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Abstract: Following a very brief look at the human vision system, an extended summary of our own
elemental steps towards future vision systems for ground vehicles is given, leading to the proposal
made in the main part. The question is raised of why the predominant solution in biological vision
systems, namely pairs of eyes (very often multi-focal and gaze-controllable), has not been found
in technical systems up to now, though it may be a useful or even optimal solution for vehicles
too. Two potential candidates with perception capabilities closer to the human sense of vision are
discussed in some detail: one with all cameras mounted in a fixed way onto the body of the vehicle,
and one with a multi-focal gaze-controllable set of cameras. Such compact systems are considered
advantageous for many types of vehicles if a human level of performance in dynamic real-time vision
and detailed scene understanding is the goal. Increasingly general realizations of these types of vision
systems may take all of the 21st century to be developed. The big challenge for such systems with
the capability of learning while seeing will be more on the software side than on the hardware side
required for sensing and computing.

Keywords: automotive vehicles; autonomous driving; vision systems

1. Introduction

The acceptance of technical vision systems by the human driver depends much on the differences
in performance the overall system shows in comparison to his own capabilities. Therefore, in Section 1.1,
a brief survey is given on some characteristic parameters of the human vision system. Section 1.2 then
presents a review of the elemental steps towards future vision systems of ground vehicles, leading
to the proposal made in Section 4. In Section 2, a brief survey of the reasons behind the different
developments in biology and technology is laid out. Section 3 contains some conclusions for further
developments. An outlook on potential future paths of development in automotive vision systems
is given in Sections 4 and 5. Based on observations made, both in many biological species and in
technical developments, two (of many possible) designs are looked at in some more detail. Neural
net approaches are not taken into account for various reasons. The author is convinced that—as the
20th century has seen a wide spread of designs for ground vehicles—the 21st century will see the
development of a wide variety of technical vision systems for vehicles, including deep neural nets.
These developments are not a matter of years but of decades.

1.1. Characteristics of the Human Eye and Brain

The larger part of the brain of highly developed vertebrates (including ourselves) is devoted to
the processing of visual data for scene understanding, behavior decision and motion control [1–4].
Many biologists consider vision as one of the driving factors for developing intelligence, evolved by
individuals with complex brains over millions of years [5]. Many different types and numbers of eyes
are found per individual in a wide range of classes of animals. It is hard to believe that only chance is
behind the fact that most animals with high-performance locomotion capabilities on land, in water
and in the air have pairs of (mostly gaze-controllable) eyes with radial areas of different resolutions in
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the images they provide. This modality of vision must have advantages (at least for carbon-based
systems) that have evolved over many generations. Figure 1 shows some characteristics of one of
these solutions, the human eye (from p. 5 in [6]). The total horizontal field of view (FoV) of a single
eye is about 145◦; the image resolution decreases from the center to the periphery. The central area,
dubbed ‘fovea’, a region of slightly elliptical size, has a visual range of about 1.5◦ vertically to about 2◦

horizontally. There are two different types of sensor elements present in the eye: Color sensitive ‘cones’
and only-intensity-sensitive ‘rods’. The fovea contains exclusively cones, about 7 million (blue curve
in Figure 1) with a high density of about 150,000 receptors per mm2; this allows a ‘Vernier acuity’ in
edge detection in the range of 0.06 to 0.25 mrad (individual variations). For angles radially away from
the fovea > 15◦ (in the peripheral regions of the retina), the density of cones is about 1/30 of the peak
value; that means that the distance between cones here is five to six times that between rods.
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Figure 1. Distribution of rods and cones along a line passing through the fovea and the blind spot of a
human eye (p. 5 in [6]).

The fovea is employed for accurate vision in the direction toward where it is pointed by the
rotation of the eye. It comprises less than 1% of the retinal size, but uses over 50% of the visual cortex
in the brain [7]. The ratio of ganglion cells to photoreceptors in the eye is about 2.5; almost every
ganglion cell in the eye receives data from a single cone, and each cone feeds into one to three ganglion
cells. Image preprocessing is performed in the eye so that the number of nerves feeding the primary
visual cortex in the back side of the human brain is reduced by two orders of magnitude compared to
the number of photoreceptors in the eye; edge orientations are coded directly in the eye to achieve this
reduction [8]. The eye does not take a photographic image of the environment, but rather produces in
parallel up to 100 extremely compressed full images of low precision for the peripheral FoV; in addition,
three to four small areas with high resolution are generated by foveal perception [9]. These data are
compared with existing images in the actual imagination process, and both together are transformed
into the actual perception of the environment.

The human eye has three angular degrees of freedom: Two for gaze directions of the line of sight
and one for a rotation around it. The latter, called roll angle, will be neglected here. The downward
looking angle (infraduction or depression) may go to −60◦, the upward looking angle (supraduction
or elevation) to +45◦. The capability of the horizontal rotation may go on average up to 50◦ both
towards the nose and away from it; however, in general the angles hardly exceed ±20◦. These changes
in the viewing direction are supported by rotations of the head. Fast eye movements may go up to
600◦/s in saccades; during the tracking of objects (fixation), the maximal rotational speed is about
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100◦/s. Saccades are usually finished after 50 milliseconds (ms) [6]. Fixations and saccades make up
the largest part of cognitive eye movements. Thus, intentional vision is a controlled cognitive activity
by the subject.

The red curves in Figure 1 show the density of the (b/w) elements that measure intensity-values
only. There are no rods in the fovea; their density rises rapidly in the first 15◦ radially away from
the fovea to similar values to those that cones have in the fovea; keep in mind that Figure 1 is a cut
through the fovea and the ‘blind spot’, which is the circular area where visual nerves pass through the
retina. For other cuts through the retina, the red curves at the left- and right-hand sides of the figure
are connected by some kind of inverted parabola. At a radial distance of around 15◦ away from the
fovea, rod spacing is as high as cone spacing in the fovea (about 2 to 2.5 µm between elements). In a
FoV of 120◦ (50◦ temple side to 70◦ nose side, see the inserted gray bar) the number of receptors per
mm2 is above 80,000, which is about half that of the fovea (and of the imaginary center); this value
corresponds to a spacing of about 3.5 µm between the sensor elements. These numbers are, of course,
specific to the carbon-based wetware of all biological systems. The basic distinctions to silicon-based
hardware will be addressed in more detail in Section 2.

1.2. The Development of the Actual State of Technical Real-Time Vision Systems

In Japan, S. Tsugawa in the late 1970s investigated the lateral guidance of a road vehicle by using
analog data processing in image analysis for stereo vision in vertical planes; single rows of the images
of two cameras—mounted above each other (see Figure 2) and rotated by 90◦—were evaluated in order
to detect the guide rails at the side of the road [10]. All electronic devices that were needed were on
board. Short distances were driven at a low speed. In the early 1980s, there was a gap with respect to
vision-guided road vehicles in Japan. The activities were resumed when new results from the USA and
Germany became public in the second half of the decade.
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1.2.1. Vision Systems on Digital Microprocessors with All Equipment on Board

The development of real-time vision systems based on digital microprocessors (µP), with all the
equipment needed on board the vehicle, started in the USA and in Germany, independently of each
other. In both countries, the vehicles chosen at the beginning were vans with weights from 5 to 8 tons.
In the USA, the huge DARPA project “On Strategic Computing” started in 1982 [11]; the ‘Autonomous
Land Vehicle’ (ALV) was one of three fields of application. Real-time computer vision was an essential
element, since video sensors provide a much higher signal density and better capabilities for object
recognition in comparison to other types of sensors. Laser-Range-Finders (LRF) have been incorporated
right from the beginning for the easy determination of range to points in the environment and to
objects. Carnegie Mellon University (CMU) had its own vehicle, NavLab, a van specially equipped for
slow driving. At the core of the project were massively parallel computer systems for data analysis



Electronics 2020, 9, 759 4 of 28

and dynamic scene understanding to be developed over the next decade or two. In the meanwhile,
several universities and research institutes were funded in order to develop software for interpreting
and understanding image sequences on computers that were actually available. The typical cycle times
for a single perception step were in the range of seconds to minutes.

