEDs return to the on state when the target board is rebooted or when the
LED control function is called within the safety mechanism.

Figure 10a shows that the third LED from the left is turned off to confirm the occurrence of an
access error due to fault injection. After the fault was injected, the task was restarted, and all the LEDs
turned on, as shown in Figure 10a. This finding shows that the safety mechanism that we defined
works well.



Electronics 2020, 9, 0850 16 of 21

The existing software-based fault injection method does not support changing the memory area
protected by the OS, while in the hardware fault injection method, it is difficult to find the memory
area protected by the OS without the total source code of the OS. In contrast, ASFIT can perform fault
injection because it finds the protected memory area of the OS from the binary when the fault injection
code is generated.

Electronics 2020, 9, x FOR PEER REVIEW 16 of 21 

 

b_ESCLPowerSupplied is registered in the protected memory managed by the OS. Then, when 
ESCLPowerSupply() attempts to access the variable, an access error occurs because it does not have 
the access permission. 

To check the results of fault injection using ASFIT, we operated LEDs when the fault injection 
code was executed in an environment wherein the automotive software operated. When a fault is not 
injected and the operation is normal, the initial state of the LED (all LEDs are on) is maintained, and 
when a fault is injected, a specific LED is turned off in the fault injection function. As with the initial 
state of the LED, all LEDs return to the on state when the target board is rebooted or when the LED 
control function is called within the safety mechanism. 

Figure 10a shows that the third LED from the left is turned off to confirm the occurrence of an 
access error due to fault injection. After the fault was injected, the task was restarted, and all the LEDs 
turned on, as shown in Figure 10a. This finding shows that the safety mechanism that we defined 
works well. 

 

(a) Fault injection (b) Operation of the safety mechanism 

Figure 10. Fault injection result. 

The existing software-based fault injection method does not support changing the memory area 
protected by the OS, while in the hardware fault injection method, it is difficult to find the memory 
area protected by the OS without the total source code of the OS. In contrast, ASFIT can perform fault 
injection because it finds the protected memory area of the OS from the binary when the fault injection 
code is generated. 

2. Case 2 (ESCL timing error): fault ID 13—data delay fault injection for the 
parameter of the caller at the SWC–RTE integration test level. 

The ESCL locks or unlocks the wheel using the vehicle’s smart key. The fault that we injected 
delays the value of the data exchanged during communication to check consistency between the 
ESCL hardware and the control system. 

This fault is injected in the step when the RTE function is called by a runnable inside the SWC, 
at the integration test level of the SWC and the RTE layer. This fault delays the transmission of the 
value of the parameter l_ESCLUnlock transmitted from the caller EsclControl() when the runnable 
EsclControl() calls Rte_Write_P_ConsistencyCheck_L_ESCLUnlock(). When this fault occurs, 
consistency between the ESCL hardware and the control system cannot be checked, and the safety 
mechanism that stops power to the ESCL until consistency can be confirmed is activated. 

Figure 11 shows the concrete fault injection process in detail. The T_wrapper of a task that 
includes a SWC–RTE call, which is the fault injection position, injects a fault (①) by calling the 
F_wrapper, and then calls the original task (②). At this time, the F_wrapper TE_Delay() activates the 
fault by changing the address of the RTE function called by the SWC–RTE calling code to the address 
of Delay(). 

Figure 10. Fault injection result.

2 Case 2 (ESCL timing error): fault ID 13—data delay fault injection for the parameter of the
caller at the SWC–RTE integration test level.

The ESCL locks or unlocks the wheel using the vehicle’s smart key. The fault that we injected
delays the value of the data exchanged during communication to check consistency between the ESCL
hardware and the control system.

This fault is injected in the step when the RTE function is called by a runnable inside the SWC, at the
integration test level of the SWC and the RTE layer. This fault delays the transmission of the value of
the parameter l_ESCLUnlock transmitted from the caller EsclControl() when the runnable EsclControl()
calls Rte_Write_P_ConsistencyCheck_L_ESCLUnlock(). When this fault occurs, consistency between
the ESCL hardware and the control system cannot be checked, and the safety mechanism that stops
power to the ESCL until consistency can be confirmed is activated.

