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Abstract: Motor-imagery brain-computer interface (MI-BCI) is a technique that manipulates external
machines using brain activities, and is highly useful to amyotrophic lateral sclerosis patients who
cannot move their limbs. However, it is reported that approximately 15–30% of users cannot modulate
their brain signals, which results in the inability to operate motor imagery BCI systems. Thus, advance
prediction of BCI performance has drawn researchers’ attention, and some predictors have been
proposed using the alpha band’s power, as well as other spectral bands’ powers, or spectral entropy
from resting state electroencephalography (EEG). However, these predictors rely on a single state
alone, such as the eyes-closed or eyes-open state; thus, they may often be less stable or unable to
explain inter-/intra-subject variability. In this work, a modified predictor of MI-BCI performance
that considered both brain states (eyes-open and eyes-closed resting states) was investigated with
41 online MI-BCI session datasets acquired from 15 subjects. The results showed that our proposed
predictor and online MI-BCI classification accuracy were positively and highly significantly correlated
(r = 0.71, p < 0.1× 10−7), which indicates that the use of multiple brain states may yield a more robust
predictor than the use of a single state alone.

Keywords: motor imagery brain-computer interface; predictor; resting state

1. Introduction

Brain-computer interface (BCI) is among the techniques that allows a person to control external
devices using his/her brain activities (encoded information of intention) without limb movement.
Well-known BCI paradigms that use electroencephalography (EEG) include visual or auditory oddball
tasks and motor imagery (MI) tasks [1,2]. An MI task is among the active paradigms that reflect the
user’s intention directly; however, it has been reported that approximately 15–30% of users have
difficulty imagining their limb movement, and thus have little ability to modulate controllable brain
activity [3,4], such that a MI-BCI system is unsuitable for them. In the literature [3,4], such users are
referred to as BCI-illiterate. However, we note that certain ethical issues accompany BCI-illiteracy.
According to the literature [5], Thompson addressed that a BCI that does not work for its users simply
does not work. Reflecting Thompson’s opinion, BCI’s user-specific suitability, rather than BCI-illiteracy,
has been addressed throughout this work. To enhance MI-BCI ability, many researchers have used
neurofeedback [6–8] and sensory stimulation training [9,10] to help guide users. These strategies
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included evoked kinesthetic experiences and produced discriminative brain patterns among different
classes. Although MI-BCI training methods have been reported, it is difficult to conclude whether a
MI-BCI system is suitable for a user without conducting a very time-consuming MI-BCI task. Thus,
strategies to determine MI-BCI systems’ user-specific suitability are very useful in BCI research.

It is known well that during MI, the sensorimotor µ-rhythm power (8–13 Hz) decreases noticeably
relative to the baseline power for some time, and then rebounds and increases over the baseline power.
These phenomena are referred to as event-related desynchronization (ERD) [11] and event-related
synchronization (ERS) [12]. For most users for whom MI-BCI is less suitable, these ERD/ERS definitely
appear to be too weak to observe during MI. Generally, because a BCI task requires significant time
and effort, the ability to predict BCI’s user-specific suitability before a BCI task is conducted is highly
important with respect to cost-effectiveness. Therefore, many researchers have investigated several
factors related to MI-BCI performance, such as brain structure [13,14], personal characteristics [15],
motivation [16], mindfulness [17], kinesthetic MI scores [18], and users’ conviction that they can perform
BCI [19]. However, these factors are believed to be associated less directly with MI-BCI performance.