All these groups coming from Computer Science (CS) and Artificial Intelligence (AI) started by
investigating rather complex vision tasks at a much slowed-down rate on available computing hardware,
while at the same time massively parallel computer systems were investigated for analyzing sequences
of digital images [11]. Temporal aspects were considered separately in a second step. Differences in the
interpretation results of consecutive images had to be interpreted either as movements of objects in the
mapped 3-D scene, or as changes due to ego-motion (or both in conjunction). A completely different
approach has been chosen by the author, coming from systems dynamics and control engineering,
including optimal control. A detailed survey of the history of vision for ground vehicles may be found
in [12].

The 4-D approach to dynamic vision: In Germany, the author had experience in working with
horses in agriculture when in the 1950s a tractor replaced horses. He noted that the advantage of
the tractor having multiple horsepower was sometimes offset by the disadvantage of having to pay
attention to vehicle guidance all the time. Horses found their way home by themselves and even kept
the learned distance to the road boundary quite well while moving. Since tractors had no sense of
vision, the human driver had to be alert all the time. It became clear to him that developing a sense
of vision for vehicles should be one important task for the future. After studies of mechanical and
control engineering and a few years of working in flight mechanics, in 1975 he was appointed professor
for control engineering at the newly founded University of the Federal Armed Forces of Germany in
Neubiberg near Munich (UniBwM). He realized that the remaining 26 professional years corresponded
to an increase in computing power by five to six orders of magnitude; this number was based on the
observation over the recent past that computing power increased by a factor of ten every four to five
years. Trusting in further miniaturization and in the observed temporal increase in computing power,
a real-time evaluation of video sequences at around 10 Hz should be achievable with a modest number
of parallel µP within about 20 years.

At that time, he did not know about the activities in the USA and in Japan. He used the initial
funding of UniBwM to start his long-term development effort by building ‘Hardware-In-the-Loop’
(HIL) simulation facilities for machine vision systems similar to those on the market for training
pilots [13]. When studying the visual guidance of aircraft landing approaches in the 1980s, it turned out
that without the feedback of inertial sensor signals from the gaze-platform to the image interpretation
process, the approach that will be discussed below would not work under stronger winds and gusts.
With this feedback, it has been shown to work satisfactorily [14]. All the experiences with real-world
systems has led the UniBwM group to include gaze control in the software development for dynamic
vision from the beginning, whenever possible.

The group selected sufficiently simple tasks for the beginning, but wanted to do real-time
interpretation right from the start by using standard tools for the state estimation of dynamical systems.
Initially, the ‘Luenberger observer’ [15] had been chosen in connection with 3-D shape models for
the objects perceived, and with scene models including the differential equations for the motion
components of the object observed in 3-D space over time. Since models for motion and for perspective
projection are in general nonlinear, linearized approximations for short periods of time had to be
selected [16–20]. Due to the fact that in practical life almost every process is subjected to unknown
perturbations, the transition to (Extended) Kalman Filtering (EKF) was soon made [17,19]. A lower
limit of interpreting at least ten frames per second was introduced as a side constraint. In connection
with the feedback of prediction errors as a basic correction step, this brought about a different kind of
thinking for the overall approach. Note that this method leads to a direct representation of the scene
observed in 3-D space and time, i.e., in 4-D; it might thus be seen as a first step towards consciousness.
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By exploiting the feedback of the prediction errors, only information from the last image of the
sequence needed to be stored; the results of all the previous evaluations were stored in the best estimates
for the shape- and state-values of the hypothesized (dynamical) objects. In terms of understanding
road scenes, this approach had initially been tested since 1980 in a special Hardware-In-the Loop (HIL)
simulation [13]. Using road representation in terms of differential geometry made the 4-D approach
particularly efficient [16]. The positive results for the autonomous visual guidance of road vehicles
led in 1984 to its implementation in a 5-ton van (see Figure 3a). It had to be specially equipped
with about 3 m-high standard industrial racks for all the electronic equipment like communication
devices and computers (Figure 3c). The sensors for vision were two cameras (Figure 3b) on a
gaze control platform (seen at right in (Figure 3d) from the other side). The test-vehicle was dubbed
“VaMoRs” (Versuchsfahrzeug für autonome Mobilität und Rechnersehen). The first results in real-world
autonomous visual driving were achieved in 1986; in 1987, VaMoRs became the first autonomous
vehicle capable of high-speed driving on roads when it achieved 60 mph (96 km/h, its maximum speed
due to limited engine power) on a new stretch of the Autobahn not yet turned over to the public [20].
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Figure 3. The first high-speed autonomous vehicle, VaMoRs, from 1986 to 2004 with three generations
of vision systems [21] (sub-images from video ‘VaMoRs Autobahn Dingolfing 1987′).

These results motivated the company Daimler-Benz AG (DBAG) to join with UniBwM in order to
develop the sense of vision for the autonomous guidance of road vehicles. This task became one of the
activities in the common European framework ‘EUREKA’ for long-term research and developments.
The Europe-wide ‘PROgraMme for a European Traffic of Highest Efficiency and Unprecedented Safety’
(PROMETHEUS) was modified by substituting ‘machine vision’ in exchange for lateral guidance of
road vehicles based on electro-magnetic inductive fields generated by cables buried in the center of the
lane. More than a dozen European automotive companies and about five times that number of research
institutes and universities joined the sub-project, dubbed PRO-ART (derived from PROmetheus
ART-ificial Intelligence). The program ran from 1987 until the end of 1994. The open exchange between
the European participants led to the fact that all major automotive companies had their own vehicle(s)
equipped with body-fixed cameras and capable of lane-recognition and -following.

When in the early 1990s the England-based ‘Transputers’ (µP with four parallel links with a
transfer rate of up to 20 megabit/s to their neighbors) appeared on the market, it allowed for the
reduction of vehicle size due to less storage space being required. Two high-end sedans Mercedes
SEL-500 were equipped with a new central visual perception system based on transputers and the 4-D
approach [22–26]: The DBAG-vehicle “Vision Information Technology Application” (VITA_2) and the
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UniBwM-vehicle VaMoRs-PKW (in short VaMP, see Figure 4). As can be seen, the electronic devices
needed for vision still occupied a relatively large volume.Electronics 2020, 9, x FOR PEER REVIEW 6 of 27 
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Figure 4. Demonstration vehicle VaMP of UniBwM (top right, a twin to the Daimler-VITA_2); top left:
components for autonomous driving. Bottom right: A view into the passenger cabin with the first
small bifocal “Vehicle eye” on a yaw-platform, detailed at bottom left.

All central cognitive components based on the two ‘vehicle eyes’ with new, small ‘finger cameras’
of about 1 cm in diameter mounted on yaw platforms of about 12 cm in diameter (see Figure 4, lower
left) have been developed by UniBwM. Since highways are rather planar and smooth, and the vehicles
were comfortable with only minor perturbations in pitch, the vertical degree of freedom was left off in
order to achieve a simple and small design. The system is described in [23,24].

During the tests it became apparent that for a human-like perceptual performance in the long run
several additional features would be necessary: 1. to extend the image resolution to higher values for
an earlier detection and finer perception of details; 2. to have more cameras available for perceiving
the nearby environment, and 3. to realize the capability of perceiving areal features like homogeneous
regions in black-and-white or even in color and texture. Exploiting the advantages of the 4-D approach,
stereo vision would only be necessary nearby, where the point at which an object touches the ground
is not visible. Further away, environmental objects allow performing range estimation based on
recognized known objects (like road width, size in the image, etc.).

To handle these challenges, DBAG added, for VITA_2, fourteen additional cameras distributed
around the vehicle for collecting additional information on the immediate environment (see Figure 5).
Their role is described in [27]; they were not used by the perception system of UniBwM since the
computing power was missing. In the main part of this article, another arrangement of cameras
assembled into an ‘eye’, probably on gaze-controllable platforms, at the top end of the structure holding
the front windshield at both sides (A-frames) of a car will be discussed, which could perform the task
of the safety driver in the mentioned Paris-demonstrations.
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Figure 5. Camera arrangement in VITA_2 of Daimler 1994 to 1996. The rectangular insert in the
roof-region shows the abstract scheme for positioning cameras (basic structure from [27]).