Figure 11 shows the concrete fault injection process in detail. The T_wrapper of a task that includes
a SWC–RTE call, which is the fault injection position, injects a fault ( 1O) by calling the F_wrapper, and
then calls the original task ( 2O). At this time, the F_wrapper TE_Delay() activates the fault by changing
the address of the RTE function called by the SWC–RTE calling code to the address of Delay().

As in Case 1, to check the results of fault injection by ASFIT, we modified the fault injection code
such that it would control the LEDs when the code was executed in an environment wherein the
automotive software was operated. Furthermore, as in Case 1, the LEDs were turned off and the ESCL
was rebooted after the fault injection. All the LEDs were then turned on, indicating that our proposed
design for the safety mechanism works well.

This fault can be injected by software-based fault injection but not by hardware-based fault
injection. As mentioned above, the hardware-based fault injection method stops execution in order
to inject faults. However, unlike the change in the value of the allocated memory or register, when a
delay occurs an execution code must be added, which requires software rebuilding.



Electronics 2020, 9, 0850 17 of 21
Electronics 2020, 9, x FOR PEER REVIEW 17 of 21 

 

 
Figure 11. Case 2: timing error fault injection using ASFIT. 

As in Case 1, to check the results of fault injection by ASFIT, we modified the fault injection code 
such that it would control the LEDs when the code was executed in an environment wherein the 
automotive software was operated. Furthermore, as in Case 1, the LEDs were turned off and the ESCL 
was rebooted after the fault injection. All the LEDs were then turned on, indicating that our proposed 
design for the safety mechanism works well. 

This fault can be injected by software-based fault injection but not by hardware-based fault 
injection. As mentioned above, the hardware-based fault injection method stops execution in order 
to inject faults. However, unlike the change in the value of the allocated memory or register, when a 
delay occurs an execution code must be added, which requires software rebuilding. 

3. Case 3 (asymmetric error): fault ID 40—asymmetric value fault injection for the 
return statement of the callee at the SWC–BSW integration test level. 

The VCU performs control related to vehicle driving, such as the motor and steering wheel. The 
fault that we injected calls a function that notifies an error to the entire system when an error occurs. 
At this time, instead of sending the same value, the error value of one call is changed. When this fault 
occurs, the system sequentially stops operations and shuts down. 

This fault occurs in the integration test level of the SWC and the BSW layer. The fault that we 
injected occurs in the SWC, as shown in Figure 12. When Det_ReportError() is called, the error value 
transmitted from the callee Det_ReportError() to another SWC or the ECU is changed uniquely for a 
specific SWC. When this fault occurs, the safety mechanism that stops all the operations sequentially 
and shuts down the system is activated. It is difficult to confirm the operation of the safety mechanism 
only by the operation of the LED. Thus, in this case, to verify the operation of the safety mechanism, 
a serial port was connected to the target for debugging. 

Figure 11. Case 2: timing error fault injection using ASFIT.

3 Case 3 (asymmetric error): fault ID 40—asymmetric value fault injection for the return statement
of the callee at the SWC–BSW integration test level.

The VCU performs control related to vehicle driving, such as the motor and steering wheel.
The fault that we injected calls a function that notifies an error to the entire system when an error occurs.
At this time, instead of sending the same value, the error value of one call is changed. When this fault
occurs, the system sequentially stops operations and shuts down.

This fault occurs in the integration test level of the SWC and the BSW layer. The fault that we
injected occurs in the SWC, as shown in Figure 12. When Det_ReportError() is called, the error value
transmitted from the callee Det_ReportError() to another SWC or the ECU is changed uniquely for a
specific SWC. When this fault occurs, the safety mechanism that stops all the operations sequentially
and shuts down the system is activated. It is difficult to confirm the operation of the safety mechanism
only by the operation of the LED. Thus, in this case, to verify the operation of the safety mechanism,
a serial port was connected to the target for debugging.Electronics 2020, 9, x FOR PEER REVIEW 18 of 21 

 

 
Figure 12. Asymmetric error fault injection using ASFIT. 

Figure 12 shows the ASFIT fault injection process. In the case of an asymmetric error, when a 
fault or event occurs anywhere in the system, the T_wrapper is generated for the function of the 
BSDW layer, which communicates the fault or event to the entire system. In Case 3, the target for 
generating the T_wrapper is Det_ReportError(), which is a function that communicates a fault to 
other SWCs and the ECU. The T_wrapper _wrap_Det_ReportError() calls the F_wrapper (①) to inject 
a fault and then calls the original function (②). At this time, the fault injection function ASE_value() 
generates an asymmetric error by changing the error value for a specific caller. 

