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Abstract: This manuscript presents two novel low-power high-speed true-single-phase-clock (TSPC)
prescalers with division ratios of 2/3 and 4/5, respectively, in a standard 90-nm CMOS technology.
The logic gates incorporated between the D-flip-flops (DFFs) of a conventional 2/3 prescaler are
modified to reduce the propagation delay and hence increase the maximum operating frequency.
The measurement results show that the proposed divide-by-2/3 and divide-by-4/5 prescalers can
operate up to 17 GHz and 15.3 GHz, respectively, which increase by 5.4 GHz and 4.3 GHz compared
with conventional TSPC prescalers. The power of the proposed divide-by-2/3 prescaler is 0.67 mW
and 0.92 mW, and 0.87 mW and 1.06 mW for the proposed divide-by-4/5 prescaler. The chip occupies
an area of 20 × 35 µm2 and 20 × 50 µm2 for the proposed divide-by-2/3 and divide-by-4/5 prescalers.

Keywords: CMOS; frequency divider; high speed; prescaler; propagation delay; true-single-
phase-clock (TSPC)

1. Introduction

The frequency synthesizer plays an important role in CMOS radio-frequency (RF) and millimeter-
wave (MMW) applications [1,2]. The high speed dual-modulus frequency prescaler is one of the key
blocks in the design of pulse swallow frequency dividers in frequency synthesizers [3,4], since it can
achieve multiple division ratios. Operating frequency, power consumption and circuit complexity are
usually the main design considerations.

Several types of prescalers have been discussed in previous works. Current mode logic (CML)
topology can realize a higher operating frequency while consuming higher power. True-single-phase-
clock (TSPC) dividers [5] and prescalers are usually consisted of several stages of TSPC logic gates,
which have single-phase clock-controlled latches. Compared to the CML structure, TSPC topology
suffers from a relatively lower operating frequency, but benefits from a lower power consumption
and smaller area [5–11]. In addition, the TSPC technique exhibits lower phase noise due to the fewer
transistors and faster transitions [12]. The extended-TSPC (E-TSPC) topology has a higher speed
than the TSPC topology, since it has one less transistor of each stage, and it is widely studied and
optimized [13–16]. However, the power consumption of E-TSPC blocks is largely affected by the
amplitude and DC level of the input clock signal, which have little influence on the TSPC blocks.
Besides, E-TSPC architecture has a higher short circuit power than TSPC structures [17]. Moreover,
since the NMOS and PMOS transistors may turn on simultaneously, the E-TSPC structure can cause the
wrong state in the following stages [5]. Therefore, TSPC prescalers with extended operating frequency
are a better choice, which are widely studied [6,17–24] and applied [2,25] for low power applications.

A TSPC dual-modulus prescaler generally consists of several stages of TSPC D-flip-flops (DFFs)
and other logic gates to realize two division ratios. There are many ways to enhance the operating
frequency range, such as DFF optimizing [26–29] and logic-gate embedding [17]. In order to achieve the
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highest possible speed using the traditional TSPC DFF, this work mainly focuses on logic modification
to reduce the total propagation delay. In addition, logic gates are embedded as well.

This manuscript presents a new structure of a TSPC divide-by-2/3 prescaler and divide-by-4/5
prescaler in a 90-nm CMOS technology. Section 2 describes the circuit design of the proposed prescalers.
The measurement results are discussed in Section 3. Finally, a conclusion is provided in Section 4.

2. Circuit Design

Figure 1 shows the topology and gate level circuit schematic of the conventional divide-by-2/3
prescaler, which consists of two stages of DFFs, an AND gate and an OR gate. MC (modulus control
signal) is used for the divider modulus control. The logic gates incorporated between the DFFs introduce
an extra time delay, which limits the operating frequency of the conventional divide-by-2/3 prescaler.

Electronics 2020, 9, x FOR PEER REVIEW 2 of 10 

 

frequency range, such as DFF optimizing [26–29] and logic-gate embedding [17]. In order to achieve 
the highest possible speed using the traditional TSPC DFF, this work mainly focuses on logic 
modification to reduce the total propagation delay. In addition, logic gates are embedded as well.  

This manuscript presents a new structure of a TSPC divide-by-2/3 prescaler and divide-by-4/5 
prescaler in a 90-nm CMOS technology. Section 2 describes the circuit design of the proposed 
prescalers. The measurement results are discussed in Section 3. Finally, a conclusion is provided in 
Section 4. 

2. Circuit Design 

Figure 1 shows the topology and gate level circuit schematic of the conventional divide-by-2/3 
prescaler, which consists of two stages of DFFs, an AND gate and an OR gate. MC (modulus control 
signal) is used for the divider modulus control. The logic gates incorporated between the DFFs 
introduce an extra time delay, which limits the operating frequency of the conventional divide-by-
2/3 prescaler. 

 

Figure 1. (a) Block diagram and (b) schematic of the conventional true-single-phase-clock (TSPC) 
divide-by-2/3 prescaler. 