At the same conference in 1994 [28], a second-generation two-axis platform for VaMoRs was
presented. Its dynamic performance was tested by tracking a triangular traffic sign at the side of
the road when approaching it. This platform was capable of executing a 20◦-saccade in less than
150 ms. A video from 1996 showing the characteristics, also in slow motion, may be viewed in [29].
The resulting graph of the experiment is shown in (Figure 6): Curve 1.1 (green, left) shows the change
of the azimuth angle during the approach. Saccade-1 brings the sign into the FoV of the high-resolution
camera (red curve left). It takes five evaluation cycles until the sign is tracked in the high-resolution
image (green curve 1.2, bottom and center). This image is then stored and sent to the evaluation
process; afterwards, the second saccade (red curve at right) brings the viewing direction back to normal
again. Similar gaze maneuvers are needed for observing traffic lights; however, they have to be tracked
over time since they are time-variable. As stated in [30], this task may be a major challenge when
driving in cities and on different types of state roads; the positioning of traffic lights on both sides of
the road (for turn-offs) and even high above the center of the road makes the task difficult. Fixation
by a high-resolution camera, while other cameras with a wider FoV keep the overall traffic situation
imaged in parallel, seems to be a better approach than body-fixed cameras.
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Figure 6. Detection and tracking of a traffic sign (curve 1.1); saccadic change of the gaze direction onto
the sign (1), five image cycles for stable recognition, then reading the sign and storing the high-resolution
image (curve 1.2); saccade 2 back to the original gaze direction (see [29]).

The different approaches were presented in new journals like ‘Machine Vision and Applications’
since 1988 [20]. On the IJCAI 1989 in Detroit, the 4-D approach and its applications were presented in
an invited keynote address. Towards the end of the 1980s, research on autonomous ground vehicles in
the USA was transferred to the Army Research Laboratory (ARL) in Aberdeen, Maryland. Its main
research partner in autonomous driving was the National Institute of Standards and Technology (NIST)
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nearby. ARL and NIST favored a common research project with UniBwM in Germany (reviewed
below).

Proponents of the two approaches in the USA and Germany first met at a conference in 1986 [31]
and at a high-level international symposium on robotics [32] in 1987. At this symposium, the new start
in Japan in 1987 also became public. Afterwards, the development of the field of autonomous driving
was promoted by frequent exchanges between the leading nations at international conferences and
symposia. In 1996, ARL, along with NIST, proposed a joint US–American/German project for merging
the best components developed so far on both sides.

The joint US–American/German project AutoNav: In the framework of an existing
‘Memorandum of Understanding’, a joint project on autonomous navigation, dubbed “AutoNav”,
was formulated. The goal was to bring together, on PC–hardware now available on the market:

1. The overall software concept for integrating machine perception with the concepts for the planning
and execution of missions on all levels, developed by the National Institute of Standards and
Technology (NIST, group of J. Albus [33]);

2. The capabilities of stereo perception in real time, under development by the Princeton-group
under P. Burt of the Stanford Research Institute (SRI), running on dedicated hardware [34];

3. The 4-D approach of UniBwM, with active gaze control and the software packages for dynamic
scene understanding and vehicle guidance [20,35].

The final purpose was to demonstrate both with German and US test vehicles the capability
of performing a mission on a network of major and minor roads (hardened and natural surfaces)
including off-road sections prescribed by sequences of GPS-waypoints in 2001. During these trips,
beside obstacles above the driven surface (designated as ‘positive’ obstacles), ‘negative’ ones (ditches
and large holes below the driven surface) also had to be detected and avoided. In Germany, VaMoRs
with a new, 3rd-generation vision system [36–40] was selected for the final demonstration. In the USA,
a HMMWV of NIST and of an industrial group, plus a small UGV, were selected as demonstrators.
Only the VaMoRs results, with its explorative ‘eye’ carrying five cameras, will be discussed here.
Figure 7 shows the ‘vehicle eye’ for stereo vision built by UniBwM; it was not intended to be a first
version of a practical eye for the more distant future, but a real-world system for testing the software for
dynamic visual perception with multi-focal cameras and an intelligent on-board gaze control including
very fast saccades.
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Figure 7. Purely experimental, roof-mounted 2-dof vehicle eye for VaMoRs in project AutoNav: (a)
basic structure with three cameras mounted. (b) View from the rear within VaMoRs with the five
cameras as used in AutoNav.

In 1997, the third computer system selected for VaMoRs consisted for the first time of four
‘Commercial-Off-The-Shelf’ (COTS) PC Intel Dual- Pentium-IV, interlinked with a new, also COTS
communication network (Scalable Coherent Interface). In 2001 and 2003, VaMoRs was capable of
performing the tasks given on the right side in Figure 8 [36–40].
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Figure 8. Final demo of project AutoNav: Mission performance ‘On- and Off-Road’ with active
(including saccadic) gaze control for turn-offs left and right; detect and avoid negative obstacles.

Point 2 may be viewed in [41] and the rest in [42], a video summarizing the results of project
AutoNav. The special ‘stereo- computer’ of the US-partner for recognizing the exact spatial geometry
of a ditch had a volume of about 30 liters in 2001. In 2003, the same mission could be driven using a
miniaturized real-time stereo system implemented in the meantime on a plug-in board for one of the
PCs. The video film [42] gives an impression of the capabilities of gaze-controllable ‘vehicle eyes’ for
performing the right-hand part of the mission. Again, it was noted that two gaze-controllable eyes, one
each at the upper end of frame A of the vehicle, would help in improving flexibility for maneuvers.

Between the computer systems used for these results and future µP for perception in the early
2020s, there will again be a difference in computing power of five to six orders of magnitude [43].
Therefore, besides developing the hardware of a ‘vehicle eye’, software development for the real-time
perception of dynamic scenes will be the major task for the future. As a result of our experience with
diverse scenes of autonomous ground vehicle guidance by vision, two cooperating eyes, one at each
side above the upper outer corner of the front windshield, seem to be favorable (top of the A-frame).

1.2.2. Another Type of Vision System in This Century

Similar demonstrations as in Germany have been shown in the USA by our partners with their
vehicles. The results of all American efforts up to the turn of the century have led to the decision
by Congress [44] that “It shall be a goal of the Armed Forces to achieve the fielding of unmanned,
remotely controlled technology such that... by 2015, one-third of the operational ground combat
vehicles are unmanned.” This largely increased the funding possibilities for this new technology of
partially autonomous driving. In addition to the activities of the ARL in the general field of research for
autonomous driving in unknown environments, DARPA formulated a supply mission in well-known
environments, widely exploiting the Global Positioning System (GPS) in connection with precise maps
of routes to be driven. These routes were prescribed by sequences of densely positioned GPS-waypoints;
the main autonomous part was avoiding obstacles above the surface to be driven. In 2002, DARPA
defined such a first supply mission over 142 miles in a semi-arid area in the south of Nevada as the
“Grand Challenge” [45]. Obstacle-detection and -avoidance with different types of lasers and with
radar was the main issue, since path-following by GPS-waypoints was so tightly prescribed that even
hair-needle curves could be handled by a local curve fitting. While the Grand Challenges in 2004 and
2005 focused on the development of autonomous vehicles that operate in an off-road environment
with only a limited interaction with other vehicles, the Urban Challenge of 2007 extended this concept
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to autonomous vehicles that safely execute missions in a complex urban environment with moving
traffic [46].

This goal was promoted since a safe and effective operation in moving traffic is a basic requirement
for all missions of autonomous ground vehicles. In November 2007, the CMU-vehicle “Boss” (see
Figure 9a) gained the first prize. The arrangement of a large number of diverse sensors all around
the vehicle was typical for most contenders (Figure 9b). The second winner, “Junior” of Stanford
University, is seen in the center of the figure. All vehicles show that almost all vision-based sensors
have been mounted outside the cabin, fixed onto the body of the vehicle.
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Figure 9. A collection of images to yield an impression of the amount of external sensors used in the
Urban Challenge 2007 for perceiving the environment in short and medium range. Note the revolving
Laser-Range-Finder on top of all vehicles.