Sending the same value to the entire system is a fault that can be injected by other fault injection 
methods, but sending a different value only to part of the system in a situation where the same value 
must be sent throughout the system cannot be performed by hardware or software-based fault 
injection. ASFIT makes asymmetric fault injection possible by injecting the fault uniquely to a specific 
calling relationship of the error report function. 

6. Runtime Overhead 

Real-time performance is critical for automotive software. Although injecting all the software 
faults listed in Table 2 is important, measuring the performance, specifically, the runtime overhead, 
is also crucial. As such, when the task execution is delayed by fault injection, it can also cause a side 
effect aside from the injected fault. 

6.1. Measuring the Runtime Overhead 

The HW-based FIT tools TRACE32, GHS Probe, and CW IDE were excluded from runtime 
overhead measurement because they are hardware debuggers and are stopped temporarily before 
the fault is injected. Therefore, the overhead was measured for the SW-based FIT tools CaNoe-based 
FIT, G-SWFIT, and GRINDER, and the results were compared with those of ASFIT. However, 
Kayotee was excluded from runtime overhead measurement because it injects a fault directly to the 
fault injection position by modifying the software. 

The runtime overhead was measured only for software faults related to data error among the 
five AUTOSAR error types in Table 2. Timing error is not affected by the runtime because it is a fault 
that delays data transmission or does not transmit data. Moreover, task execution is not important 
for the program flow error type because this fault type does not call a function or else stops execution 
by accessing the register. Asymmetric and access errors were excluded because they cannot be 
applied to other methods; however, their operation is similar to that of data error. 

The time at which the fault injection is performed can also influence the runtime overhead. For 
example, when a fault is injected at the time that the fault injection function is first called, the runtime 
overhead is always shortest for the method that directly modifies the source code. Hence, the fault 
was injected when the fault injection target function was called the fifth time. 

Figure 12. Asymmetric error fault injection using ASFIT.



Electronics 2020, 9, 0850 18 of 21

Figure 12 shows the ASFIT fault injection process. In the case of an asymmetric error, when a fault
or event occurs anywhere in the system, the T_wrapper is generated for the function of the BSDW
layer, which communicates the fault or event to the entire system. In Case 3, the target for generating
the T_wrapper is Det_ReportError(), which is a function that communicates a fault to other SWCs
and the ECU. The T_wrapper _wrap_Det_ReportError() calls the F_wrapper ( 1O) to inject a fault and
then calls the original function ( 2O). At this time, the fault injection function ASE_value() generates an
asymmetric error by changing the error value for a specific caller.

Sending the same value to the entire system is a fault that can be injected by other fault injection
methods, but sending a different value only to part of the system in a situation where the same value
must be sent throughout the system cannot be performed by hardware or software-based fault injection.
ASFIT makes asymmetric fault injection possible by injecting the fault uniquely to a specific calling
relationship of the error report function.

6. Runtime Overhead

Real-time performance is critical for automotive software. Although injecting all the software
faults listed in Table 2 is important, measuring the performance, specifically, the runtime overhead,
is also crucial. As such, when the task execution is delayed by fault injection, it can also cause a side
effect aside from the injected fault.

6.1. Measuring the Runtime Overhead

The HW-based FIT tools TRACE32, GHS Probe, and CW IDE were excluded from runtime
overhead measurement because they are hardware debuggers and are stopped temporarily before the
fault is injected. Therefore, the overhead was measured for the SW-based FIT tools CaNoe-based FIT,
G-SWFIT, and GRINDER, and the results were compared with those of ASFIT. However, Kayotee was
excluded from runtime overhead measurement because it injects a fault directly to the fault injection
position by modifying the software.

The runtime overhead was measured only for software faults related to data error among the
five AUTOSAR error types in Table 2. Timing error is not affected by the runtime because it is a fault
that delays data transmission or does not transmit data. Moreover, task execution is not important for
the program flow error type because this fault type does not call a function or else stops execution by
accessing the register. Asymmetric and access errors were excluded because they cannot be applied to
other methods; however, their operation is similar to that of data error.