The block diagram and schematic of the proposed TSPC divide-by-2/3 prescaler is shown in 
Figure 2a,b, respectively, which consists of two stages of DFF and two stages of NAND gates. When 
MC1 is logically low, the 2/3 prescaler operates in the divide-by-2 mode, whereas the 2/3 prescaler 
operates in the divide-by-3 mode when MC1 is logically high. The advantages of the proposed 

Figure 1. (a) Block diagram and (b) schematic of the conventional true-single-phase-clock (TSPC)
divide-by-2/3 prescaler.

The block diagram and schematic of the proposed TSPC divide-by-2/3 prescaler is shown in
Figure 2a,b, respectively, which consists of two stages of DFF and two stages of NAND gates. When MC1

is logically low, the 2/3 prescaler operates in the divide-by-2 mode, whereas the 2/3 prescaler operates
in the divide-by-3 mode when MC1 is logically high. The advantages of the proposed prescaler can
be better understood by comparing the signal path between nodes QB1 and S4 in Figures 1b and 2b.
Specifically, two inverters (i.e., inverters consisted of MP5&MN6 and MP8&MN9 in Figure 1b) are
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eliminated from QB1 to S3 by replacing the OR gate in the conventional topology with the NAND gate
in the proposed structure, which helps to reduce the propagation delay of the clock signal and hence
boost the maximum operating frequency. In addition, another two inverters (i.e., inverters made of
MP11&MN12 and MP12&MN13 in Figure 1b) are saved from S3 to S4 in Figure 2b, owing to the co-design
of the second NAND gate with the first TSPC gate of DFF2, which further decreases the path delay
and increases the operating frequency. As a result, when the proposed prescaler operates under the
divide-by-2 mode, S3 is kept high and the prescaler is configured just the same as a fixed-modulus
divide-by-2 divider. In other words, it achieves the highest possible speed using the same DFF,
since there is no extra delay from the logic gate. As for the divide-by-3 mode, the total propagation
delay is reduced by that of four inverters, thereby greatly increasing the maximum operating frequency
of the prescaler.
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Figure 2. (a) Block diagram of the proposed divide-by-2/3 and divide-by-4/5 prescalers, (b) schematic
of the proposed divide-by-2/3 prescaler.

In addition, the transistor MN7 is controlled by the MC1 signal. When the prescaler operates
in the divide-by-2 mode, the first DFF stage and NAND logic are shielded, so that the current
through this stage will be turned off, thereby reducing the static power consumption of the prescaler.
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The static power consumptions for the divide-by-2 mode and divide-by-3 mode are 217 µW and
436 µW, respectively.

The simulated waveforms of the internal nodes for the conventional and designed divide-by-2/3
prescalers under the divide-by-3 mode are shown in Figure 3. When the input frequency exceeds
the maximum operating frequency, signal D2 in Figure 1 is delayed into the next clock period due
to the large delay of the OR and AND gates, resulting in a false logic high level of S4. Under such
a circumstance, S5 will drop below the threshold voltage (VDD/2) when the clock is low, causing a
false level for QB2, as shown in Figure 3a. The waveforms of the conventional and designed structures
are compared in Figure 3b, where the operating frequency is slightly below the maximum operating
frequency of the conventional prescaler, to make sure that both structures work correctly. Thanks to the
proposed new structure, the delay time from QB1 to S3 and from S3 to S4 is greatly reduced. Therefore,
the maximum operating frequency of the proposed prescaler is much higher than the conventional one.
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Figure 3. (a) Simulated waveforms of the conventional divide-by-2/3 prescaler beyond the maximum
operating frequency, (b) comparisons of the simulated waveforms of the conventional and designed
divide-by-2/3 prescalers.

Figure 2a also shows the block diagram of the proposed divide-by-4/5 prescaler by adopting
the proposed divide-by-2/3 prescaler, a NOR logic and a fixed-modulus TSPC divide-by-2 divider.
When the MC is logically low, the prescaler operates in the divide-by-5 mode, while the prescaler
operates in the divide-by-4 mode if the MC is logically high. The positive output Q2 of the second stage
is used as the input clock signal of the TSPC divide-by-2 divider. The modulus control signal of the
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2/3 prescaler MC1 is generated by the negative output (QB3) of the divide-by-2 divider and modulus
control signal of the MC through the NOR logic.