After the Urban Challenge in the USA, some private companies like Google took the lead in
developing capabilities for autonomous driving on roads. Google installed a special institute for the
winner of the Grand Challenge 2005, S. Thrun, who also came second in the Urban Challenge with
his car “Junior”. The institute was provided sufficient funding for equipping up to 10 vehicles for
test driving. The rotating Laser-Range-Finder (LRF) with 64 active units arranged above each other,
which had been so successful in the Urban Challenge, became the main sensor for obstacle detection.
All vehicles had rotating laser-range-finders on top for 360◦ obstacle detection. In addition, the system
relied extensively on GPS data in conjunction with precise local maps. The vision part relied on the
stored environmental data of visually predominant stationary objects; these data were not allowed
to be older than two days. This set-up differs significantly, in terms of visual perception, from that
developed at UniBwM in Germany. While the latter one may be called ‘scout-type vision’, since it
does rely much less on stored data, the former type from Google, as well as most of the others, may be
dubbed ‘confirmation-type vision’ [47]. This, of course, reduces the amount of methods and algorithms
needed for object recognition, but it requires a lot of preparatory work for each new application after
heavy changes due to weather conditions (like snow) or after catastrophic events (like a hurricane or
an earthquake). Most industrial developers of assistant systems for driver support around the globe
followed the easier route of a confirmation-type vision.

The exception is the company Mobileye, founded in Israel in 1999, which in 2017 was taken
over by Intel Corporation [48,49]. Contrary to UniBwM (with a bi- or tri-focal set of gaze-controlled
cameras), Mobileye initially opted for a single camera, mounted and fixed onto the body as a primary
sensor for enabling autonomous driving. Due to its capability of interpreting the shapes (like other
vehicles and pedestrians) as well as textures and colors of structured objects and areas in perspective
projection, it avoided LRF altogether. Early on, the company started developing simple vision systems
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on miniature hardware, i.e., proprietary computation cores as fully programmable accelerators. Their
system series ‘EyeQI’, where “I” now runs from 1 (2008) to 5 (2020), covers a wide range of performance
levels, also for several cameras and sensors in parallel. The system EyeQ2 allowed input from two
cameras (up to 2048 × 2048 pixels) and had the computing devices needed for perception integration
on an electronic board (see Figure 10). In 2020, EyeQ5 is predicted to allow input from more than 16
multi-mega-pixel cameras, plus laser and radar; its computational power targets range from 15 to over
200 trillion operations per second, while drawing only moderate electrical power. Another company
(NVIDIA) [43] predicts up to 300 tera-operations per second (3 × 1014) in computing power on its
boards in the early 2020s. In 2019, Mobileye claimed to have deployed vision safety technology in over
40 million vehicles in connection with many tier-1 automotive companies [48]. They expect ride-share
vehicles without a driver (level 5) as a next step soon.
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With respect to the arrangement of cameras on road vehicles, no new proposals have been noted.
For driver assistance systems around the globe, they are mostly mounted at or behind the inside center
top of the front wind shield (similar to Figure 11).
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The development in Europe in this century: After the Prometheus project, the European automotive
companies concentrated on simple vision systems for road and lane recognition with the new µPs
coming along steadily. For obstacle recognition, LRF and radar have been mainly favored. One of the
most active industrial groups is that of Daimler. It realized the efficient stereo algorithm ‘Semi-Global
Matching’ on an FPGA in 2008 [50]; Figure 11 shows one result with the demo-vehicle ‘Bertha’ [30],
which after 125 years repeated in 2013—this time fully autonomously—the famous first long-distance
drive of Mrs. Benz with an automobile in the year 1888 from Mannheim to Pforzheim.

Almost all automotive companies and tier-1 suppliers in Europe and in Asia started activities
in the field of autonomous driving, either on their own or in connection with research institutions.
Radar and LRF were widely used for obstacle detection and range estimation, while GPS and precise
maps were relied on for navigation; a group of German automotive companies even bought their
own company for keeping maps up-to-date and precise. The revolving LRF of Velodyne also found
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many customers for precise range estimation all around the vehicle. Figure 12 shows, at the right, an
LRF-image derived from 64 laser beams rotating at 10 revolutions per second and covering a range
of up to 100 m. It has been taken from the test vehicle MuCAR-4 of UniBwM (a VW-Tiguan, at the
center) [51]. The main sensors for the autonomous exploration of previously unknown, unstructured
environments are the multi-focal cameras on the gaze control platform active in yaw and pitch (at the
left). Together, the two complementing sensors allow for the perception of traversable ground as well
as for the detection and recognition of objects relevant for the current mission. This combination is
probably the most powerful visual perception system available at the moment.
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The interesting question is whether a vision system (as will be discussed in Section 4) allows one
to get rid of the expensive LRF without losing the perception capabilities achieved up to now. It might
even be possible to improve the perception capabilities of future vehicles up to the performance level
of humans, especially in terms of more distant resolution details for the perception of color and texture.

2. Reasons behind the Differences between Biological and Technical Vision Systems

Biological systems have evolved over millions of generations in carbon wetware with the selection
of the fittest with respect to the ecological environment encountered; these systems are based on
completely different properties of the underlying material as compared to technical vision systems
based on silicon (chips). The biological electrochemical units do have switching times in the millisecond
(ms) range; the traveling speed of signals in the nerves is in the range of 10 to 100 m/s. Cross-connections
between units exist in abundance (1000 to 10,000 per neuron). A single brain consists of up to 1011 of
these units. The main processing step is the summation of the weighted input signals which contain
widely (up to now) unknown (multiple?) feedback loops [9].

These systems need long learning times and adapt to new situations only slowly. In contrast,
technical substrates for sensors and µPs have switching times in the nanosecond range (a factor of
about 106 as compared to biological systems). They can be programmed easily, and they may have
various computational modes between which they can switch almost instantaneously; however, the
direct cross-connections to other units are limited in number (one to six, usually) but may have very
high bandwidths (in the GB/s range). Initially, digital processors were bulky and needed quite a bit of
electrical power for running and cooling.

Since the advent of digital µP in the 1970s, the computing power of these units has increased by
a factor of ten every four to five years. In [47] (Figure 1), a survey of the transistor count over time
from 1980 to 2010 of such µP on a semi-logarithmic scale has been cited; a linear extension of the
interpolating line over time suggests that this number may reach the number of neurons in a human
brain in the early 2020s. Of course, these numbers are not comparable directly, due to the very different
properties of the units; however, they may indicate that, with respect to complexity, similar overall
systems should soon be in reach on a technical basis. Up to now, the computing power of µP-systems
has increased by more than a factor of 1 million since the early 1980s, while at the same time the volume
and need of electrical power has decreased dramatically.
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Thus, computing power does not seem to be a limiting factor any more for the future. Therefore,
we will concentrate on system design and computer software, taking the facts mentioned in the
introduction into account.

3. Conclusions for the Design of a Technical Eye of High Performance for Automotive
Applications

The partially separated processing of image data both in the eye and in the visual cortex of the
human vision system based on carbon molecules is not mandatory for technical vision systems based
on silicon molecules. Sensors and computers may be kept separate. In fact, several high-resolution
images may be communicated in parallel from the sensors to the computing elements; however, the
multi-focal, saccadic type of image sequence analysis may be of advantage in technical systems too.
Requirements that need to be fulfilled are outlined next.

In the near environment of an autonomous vehicle, a large FoV should be covered. If the road
being driven and a road crossing have to be viewed simultaneously, 110◦ to 120◦ seem to be adequate.
With the number of sensing elements limited by their size and the space available in an eye (or on
a camera chip), the resolution of the imaging sensor is bounded. The highest resolution required
for object-detection, -recognition and -tracking at larger distances may lead to a large number of
sensor elements. Therefore, the locations and the potential viewing directions of all cameras on the
vehicle are essential design parameters. Are many cameras with a small neighboring FoV, possibly
collected group-wise together as ‘eyes’ and mounted in a fixed way onto the body of the vehicle, a
good solution? In the frontal range from −115◦ to +115◦ relative to the vehicle heading, the highest
resolution corresponding to 0.2 mrad per pixel in the image should be available. {General remark:
With respect to the localization of intensity edges, the high-resolution results should correspond to
the capability of the human eye (0.2 mrad in all directions at all times).} This leads to 20,000 pixels
covering the frontal angular range of 230◦. However, this high resolution is not required all the time in
all directions. Usually, in road traffic, the highest resolution is needed down the road ahead in the
driving direction. Approaching cross-roads, it is desirable to have this high resolution available for
small periods in time over the complete FoV, while less resolved images may suffice between these
periods. This will be discussed in Section 4.1 for two frontal ‘vehicle eyes’ mounted in a fixed way at
the upper end of the left and right of the A-frame of the vehicle.