The time at which the fault injection is performed can also influence the runtime overhead.
For example, when a fault is injected at the time that the fault injection function is first called, the
runtime overhead is always shortest for the method that directly modifies the source code. Hence, the
fault was injected when the fault injection target function was called the fifth time.

The runtime overhead was determined by repeating the fault injection target task 10,000 times in
the system and measuring the average times before and after applying the fault injection method using
the following equation:

RuntimeOverhead(%) =
TaskRuntimeApplyingTheFaultInjectionMethod− TaskRuntimeNotApplyingTheFaultInjectionMethod

TaskRuntimeNotApplyingTheFaultInjectionMethod
× 100 (1)

6.2. Performance Measurement Results

Figure 13 shows the runtime overhead measurement results for ASFIT and the SW-based FIT
tools CaNoe-based FIT, G-SWFIT, and GRINDER. The measurement results showed that the ASFIT
runtime overhead was the smallest, with runtime increasing by 1.24% compared with the original
runtime. The CaNoe-based FIT, which injects faults using the hook function of AUTOSAR, showed
a runtime overhead of 3.22%. G-SWFIT and GRINDER, which are wrapper-based fault injection
methods, showed runtime overheads of 2.0% and 6.34%, respectively.



Electronics 2020, 9, 0850 19 of 21

Electronics 2020, 9, x FOR PEER REVIEW 19 of 21 

 

The runtime overhead was determined by repeating the fault injection target task 10,000 times 
in the system and measuring the average times before and after applying the fault injection method 
using the following equation: 

(%) 100TaskRuntimeApplyingTheFaultInjectionMethod TaskRuntimeNotApplyingTheFaultInjectionMethodRuntimeOverhead
TaskRuntimeNotApplyingTheFaultInjectionMethod

−= ×  
(1) 

6.2. Performance Measurement Results 

Figure 13 shows the runtime overhead measurement results for ASFIT and the SW-based FIT 
tools CaNoe-based FIT, G-SWFIT, and GRINDER. The measurement results showed that the ASFIT 
runtime overhead was the smallest, with runtime increasing by 1.24% compared with the original 
runtime. The CaNoe-based FIT, which injects faults using the hook function of AUTOSAR, showed 
a runtime overhead of 3.22%. G-SWFIT and GRINDER, which are wrapper-based fault injection 
methods, showed runtime overheads of 2.0% and 6.34%, respectively. 

 
Figure 13. Performance measurement results. 

7. Conclusion and Future Research 

In this study, we defined types of software faults that can occur in automotive software based 
on the call relationships between different layers of AUTOSAR, an automotive software platform. 
We also proposed a method of the software fault injection test for these faults. The proposed method 
can inject all the automotive software faults defined in Table 2 using software-based methods without 
any separate hardware device while minimizing the runtime overhead due to fault injection. 

We implemented the proposed method as ASFIT and conducted case studies to compare the 
proposed method with representative existing software and hardware-based fault injection methods. 
The results showed that ASFIT enabled fault injection for access and asymmetric errors, which cannot 
be injected by other fault injection methods. It can also perform fault injection for data and timing 
errors, only some of which can be injected by other methods. Furthermore, when we measured the 
runtime overhead of the fault injection methods, ASFIT showed the lowest runtime overhead, 
excluding hardware-based fault injection methods and tools that directly modify the code. Thus, 
ASFIT was proven to be a lightweight method. 

As described in the empirical study in Section 5, a Korean motor company conducted a fault 
injection test for some ECUs developed based on AUTOSAR in the software development steps using 
the software faults and fault injection method proposed in this study. Among the faults we injected, 
faults such as program flow errors due to illegal instructions and timing errors due to CPU clock 
corruption may vary depending on the hardware. Therefore, we plan to apply our method to more 
types of ECUs in the future to make it general. Additionally, we will also expand our method for the 
SW/HW integration test phase during system development. 

Figure 13. Performance measurement results.

7. Conclusions and Future Research

In this study, we defined types of software faults that can occur in automotive software based on
the call relationships between different layers of AUTOSAR, an automotive software platform. We also
proposed a method of the software fault injection test for these faults. The proposed method can
inject all the automotive software faults defined in Table 2 using software-based methods without any
separate hardware device while minimizing the runtime overhead due to fault injection.