Therefore, direct prediction metrics have been reported using brain signals during the resting
state [4,20–23]. Blankertz et al. designed a SMR predictor using resting state EEG with eyes-open [4],
and obtained the maximum differences at C3/C4 between the actual power spectrum density and
the value modeled by fitting curves of the 1/f noise spectrum. Then, the mean value was considered
the potential ability to conduct a MI task, which is referred to as the SMR predictor. They achieved
a significant correlation (r = 0.53) between MI-BCI performance and the SMR predictor using the
eyes-open resting state alone in 80 subjects. In addition, a SMR predictor using pooled eyes-open and
eyes-closed data yielded a significant correlation (r = 0.58 [20]), and averaging the SMR predictor with
eyes-open and that with eyes-closed yielded a correlation of 0.54 [21]. Zhang et al. studied another
predictor of MI-BCI performance using the spectral entropy of resting-state EEG [22], in which the
spectral entropy was estimated by the normalized power spectral density (PSD) from 0.5–14 Hz. They
observed that the eyes-closed state yielded better prediction than did the eyes-open state; specifically,
the C3 channel of the eyes-closed resting state showed the highest correlation (r = 0.65) in 66 sessions
acquired from 40 subjects. In addition, Ahn et al. explored the relations between the spectral band
powers of eyes-open resting state EEG and MI-BCI performance, and found a significant association
between low theta and high alpha powers in MI-BCI performance [23]. With this finding, the potential
performance factor (PP factor) was proposed as a simple predictor of MI-BCI performance, and the
correlation between performance and the PP factor was estimated to be r = 0.59 with 52 subjects.

However, to date, these existing predictors have several limitations. The occipital visual alpha
rhythm may distort the SMR predictor using the eyes-open resting state easily [4], and its curve-fitting
method depends heavily on various parameters that are difficult to determine even if both resting state
data are used. Spectral entropy measures uncertainty in a predefined frequency range and spectrums
distributed evenly over frequencies may yield a high value, while a large spectral power at a single
frequency bin may yield a low value [24,25]. Thus, some specific frequency bands may be influenced
excessively when estimating spectral entropy, and potentially result in great fluctuation in entropy
attributable to emotional state or noise information. In addition, spectral entropy depends heavily on
the frequency range and bin size, which are not easy to determine optimally. The PP factor may also
depend on the emotional/cognitive state or noise, although it can be estimated far more easily by a
very simple calculation than can SMR and spectral entropy predictors.

To the best of our knowledge, most predictors derived directly from resting state EEG have
been explored with the resting state alone, such as either eyes-open or eyes-closed. Subjects’ innate
state is known to vary over time; thus, notable variability in their resting states that reflect various
circumstances, such as emotion, degree of fatigue, background noise, and so on, may influence such
predictors strongly [22,23]. Accordingly, predictors may vary greatly over datasets and yield less
stable prediction. To overcome this inherent issue to some extent, it is natural to consider as much
information as possible to estimate a predictor. This motivated us to investigate whether both resting
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states (eyes-open and eyes-closed) may be a more robust predictor than a single resting state alone.
Thus, in this work, we proposed a predictor that uses both resting states and evaluated it with online
MI-BCI data.

The paper is organized as follows. The MI-BCI experiment we used in this work and its analysis
are described in detail in Section 2. Various predictors using the eyes-open or eyes-closed state alone,
as well as one obtained from both states combined, are compared in Section 3. Finally, beta oscillation
for BCI prediction, inter-session variability, and certain related issues are discussed in Section 4.

2. Materials and Methods

2.1. Data Description

Fifteen healthy, right-handed subjects (3 females, age 25.6 ± 2.4 years) participated in a
multiple-session (1–5 sessions) MI-BCI experiment, and data were collected during a total of 41 sessions.
All subjects were informed of the experiment’s purpose and process, and then signed a consent
form. The institutional review board (IRB) of Gwangju Institute of Science and Technology (No.
20130527-HR-02) approved this experiment.

Brain signals were acquired from 64-channel EEG system (Biosemi ActiveTwo system) that were
placed on the scalp according to the international 10-10 system. Simultaneously, 12 electromyogram
(EMG) channels were attached to their arms and legs to determine whether the subjects could control
the signals through their limb movements. All EEG and EMG signals were digitized at 512 Hz.