Since highly resolved images are only needed for very small regions of the total FoV, the question
arises of whether a better approach is to collect these huge amounts of data only when and where
they are actually needed. This has led to multi-focal saccadic vision in biological systems. Of course,
this complicates the software development for technical dynamic scene understanding. However,
including spatiotemporal models for the interpretation of image sequences right from the beginning in
feature extraction, as done in the 4-D approach since the early 1980s [16], has shown to be very efficient.
The volume of data to be handled may be reduced by orders of magnitude.

Experience with Hardware-In-the-Loop (HIL) simulations and with the UniBwM-test-vehicles
VaMoRs and VaMP in the 1990s has shown that a joint evaluation of the multi-focal image sequences
with saccadic changes of the gaze direction is well suited for technical dynamic vision too. As one of
many alternative designs for active gaze control, a tri-focal vision system with focal lengths separated
by factors of 3 and 4 will be discussed in Section 4.2.

4. Alternative Lines of Development

The answer to the question “which is the preferable approach to follow” depends on the field
of application. Are the vehicles exposed to fast and heavy angular perturbations leading to motion
blur in the images under unfavorable lighting conditions? If so, gaze control for image stabilization is
necessary anyway; the question is then: what is the best angular range of the gaze control (amplitudes
and rotational rates). Today, the prevalent opinion in the automotive industry is that motion blur is no
issue in modern imaging sensors for today’s applications. Therefore, version-1 of a technical eye is here
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considered, with all cameras mounted in a fixed way onto the body of the vehicle. The cameras that
are actually available may then be very small and light-sensitive; they may also have a high dynamic
range with respect to the light intensity. Whether very small cameras of the future will have sufficiently
high capabilities in these areas at only slightly higher costs than standard cameras will be a deciding
factor between the two types of technical vision systems considered next.

4.1. Eyes with Cameras Mounted in a Fixed Way onto the Body of the Vehicle

The simplest extreme solution would be mounting many cameras in a fixed way onto the vehicle
body wherever required (see Figure 5). If average human visual acuity is the goal, a camera with 4000
pixels per line will cover about 46◦; five cameras will be required to cover a FoV of 230◦ horizontally
(see Figure 13). With a requested vertical FoV of about 45◦, a set of five cameras is needed. Two eyes
are chosen here, one each at the upper end of the A-frame at each side of the front windshield (see
Figure 14). In order to allow coverage of the sides of the vehicle, the axis of symmetry of each eye is
rotated by 46◦ away from the center line of the vehicle. Thus, the left and the right eye are identical with
respect to their structure, but are mounted differently. Since only the near environment is of interest
to the oblique sides (away from 0◦ (ahead) and 90◦ across the vehicle), the two outer cameras of the
arrangement may have a reduced resolution, shown with light-gray longer-dashed lines in Figure 13.
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Figure 13. A potential technical eye mounted in a fixed way on the vehicle body; it has seven cameras
with three resolutions.

The arrangement chosen allows a single circular arc of sensors around a vertical axis, mounted in
a fixed way onto the body of the vehicle. If cameras with a 2000 × 2000 pixel resolution should be much
less expensive or smaller, the same FoV as in Figure 13 may be covered by 20 cameras (instead of the
five here). Vertical pairs would be arranged around the vertical axis, each pair rotated by 23◦ relative
to its neighbors. This would yield less distortion in the areas of transition between adjacent images.

For an efficient understanding of automotive scenes it is important to start the computational
analysis with low-resolution images from the regions nearby (at the bottom of the image). Therefore,
when using only high-resolution sensors (without the ones painted in blue in Figure 13) it makes sense
to compute several (2 × 2)-pyramid levels to start with. The next higher pyramid level is computed by
forming one pixel on this level by averaging four pixels in a square on the lower level. This reduces
the amount of image data on the second pyramid level by a factor of 16. Starting from 0.2 mrad/pixel,
on level 2 the resolution will be 0.8, and on level 4 it will then be 3.2 mrad/pixel. Level 4 means that at a
10 m viewing range, a lane marking of 12 cm width will be covered by three to four pixels, a reasonable
number for detecting the orientation of an edge precisely. A car with a body-width of 1.8 m will be
covered by about 60 pixels, sufficient for recognizing some details, e.g., the black tires underneath
being four to eight pixels wide (12 to 25 cm). The number of pixels on this pyramid level, however,
is less than 0.4% (a factor of 1/256) of the original high-resolution level.
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Figure 14. Car with a pair of body-fix eyes in the front at the left (Li) and right side (Ri) of the roof, and
a set of three cameras looking to the rear (Bi).

Since the computation of pyramid images requires quite a bit of computing power, it seems worth
considering whether directly sensed low-resolution images, as sketched in blue color in Figure 13,
could be of advantage; in any case they would provide redundant images, increasing safety. With
1_K pixel per row, an angular range of 115◦ can be covered with a resolution of about 2 mrad/pixel.
Thus, two cameras with a side ratio of 16:9 will cover a FoV of about 2 × (115◦ × 65◦). The number
of pixels per frame for the two cameras is then 1.125 megapixel (MP). At 40 m distance, one pixel of
this camera covers about 8 cm normal to the line of sight. The rear view of the lower body of a car of
size 1.8 × 0.9 m at that distance will be covered by about 22 × 11 pixels. This is reasonable for alerting
interest in special sets of features in road scenes. Compared to the total number of pixels resulting
from a design as shown in Figure 13 on the high-, medium- (the second), and low (the fourth) pyramid
levels of higher-resolution original images (53.6 MP), this means a reduction in the data volume by a
factor of almost 50.

Under standard conditions, only this reduced data volume is analyzed. The medium resolution
of 0.8 mrad/pixel (on the 2nd pyramid level) means that at a 50 m distance one pixel covers an area
of 4 × 4 cm normal to the line of sight. This is sufficient for lane detection up to about a 70 m range.
At the fourth pyramid level, one pixel covers 16 by 16 cm at a 50 m distance. This may be sufficient for
detecting larger objects with contrasting surfaces; even four to six pixels often suffice for detecting
dominant features of objects, e.g., a large difference in brightness. In case more information on such a
set of features and its environment is required, the higher-resolution image data of this region (say
two low-resolution pixels added to each side around the center of the point of interest) need only be
transferred for a more extensive analysis.

Thus, an object of size 6 × 3 pixels on the fourth pyramid level would trigger the transfer and
analysis of a sub-image of size 1120 pixels of the medium-resolution image around the detected center.
Here, the feature analysis will indicate whether an even finer resolution is needed and in which subarea.
For the four medium-resolution images of both eyes with indices 1 and 5 in Figure 14 (dashed circular
double-arrows), the data reduction per object (set of features) is two to three orders of magnitude when
using two pyramid stages. For the entire front hemisphere from −115◦ to +115◦, high-resolution image
data are stored and selectively available on demand.

The total FoV covered horizontally by both eyes ranges from −161◦ to +161◦. In the frontal
sub-region with index 2 (marked in magenta in Figure 14), a binocular stereo interpretation is possible.
Using the 4-D approach for dynamic vision [16], these regions could be adapted in size and predicted
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over time for the next image in order to directly track the object in the high-resolution image sequence.
Computing any pyramid data on higher levels does not need to be done in this case.

In order to sum this up: Figure 14 shows three cameras “Bi” looking to the rear (in brown color),
in addition to the multiple fields of view Li and Ri of the five cameras at the front of a car. Two eyes,
one each at the left- (L in blue) and right-hand side (R in red) are shown. In the figure, a high-resolution
camera B2 for the back side has been chosen for the center (from −23◦ to +23◦). Medium-resolution
image data are available to the rear sides (indices 1 and 3). Thus, the rear hemisphere is covered from
−69◦ to +69◦ if the same cameras are used as in the front (for simplicity of service); of course, B1and B3
could be selected with a larger FoV in order to cover the entire rear hemisphere. However, the gain
would only be the two small white triangles to the side.