We implemented the proposed method as ASFIT and conducted case studies to compare the
proposed method with representative existing software and hardware-based fault injection methods.
The results showed that ASFIT enabled fault injection for access and asymmetric errors, which cannot
be injected by other fault injection methods. It can also perform fault injection for data and timing
errors, only some of which can be injected by other methods. Furthermore, when we measured
the runtime overhead of the fault injection methods, ASFIT showed the lowest runtime overhead,
excluding hardware-based fault injection methods and tools that directly modify the code. Thus, ASFIT
was proven to be a lightweight method.

As described in the empirical study in Section 5, a Korean motor company conducted a fault
injection test for some ECUs developed based on AUTOSAR in the software development steps using
the software faults and fault injection method proposed in this study. Among the faults we injected,
faults such as program flow errors due to illegal instructions and timing errors due to CPU clock
corruption may vary depending on the hardware. Therefore, we plan to apply our method to more
types of ECUs in the future to make it general. Additionally, we will also expand our method for the
SW/HW integration test phase during system development.

Author Contributions: J.P. and B.C. contributed to the design and implementation of the research, to the analysis
of the results and to the writing of the manuscript. B.C. supervised the findings of this work. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the Hyundai-Kia Motor Company. This research was supported
by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center)
support program( IITP-2020-2017-0-01628 ) supervised by the IITP(Institute for Information & communications
Technology Promotion)

Conflicts of Interest: The authors declare no conflicts of interest.



Electronics 2020, 9, 0850 20 of 21

References

1. Rana, R.; Staron, M.; Berger, C.; Hansson, J.; Nilsson, M.; Törner, F. Increasing Efficiency of ISO
26262 Verification and Validation by Combining Fault Injection and Mutation Testing with Model based
Development. In Proceedings of the International Conference on Software Engineering and Applications,
Reykjavik, Iceland, 29–31 July 2013.

2. ISO 26262–2011. Road vehicles-Functional Safety-Part 1–10. 2011. Available online: https://www.iso.org/stan
dard/43464.html (accessed on 1 December 2017).

3. Hsueh, M.C.; Tsai, T.K.; Iyer, R.K. Fault injection techniques and tools. Computer 1997, 30, 75–82. [CrossRef]
4. Han, S.; Shin, K.G.; Rosenberg, H.A. Doctor: An integrated software fault injection environment for

distributed real-time systems. In Proceedings of the 1995 IEEE International Computer Performance and
Dependability Symposium, Erlangen, Germany, 24–26 April 1995; pp. 204–213.

5. Fürst, S.; Mössinger, J.; Bunzel, S.; Weber, T.; Kirschke-Biller, F.; Heitkämper, P.; Kinkelin, G.; Nishikawa, K.;
Lange, K. AUTOSAR—A Worldwide Standard is on the Road. In Proceedings of the 14th International VDI
Congress Electronic Systems for Vehicles, Baden-Baden, Germany, 7–8 October 2009.

6. Meng, X.; Tan, Q.; Shao, Z.; Zhang, N.; Xu, J.; Zhang, H. SEInjector: A dynamic fault injection tool for soft
errors on x86. In Proceedings of the 2017 International Conference on Computer Systems, Electronics and
Control (ICCSEC), Dalian, China, 25–27 December 2017; pp. 1492–1495.

7. Skarin, D.; Barbosa, R.; Karlsson, J. GOOFI-2: A tool for experimental dependability assessment.
In Proceedings of the 2010 IEEE/IFIP International Conference on Dependable Systems & Networks
(DSN), Chicago, IL, USA, 28 June–1 July 2010; pp. 557–562.

8. Madeira, H.; Rela, M.; Moreira, F.; Silva, J.G. RIFLE: A general purpose pin-level fault injector. In Proceedings
of the European Dependable Computing Conference, Berlin, Germany, 4–6 October 1994; pp. 197–216.

9. Jha, S.; Tsai, T.; Hari, S.; Sullivan, M.; Kalbarczyk, Z.; Keckler, S.W.; Iyer, R.K. Kayotee: A fault injection-based
system to assess the safety and reliability of autonomous vehicles to faults and errors. arXiv Prepr 2019,
arXiv:1907.01024.