Corner simulations are preformed to further show the improvement of the proposed structure.
The waveforms of some key nodes are simulated and analyzed under the same operating frequency
as Figure 3b. The corner simulations of process, voltage and temperature (PVT) of node QB2 for the
divide-by-3 mode are shown in Figure 4. For the conventional structure, the output is incorrect under
the worst case, while the proposed prescaler can work correctly. The process variation simulations for
the divide-by-3 mode of node QB2 are shown in Figure 5. For the conventional structure, the output
is incorrect when the transistors are under a slow mode, while the temperature and supply voltage
remain the same. The corner simulation waveform of node QB1, S3 and S5 of the proposed prescaler
under divide-by-3 are shown in Figure 6. Compared with Figure 3b, there is no false level around the
threshold voltage (in the red box) under each corner of the proposed prescaler. Therefore, the proposed
structure is more PVT robust.
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3. Measurement Results and Discussion

The proposed divide-by-2/3 and divide-by-4/5 prescalers are designed and fabricated in a 90-nm
CMOS technology. The conventional prescalers are also fabricated for comparison. Figure 7 shows
the chip microphotograph, which includes a prescaler core, a fixed divider chain and DC pads for the
power supply and modulus control. As shown in Figure 7b, for each prescaler, two 100-Ω resistors
are used for the input biasing as well as input impedance, roughly matching to 50-Ω. In order to
alleviate the influence of parasitic capacitance from the bonding pads on the output signal, a fixed
divider chain is applied after the prescaler core to lower the output frequency by a factor of 64
for the divide-by-2/3 prescaler and a factor of 32 for the divide-by-4/5 prescaler. The cores of the
divide-by-2/3 and divide-by-4/5 prescalers occupy a chip area of 20 × 35 µm2 and 20 × 50 µm2,
respectively. The measurements are carried out on an RF probe station, where the input signal is
provided by the Agilent E8257D analog signal generator, and the output signals are measured using
the Keysight N9030B signal analyzer.
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The measured input sensitivity curves of the divide-by-2/3 and divide-by-4/5 prescalers are
compared with the conventional TSPCs, as shown in Figures 8 and 9, respectively. It can be seen
from Figure 8 that the maximum operating frequency for the conventional divide-by-2/3 prescaler is
11.6 GHz for the divide-by-2 mode and 7.8 GHz for the divide-by-3 mode, respectively, which has been
increased to 17 GHz and 15.9 GHz by utilizing the proposed structure. Furthermore, the maximum
operating frequency of the proposed divide-by-4/5 prescaler also extends from 11 GHz to 15.3 GHz for
the divide-by-4 mode and from 7.7 GHz to 14.2 GHz for the divide-by-5 mode, respectively.
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Table 1 summarizes the performance of this work and compares with the other state-of-the-art
CMOS TSPC prescalers. As is shown in the table, the proposed design achieves a higher operating
frequency, a wider frequency range and a considerable power consumption, which is suitable for
modern communication systems.
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Table 1. Comparison with previous works.

Design Process Division Ratio Freq. Range
(GHz)

Power
(mW) *

Chip Area
(µm2)

[19] 180 nm 6/7/8 0.2–4.2 0.81 ** 35 × 40
[20] 180 nm 16/17 0.002–5.8 2.2 40 × 80
[21] 130 nm 2/3 14.1 0.8/1.1 -

[22] 65 nm 2/3
4/5 17 *** 0.318

0.938 -

[23] 180 nm 2/3 0.7–5.7 0.95 30 × 40
[30] 22 nm /4, /8 10–64 2.2 ** 154

This work 90 nm 2/3 1–17/
1.1–15.9 0.67/0.92 20 × 35

This work 90 nm 4/5 1–15.3/
1.2–14.2 0.87/1.06 20 × 50

* Measured at 5 GHz. ** Measured at maximum power consumption. *** Only maximum operating frequency.

Many works have been published concerning the improvement of TSPC DFFs [26–29] and
single-phase clocked (SPC) DFFs [31] in recent years. The aim of work is to achieve the highest possible
speed using the traditional TSPC DFF under the divide-by-2 mode, as there is no extra delay from
the logic gate. Furthermore, the total propagation delay is reduced by that of four inverters as for the
divide-by-3 mode.

Some references are about the design, optimization [13–16] and application [32,33] of the E-TSPC
structure, while our paper focuses on the improvement of TSPC prescalers. Reference [33] combines the
E-TSPC and TSPC structures. Compared with the E-TSPC topology, the amplitude and DC level of the
input clock signal will have little influence on the power consumption of TSPC blocks, which are more
PVT-robust. Therefore, our goal is to investigate TSPC prescalers with an extended operating frequency.

4. Conclusions

Two low-power high-speed TSPC divide-by-2/3 and divide by-4/5 prescalers are designed and
implemented in a 90-nm CMOS technology. The logic gates incorporated between the DFFs of the
conventional 2/3 prescaler are modified in order to reduce the extra propagation delay and increase
the operating frequency. The proposed divide-by-2/3 and divide-by-4/5 prescalers can operate from
1 GHz to 17 GHz, and 1 GHz to 15.3 GHz, respectively, which can be used for the design of frequency
synthesizers. The power of the proposed divide-by-2/3 prescaler is 0.67 mW and 0.92 mW, and 0.87 mW
and 1.06 mW for the proposed divide-by-4/5 prescaler. The chip occupies an area of 20 × 35 µm2 and
20 × 50 µm2 for the proposed divide-by-2/3 and divide-by-4/5 prescalers, which is promising in the
low-power and small-area design tendency.
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