What amount of data and computational operations is needed to visually track ten objects in
parallel, following either the pyramid approach or separately sensed image data on three focal levels?
A rough estimate shows a reduced load by a factor of two to three orders of magnitude is required
to provide the proper high-resolution image data to the processors for the scene evaluation. This
indicates that an early transition to multiple hypothesized single objects moving in the observed
scene considerably enhances the efficiency of dynamic scene understanding. If the two additional
low-resolution cameras are chosen to avoid the need for the computing image pyramid levels, and if
one of the focal spacings is reduced to 3 (yielding a total of 12 instead of 16), this lessens the number of
operations to about 0.2% of those for all higher-resolution images. The positions of the corresponding
regions for ten objects may, of course, change from frame to frame within an FoV of 230◦ × 46◦ (see
Figure 14, regions with indices 2 to 4). By accepting small delay times for saccadic gaze control, the
reduction in data volume can be further improved, even with higher capabilities in resolution.

4.2. Gaze-Controllable Eyes with Tri-Focal Saccadic Vision

Assuming that developments in the fields of tiny video cameras and corresponding gaze control
platforms will continue to deliver smaller units, the camera specifications chosen for the design
considered are more likely to be conservative for the long-term developments in automotive sensing.
About 5 cm (or less) seems reasonable as the diameter of a ‘vehicle eye’. The capability of very fast
changes in gaze direction to sets of interesting features allows for the reduction of the data rates, as
discussed above. This may be achieved with gaze control at the expense of small delay times until
scene understanding is achieved on the interpretation level. For humans, this delay time is in the order
of 0.3 to 1 s, i.e., >7 video frames at 25 Hz (>9 at 331/3 Hz). This is well achievable with technical
perception systems [16]. If the maximal resolution is requested to be the same as that assumed above
(0.2 mrad/pixel), and if the lateral range to be covered at a 200 m distance is 32 m (about the width
of a four-lane highway in both directions), the number of pixels needed per line is 800; they cover
an angle of about 9◦. A lane marking of 12 cm width is covered by three pixels, and the lower body
of a car of size 1.8 × 0.9 m is covered by about 1000 pixels in total. This resolution also allows for
good recognition of the lower parts of the wheels (16 to 28 cm wide) seen from the back [52,53]. These
features at a specific distance to each other below a uniform area allow for the recognition of a car as
opposed to a big box.

With the active control of the gaze direction in the range of 150◦ horizontally (90◦ away from
the car, 60◦ over the car body) and 30◦ vertically, a tri-focal set of four cameras (see Figure 15) allows
the same high-resolution FoV as discussed in Section 4.1, even in a larger total region. While for
automotive applications the low and medium resolution cameras may have rectangular image sizes, for
the high-resolution camera a quadratic image with about 800 pixels in each direction may be sufficient.
The corresponding data volumes and rates are given in Table 1. Here, the data rate for one object
tracked at all resolutions is 0.21 GB/s (for one eye with full redundancy on three levels of resolution).
Using the same set of two low-resolution cameras for the gaze-controllable eye, their data rates are
0.054 GB/s (at 25 Hz; 0.072 GB/s for 331/3 Hz). These cameras are mounted such that at a gaze direction
of 90◦, their FoV covers the entire side of the vehicle; this yields their gaze directions of ±32.5◦ to
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both sides of the main gaze direction of the eye. As a consequence, the front region is covered in a
multiple-redundant way by two low-resolution cameras and one medium-resolution camera of each
eye in a FoV of 50◦ (marked orange in Figure 15).
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Figure 15. ‘Vehicle eye’ with a tri-focal set of four cameras: two times 115◦ FoV with low resolution,
55◦ with medium and 9.2◦ with high resolution.

Table 1. Parameters of a gaze-controllable ‘vehicle eye’.

Type (Resolution) Low Medium High Remark

Fields of view (in ◦) 115 × 62 55 × 31 9.2 × 9.2 Left (−) and right (+) for ‘low’

Imaging characteristics
(resolution)

2.4
1/4 of med.

0.6
1/3 of high 0.2 mrad/pixel,

acuity of edge localization

Pixels/line 800 1600 800 These are rough estimates
according to a pinhole modelNumber of lines 450 900 800

Data volume/frame 2.16 MB 4.32 MB 1.92 MB 3 Bytes/pixel; sum = 8.4
MB/cycle

Data rate at Hz: 25
331/3

0.054 GB/s
0.072 GB/s

0.108
0.144

0.048
0.064

sum in GB/s 0.210
0.280

Choosing a high-sensitivity black-and-white camera for low resolution (large field of view) and
color cameras for medium and high resolution would be closer to the capabilities of the human eye.
Delay times for saccades of up to 40◦ are in the range of a few standard video cycle times (around two to
three tenths of a second). In summary, by choosing properly designed gaze-controllable ‘vehicle eyes’,
the amount of image data to be handled may be reduced drastically. Figure 16 shows typical images
scaled at a factor of three (upper two images) and four (lower two images) apart; they were taken
towards the end of the last century with VaMP and with the camera set inserted in the upper image.

Here, color cameras had been selected for the low and medium resolution, while a highly
sensitive b/w-camera was used for the high resolution. The details resolved in the upper image are
impressive when comparing this region with the rectangular sub-images marked in the lower two
images. Medium resolution is good for object recognition that is not too far away, and low resolution
fits best for recognizing the entire situation. High resolution is needed in a few smaller regions only.
Notice that the license number of the second vehicle in front and even a phone number written on its
body are well readable.

For an object of size nob × mob in a low-resolution image, extending the search region by two
pixels to each side, the resulting region in the high-resolution image is (nob + 4) x (mob + 4) × 12 × 12
pixels around the center. An example with size 6 × 3 low-resolution pixels for an arbitrary object yields
a data volume of 10,080 pixels/frame and a data rate from a high-resolution search region of 0.756 MB/s.
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Figure 16. Tri-focal images of a traffic scene; VaMP 1999 (cameras as insert).

Instead of losing performance in perception compared to cameras mounted in a fixed way, gaze
control allows for a direct compensation of rotatory perturbations by feedback from signals from
inexpensive inertial sensors on the pointing platform. Figure 17 shows a reduction in amplitude by
more than an order of magnitude in pitch for a braking maneuver of VaMoRs. In addition to this,
via angular rate commands to the gaze control, the tracking of fast-moving objects can be done for a
reduction of motion blur; this is especially valuable under low light conditions. In general, it increases
the competence in perceiving dynamic scenes. In special application areas, this advantage may be
decisive; whether it is favorable for road vehicles as well has yet to be seen.

Figure 17. Inertial gaze stabilization for a braking maneuver with VaMoRs.

Even small angular perturbations on the vehicle of 1◦ per frame (40 ms at 25 Hz) shift the
corresponding input-ray of a body-fix sensor to a location about 3.5 m perpendicular off to the side at
200 m distance; this corresponds to the same point in the real world being shifted by about 87 pixels
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laterally in the high-resolution image. Due to the small aspect angles on the longitudinal axis, the effect
on the depth perception is more pronounced. This would cause large search activities in the next image
in order to understand the image sequence. With the 4-D approach, good predictions for gaze control
can be made by taking both object motion and ego-motion systematically into account.

4.2.1. Considerations with Respect to Levels of Resolution for ‘Vehicle Eyes’

Though animals with more than two eyes can been found, two eyes with the capability of fast
gaze control predominate by far in the biological realm. This allows stereo vision in the near range
and redundancy in case one eye fails. In combination with active gaze control, the contradictory
requirements of resolution on the one side, and the number of cameras needed on the other side, are
resolved by choosing more complex imaging sensors (see Figure 1 for the biological realm). Vertebrate
eyes have areas of lower resolution over wider fields of view and (very) high resolution in the central
area. Usually, the transition is gradual. In the technical example discussed here, three discrete levels
of resolution are chosen in order to use three types of cameras with a constant resolution in their
FoV. The corresponding object discovered with a low resolution may then be analyzed with an image
resolution four or even 12 times higher than needed just for detection. The discrete values of the
camera parameters chosen here are not meant to be the optimal ones; these depend on the criteria used.
The values chosen are just reasonable numbers based on our experience with multi-focal technical eyes.
It has been discovered that the recognition of objects after a saccade is more efficient if the focal spacing
is not larger than by a factor of three to four. Via feedback of prediction errors for optical features to
the control of the gaze direction, the interesting set of features may be automatically tracked, thereby
reducing motion blur and allowing for better object recognition and tracking.

Let us assume that a highly sensitive video sensor to be used will have 800 pixels per row. If the
requested total FoV of the low-resolution part of the eye is 115◦, one pixel in this array will have
a lateral coverage of ≈2.4 mrad; the corresponding lateral ranges in cm at six typical distances for
automotive applications are given in row 3 of Table 2.