10. Lanigan, P.E.; Narasimhan, P.; Fuhrman, T.E. Experiences with a CANoe-based fault injection framework
for AUTOSAR. In Proceedings of the 2010 IEEE/IFIP International Conference on Dependable Systems
& Networks (DSN), Chicago, IL, USA, 28 June–1 July 2010; pp. 569–574.

11. Duraes, J.; Madeira, H. Emulation of software faults: A field data study and a practical approach. IEEE Trans.
Softw. Eng. 2006, 32, 849–867. [CrossRef]

12. Winter, S.; Piper, T.; Schwahn, O.; Natella, R.; Suri, N.; Cotroneo, D. GRINDER: On reusability of fault
injection tools. In Proceedings of the 2015 IEEE/ACM 10th International Workshop on Automation of
Software Test, Florence, Italy, 23–24 May 2015; pp. 75–79.

13. Islam, M.M.; Karunakaran, N.M.; Haraldsson, J.; Bernin, F.; Karlsson, J. Binary-Level Fault Injection for
AUTOSAR Systems (Short Paper). In Proceedings of the 2014 Tenth European Dependable Computing
Conference, Newcastle, UK, 13–16 May 2014; pp. 138–141.

14. Barr, M. Bookout vs. Toyota: 2005 Camry L4 Software Analysis. District Court of Oklahoma County. 2013.
Available online: http://www.safetyresearch.net/Library/BarrSlides_final_scrubbed.pdf,consultadoel,10
(accessed on 28 April 2020).

15. Agrawal, H.; DeMillo, R.A.; Hathaway, B.; Hsu, W.; Hsu, W.; Krauser, E.W.; Martin, R.J.; Mathur, A.P.;
Spaord, E. Design of Mutant Operators for C Programming Language; Technical Report SERC-TR-41-P, SERC;
Purdue University: West Lafayette, IN, USA, 1989.

16. Delamaro, M.E.; Maidonado, J.C.; Mathur, A.P. Interface mutation: An approach for integration testing.
IEEE Trans. Softw. Eng. 2001, 27, 228–247. [CrossRef]

17. Ghosh, S.; Mathur, A.P. Interface mutation. Softw. Test. Verif. Reliab. 2001, 11, 227–247. [CrossRef]
18. AUTOSAR. “Explanation of Error Handling on Application Level,” AUTOSAR, Munich. 2009. Available

online: https://www.autosar.org/fileadmin/user_upload/standards/classic/4-0/AUTOSAR_EXP_Applicati
onLevelErrorHandling.pdf (accessed on 28 April 2020).

19. MDS Technology. Trace32 Debugger. Available online: http://www.mdstec.com/ (accessed on 28 April 2020).

https://www.iso.org/standard/43464.html
https://www.iso.org/standard/43464.html
http://dx.doi.org/10.1109/2.585157
http://dx.doi.org/10.1109/TSE.2006.113
http://www.safetyresearch.net/Library/BarrSlides_final_scrubbed.pdf,consultadoel,10
http://dx.doi.org/10.1109/32.910859
http://dx.doi.org/10.1002/stvr.239
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-0/AUTOSAR_EXP_ApplicationLevelErrorHandling.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-0/AUTOSAR_EXP_ApplicationLevelErrorHandling.pdf
http://www.mdstec.com/


Electronics 2020, 9, 0850 21 of 21

20. Green Hills Software. GreenHills Debug Probes. Available online: http://www.ghs.com/ (accessed on
28 April 2020).

21. Metrowerks. CodeWarrior IDE. Available online: http://www.nxp.com/ (accessed on 28 April 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ghs.com/
http://www.nxp.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background and Related Work 
	Fault Injection in the Development Process 
	AUTOSAR-Based Automotive Software Fault Injection Method 
	Fault Types in Automotive Software 

	AUTOSAR-Based Automotive Software Faults 
	Calling Relationships between AUTOSAR Software Layers 
	Fault Injection Position 
	Fault Types 
	AUTOSAR-Based Automotive Software Faults 

	ASFIT: AUTOSAR-Based Automotive Software Fault Injection Method 
	Extraction of a Fault Injection Position 
	Generating the Fault Injection Code 
	T_Wrapper 
	F_Wrapper 

	Empirical Study 
	Experiment Design 
	Experiment Results 
	Analysis 

	Runtime Overhead 
	Measuring the Runtime Overhead 
	Performance Measurement Results 

	Conclusions and Future Research 
	References