Table 2. One pixel covering δ mrad of angle means a lateral range in cm at a distance Lx m.

Distance Lx m in m 2 6.25 12.5 25 50 100 200

angle δ in mrad Lateral coverage in cm of 1 pixel normal to line of sight

low 2.4 0.48 1.5 3 6 12 24 48

medium 0.6 0.12 0.375 0.75 1.5 3 6 12

high 0.2 0.04 0.125 0.25 0.5 1.0 2.0 4

Perpendicular to the line of sight, one low-resolution pixel will cover about 48 cm at a 200 m
distance; road vehicles seen from the back will thus be covered by about 6 to 12 pixels. If their brightness
is quite different from the surroundings, this is sufficient for detecting that there may be something
of interest; however, no recognition is possible with this low resolution. If the highest resolution is
requested to be 4 cm (0.04 m) per pixel perpendicular to the line of sight at the distance L0.04 = 200 m,
the focal partitioning given in the second column of the table results. The medium-resolution camera
with 1600 pixel per row (column 3 in Table 1, and row 4 in Table 2) will be able to see a traffic light
located 2.5 m to the side at distances above about 5 m when looking along the centerline of the first lane
of a road. It allows for the detection of a traffic light nearer than 100 m in range. The low-resolution
camera covers a single traffic light of 0.2 m diameter by about 9 pixels below a about 25 m range.
If the high-resolution camera tracks the traffic light, the two low-resolution cameras remain capable of
mapping the entire traffic situation in front of the vehicle nearby. The gaze direction during this fixation
will change similar to the upper curve shown in Figure 6. However, traffic lights on the different types
of roads in cities and around rural roads may be found in a much larger environment of the road (on
both sides and even high above the road). When moving towards the lights, this has shown to be a
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challenge for cameras mounted in a fixed way onto the body of the vehicle. This capability of fixation
onto an object, either moving itself or due to ego-motion (or both together), is one of the big advantages
of active gaze control.

4.2.2. Number of Gaze-Controlled Eyes Needed

With a horizontal field of view that is two times 115◦ for the low-resolution cameras of a single eye
(see Figure 15), and a range of potential gaze directions in azimuth from −90◦ (left side) to +60◦ (right
side of Figure 18) for the left eye (−60◦ to +90◦ for the right eye), most of the interesting environmental
regions around a vehicle can be covered with two eyes when properly located. In the central range of
±60◦ around the heading direction of the vehicle, even redundant coverage with a high resolution is
possible by controlling each eye separately (called vergence). The part (H) at the center is the standard
orientation straight ahead, as given in Figure 18; the part (‘Side’, at the left) shows the extreme yaw
angle away from the body for the left eye. For this gaze direction, the low-resolution (wide-angle)
camera to the outward side of the eye covers the entire side of the vehicle (shown in blue color, also in
Figure 19).
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Figure 18. Trifocal gaze-controlled (left-side) ‘vehicle eye’ with four cameras: (Side, at left): Looking
−90◦ to the left (relative to the heading direction of the vehicle); (H) miniaturized Figure 15 looking
straight ahead; (CB, at right) extreme gaze direction in azimuth across the body is + 60◦. The eye on the
right-hand side is vertically mirrored (+90◦ and −60◦).
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As the wide-angle cameras are mounted so that the outer side of the image ends just at 180◦, both
cameras have a region of central overlap of 50◦ in the gaze direction of the eye (orange in Figure 18).
The two eyes should be positioned at the upper end and outside corner of the front windshield of a
car; the potential FoV are shown in Figure 19 together with two FoV of cameras mounted body-fixed
near the upper outside end of the rear windshield. Due to the curved shape of the roof of the car,
the gaze directions to the front across the body are generally limited to about 60◦. The large FoV
of the wide-angle cameras (115◦), mounted with their line of sight under an angle of ΨW = ±32.5◦

to the side of the gaze direction Ψg of the eye, allows for coverage of the entire side of the vehicle
with the corresponding eye at a gaze direction of 90◦ (see Figure 19). These large angles are only of
interest nearby for the low-resolution cameras in order to perceive objects in the neighboring lane.
Objects further away on a crossroad may be imaged by the medium-resolution (standard) camera
up to a maximum of 117.5◦ (green lines in Figure 19), and with the high-resolution camera up to
94.6◦. The medium-resolution camera is sufficient for perceiving objects that are not too far away on a
crossroad in greater detail.

By installing one of these eyes at the upper end at each side of the front windshield, the front
hemisphere will be steadily covered with low-resolution imaging when looking straight ahead. With
gaze control, a region of 235◦may be perceived with medium resolution with at least one eye (separately
controllable). That means that each interesting set of features discovered in a FoV of ±90◦ at low
resolution in a coordinated “surveillance mode” with the gaze direction straight ahead may then be
analyzed by the medium-resolution camera in a range of 235◦ within a small fraction of a second due
to the saccadic gaze control.

For smaller gaze angles (say Ψg = ±45◦), both eyes may be directed towards the same real-world
object, thereby allowing 4-D stereo perception by exploiting the extended vergence control over some
time. With a stereo base of about 1.2 to 1.7 m (width of the front windshield), these depth perceptions
should be reasonably good up to distances of at least 20 m. However, in the very near range the large
stereo base may cause some difficulties due to the different aspect conditions for parts of the object.

With an individually controllable tri-focal eye on each upper side of the front windshield, only
the rear hemisphere in the central part is not perceivable (white area in Figure 19). For the very limited
types of maneuvers performed when driving backwards, body-fixed cameras, widely in use today for
backing up, may also be sufficient in the long run, especially when additional radar sensors are used
for detecting distant vehicles closing in. Two medium-resolution cameras mounted in a fixed way at
each upper side of the rear windshield would be preferable for more precise observations.

To summarize, it is emphasized again that in the region of ±117.5◦ the gaze-controllable eyes
allow the tracking of objects of special interest for the precise perception of a situation by reducing
motion blur. In addition, these objects may be analyzed simultaneously at different levels of resolution,
which may allow for a more stable interpretation. Additionally, keep in mind that monocular stereo
perception is possible with the 4-D approach when moving [16].

4.3. Car Design for Both Types of Eyes

The two types of ‘vehicle eyes’ discussed above will most likely not be developed in the near
future, since they are not needed for the low capabilities required for driving in well-known and smooth
environments (mainly: known roads) with support from GPS as well as from detailed high-precision
maps that are kept actual. However, after some catastrophic event (e.g., earthquakes, weather extremes,
etc.) or in unknown environments, vehicles with more capabilities would be advantageous. This is
also valid for vehicles exploring other planets or moons in astronautic missions. Scout vehicles in the
defense realm or for fire brigades are other examples. Once these high-performance vision systems are
available and can be realized at relatively low costs, their migration into the market of general vehicles
cannot be excluded. Therefore, they should be conceived as a separately marketable sub-system right
from the beginning.
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Since one can hardly predict which of the approaches discussed here will be superior from a
cost–performance point of view in a few decades, it seems reasonable to design the changes necessary
at the upper end of the A-frame of a car so that it fits for both types. Figure 20 shows one possible
design of the upper end of the A-frame of a car, providing a potential standard solution for mounting
front eyes.
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Figure 20. One potential design of the upper end of the A-frame for a standard solution for mounting
front eyes.

A section of a cylindrical glass tube for protecting the cameras, together with a wiper for clearing
the view (see top of Figure 21), and a lid for covering the glass cylinder are part of the adapted design
of the roof. The position for the wiper at rest is in the back corner of the glass cylinder. Of course,
water supply for cleaning the glass cylinder has to be included. The eye itself, with all connections
needed for mechanical and electronic functioning, should be mountable from the inside of the car,
if possible as a compact unit (indicated by diagonal arrows, top right in Figure 20). The hardware of
the electronics (possibly with computing power for feature extraction from the wide-angle images)
may be located near the lower end of the A-frame to keep the cable lengths short. Eventually, when
interesting features are detected, a quick change in the gaze direction may be initiated directly from
here with little delay time and with corresponding information sent to the central unit for perception.
The cables to the eye may run well protected in the inner side of the A-frame.
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Figure 21. Body-fix left-side eye: The specific FoV as given in Figure 13 are shown in the lower part (by
making the roof transparent here). The two low-resolution cameras (in blue) cover the same FoV as all
higher-resolution cameras together (230◦ from −161◦ to + 69◦); their images meet at the gaze direction
of −46◦. The top part sketches a view from the left-hand side; the cameras are inside a cylindrical
(semi-transparent) glass tube that is kept clean by a wiper, whose rest position is at the right corner.

4.4. Sketch of an Eye Mounted in a Fixed Way onto the Body of a Car

One possibility for the arrangement of cameras in such an eye has been discussed in Section 4.1
with many cameras collected in one unit and mounted in a fixed way onto the vehicle (Figure 13;
Figure 14). For best viewing conditions, it should be mounted as far as possible above the ground.
Figure 21 shows a favorable configuration for the left eye of a car. With the vanishing costs of cameras,
it seems reasonable to add the two cameras with low resolution but with the same FoV as those
needed for high resolution (see the blue parts of Figure 19 and the bottom of Figure 21). This provides
redundancy in environmental mapping and thus safety. In the case of a failure of one or more of the
high-resolution cameras, these low-resolution images will suffice for slow autonomous driving to the
next service station, if the corresponding software is available.

Figure 21 shows a sketch of such a vehicle eye without gaze control positioned at the upper end
of the left A-frame of a car: The lower part outlines the arrangement of three high-resolution cameras
(L2 to L4), two medium-resolution cameras (L1 and L5) and two low-resolution cameras in blue color.
In the FoV of the cameras L1 and L5, only nearby objects are of interest, so that the overall data volume
can be kept low (a reduction from 32 to 2 mega-pixels, or a saving of 90 MB of data per cycle; this
reduces the data flow rate of the five cameras by about 37%).

The eye at the right-hand side of the car is mirrored by a vertical plane in the longitudinal axis
through the center of the vehicle, enabling binocular vision in the frontal range from −69◦ to +69◦ only.
Both eyes together allow a binocular stereo image interpretation with a relatively large stereo-base
(LStB) of LStB = 1.2 to 1.7 m (depending on the width of the vehicle). Crossroads and the nearby lateral
vicinity (up to ±161◦) can be seen by one eye (left or right) only. The low-resolution cameras, however,
provide redundancy for the perception of lower details. Assuming a sufficient accuracy in the distance
estimation of up to about 15 × LStB, a separate sensor (e.g., LRF) for good viewing conditions does not
seem necessary; a radar is needed for all weather conditions anyway.
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A glass structure for protecting the cameras is mandatory; a section of a cylindrical tube is chosen
here. One design possibility is sketched with the position of the wiper in action in the front (top left);
at rest, the wiper would be parked in the rear outer corner. When the eye is not needed, a lid may
cover the glass tube. These supplementary devices will have to be part of the adapted roof design (see
Figure 21 top).

4.5. Sketch of a Gaze-Controllable Eye with Tri-Focal Saccadic Vision

In contrast to a body-fixed eye, a tri-focal, gaze-controllable eye provides redundancy on three
levels of resolution for the same region by separate cameras with considerably reduced data rates
(−94.4% ≈ 1/18). Image stabilization on all three levels is achieved by inertial feedback of external
perturbations onto the gaze control platform. Figure 22 shows a simple-minded design as an extension
of the line of development of the larger platforms tested with the vehicles of UniBwM. They had
separate degrees of freedom in pitch, marked here by (1) at the top, and in yaw, marked in red by (2) for
the motor in the bottom of the unit. The presentation is given here for the maximum gaze direction to
the outside (−90◦ to the left). In this design, the cables for power supply and for transferring the sensor
signals have to allow angles of rotation in yaw of 150◦ and of about 50◦ in pitch. These cables and the
bearings for the axes of rotation may be causes for wear and tear, needing service every now and then.
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Figure 22. Gaze-controlled ‘Vehicle Eye’ (left side) at the upper end of the A-frame capable of providing
tri-focal images in the same FoV as the body-fix eye in Figure 21; however, it has a data rate lower by
two orders of magnitude, but with a delay time of a few video-cycles.

An ideal design for such an eye would include a (magnetic) levitation and torque application
in the two axes of motion by electromagnetic fields, avoiding mechanical contacts. For sensor data
transmission from the eye to the world outside and for power supply to the sensors, a solution
without material links would also be ideal. Whether this will also remain impossible in the long run
(especially the combination of both) is hard to predict. Levitation and control of motion alone, without
a mechanical touch, could make a gaze-controllable eye very attractive. According to the data given
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above, data rates are one to two orders of magnitude lower than for the eye mounted in a fixed way
onto the vehicle. Thus, a gaze-controlled tri-focal eye may deliver all the visual information required,
with the needed computing power much reduced and, in addition, with the information redundantly
obtained from different cameras. Future eye-designs may reduce the delay time for saccades.

This achievement would increase its biggest advantage, namely that all the redundant images of a
gaze-controlled eye may be taken while fixating a fast moving object by using both inertial sensor data
from perturbations of the vehicle itself (measured by tiny devices on the gaze platform) and from the
estimated 3-D motion of the object of special interest.

5. Conclusions and Outlook

Based on four decades of experience with real-time dynamic machine vision systems, two types
of ‘vehicle eyes’ have been sketched here. In the last two decades of last century, seven test vehicles,
two of our institute [54] and five of our partners in industry have been equipped with the latest vision-
and computer hardware. Taking the developments in cameras and µP in this century into account,
the present state allows completely new types of high-performance-eyes for vehicles: One with all
cameras closely collected together and mounted in a fixed way onto the body of the vehicle, and one
with a set of five smaller cameras mounted onto a gaze controllable platform. For this gaze-controllable
eye, according to Figures 18, 19 and 22, no pixel-computations need to be done at all in order to
obtain available tri-focal images of the momentary region of interest. A medium-resolution image
is available with a FoV of ±27.5◦ laterally and ±15.5◦ vertically around the actual gaze direction.
Two low-resolution images from each eye provide multiple redundant image data for the entire frontal
hemisphere laterally and ±31◦ vertically. Each side of the vehicle beyond 90◦ can be covered entirely
by one low-resolution image. The medium-resolution image may cover lateral angles of up to ±117.5◦,
while high resolution may be available up to ±94.6◦; these two angular ranges are of special interest
when approaching crossroads.

A FoV of ±25◦ around the line of sight is covered in a triple-redundant way by each of the eyes
(from two low- and one medium-resolution camera), thereby improving safety aspects in the case
of a failure of cameras. This compactness, in combination with object-tracking and dynamic scene
understanding exploiting the 4-D approach based on spatiotemporal models for motion processes in
the real 3-D world, yields an extremely efficient method for real-time vision. It may be the direct basis
for some kind of consciousness.

In the other setup, for the body-fix eye, which includes two low-resolution cameras similar to the
ones used with gaze control, the increase in data volume for covering the same FoV corresponds to
about 0.054%. Evaluating this relatively very small amount of data for features indicating potential
objects of interest may considerably reduce the needed access to regions for high-resolution images.
For a single object tracked at high resolution in the corresponding image, only about 0.1% of computing
operations is needed as compared to the pyramid approach. Thus, the additional low-resolution
images and their coarse evaluation for indications of potential objects of interest seem favorable.
A complication for cameras mounted in a fixed way onto the body may be the transition when objects
move from one image into that of another high-resolution camera. However, from a data volume and
data rate point of view, the type of body-fixed eye including redundant low-resolution covering may,
as discussed, be competitive with the gaze-controlled eye if motion blur should turn out not to be a
challenge in machine vision (in contrast to biological vision systems).

Since this can only be judged properly by comparing actually built devices, this question has
to be left open for now. The disadvantages of gaze-controlled vision systems are twofold: first, the
mechanisms for precisely pointing the eye in pan and tilt (yaw and pitch); and second, the need for
the transfer of the image data from the sensor elements to the vehicle body. If both challenges can
be solved by non-mechanical links in the future (say magnetic torques and electromagnetic waves
between the eye and its mounting in the vehicle body), this would favor gaze control.
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The expectation is that the development of a variety of eyes for vehicles will take up the entire
21st century, similar to the development of the different types of ground vehicles in the 20th century.
The requirements depend heavily on the type of mission to be performed. For planetary exploration,
a reliable, multi-focal eye with its redundancy will have advantages. On Earth, this may also be true
for missions after some catastrophe.
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