The subjects sat in a comfortable chair, relaxed their arms and legs, and were instructed to conduct
several tasks. First, they focused their eyes on fixation markers for 1 min, then closed their eyes for
1 min. Thereafter, the subjects conducted two MI tasks, offline and online. In the offline MI task, a red
dot appeared for 2 s to signal them to prepare to imagine limb movement. Then, a target gray bar
appeared on the right, left, or bottom; according to its position, they imagined their right hand, left
hand, or feet moving for 2 s. Finally, the target disappeared and the subjects stopped imagining the
movement. This procedure constituted one trial for the offline task, and 60 trials were conducted per
class. Each subject’s offline tasks, which consisted of three classes (left hand (L), right (R) hand, and feet
(F)), and three pairs of classes (left hand–right hand, left hand–feet, right hand–feet) were evaluated
with binary classification. Among the three pairs, the pair of classes that yielded the best classification
performance was chosen to use in the online MI task. We note that this pair may be subject-specific.
In the online task, the subjects received feedback from a 2 s EEG signal window after they began to
imagine limb movement. Each subject performed the online MI task in 75 trials per class [26].

2.2. Motor Imagery Task Analysis

The MI-BCI data were baseline corrected and band-pass filtered from 8–30 Hz using Fast Fourier
Transform (FFT), which is related to motor movements. They were down-sampled by 4 and a
time window of 0–2 s after imagination onset was used for analysis. Feature extraction (invariant
common spatio-spectral pattern [26,27]) and binary classification (Fisher’s linear discriminant analysis
(FLDA) [28]) of these data were applied to each pair of classes. Thus, three classifiers were generated
with 3-class MI. 10-fold cross-validation was performed for each classifier, with a 70% training set and
30% test set, and a total of 120 iterations were computed; thus, classification accuracy was averaged
over 120 iterations. The pair of classes that yielded the best classification performance was used
for the online task, and the online task data were analyzed with the same procedure, but without
cross-validation. For all online sessions, we categorized three performance groups according to the
subjects’ online classification performance, as follows:

• High-performance group (classification accuracy ≥ 70%)
• Middle-performance group (60% ≤ classification accuracy < 70%)
• Low-performance group (classification accuracy < 60%).
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We focused primarily on the high- and low-performance groups in our analysis to extract features
that discriminated between the two.

2.3. Resting State Analysis

The resting state EEG data (eyes-open and eyes-closed) were band-pass filtered from 1–50 Hz
using FFT, and a time window of 30 s (10–40 s after onset) among the data that were collected for 1
min were used, because strong eyeball movement noise was observed frequently early or late in the
trials. The spectral band powers of theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and low gamma
(30–50 Hz) were obtained for each of the resting states, and normalized by an entire spectrum’s power
(4–50 Hz) to reduce inter-individual power amplitude variability. This is referred to as the relative
power level (RPL). Of 64 channels, two on the central area associated with the primary motor cortex
were considered for analysis because the motor area during resting states is believed to be related
directly to MI performance. According to the pair of classes chosen for the online task (addressed
in Sections 2.1 and 2.2), two channels were selected among the C3 (associated with the right hand),
C4 (left hand), or Cz (feet) channels. Thus, the C3 and C4 channels were chosen for a pair of the left
and right hands, C3 and Cz channels for a pair of the right hand and feet, and C4 and Cz channels
for a pair of the left hand and feet. Lastly, we explored the distribution of the RPLs for each band
and performance group, and the high- and low-performance groups were compared to determine the
statistical significance of their difference with an unpaired Student’s t-test.

3. Results

3.1. Online BCI Performance

The online BCI data (41 sessions) were collected from 15 subjects and online BCI classification
performance for each session was estimated in the way described in Section 2.2. Detailed information
on each session is tabulated in Table 1. As Figure 1 illustrates, the subjects’ accuracy in BCI classification
performance ranged from 44.0% to 99.3%. As shown in Figure 1, we categorized 25 of 41 sessions as the
high-performance group, as they demonstrated high classification accuracy (≥70%), and 12 sessions
were categorized as the low-performance group (<60% classification accuracy). We note that a
classification accuracy of 60% or less does not differ significantly from the chance level, and thus, we
may say that this performance indicates the BCI system’s inadequacy.

Figure 1. Distribution of classification accuracy for 41 online MI-BCI sessions in increasing order.
Sessions above the blue line (classification accuracy≥ 70%) and sessions below the red line (classification
accuracy < 60%) were categorized as the high- and low-performance groups, respectively.



Electronics 2020, 9, 690 5 of 14

Table 1. Details of online BCI data and BCI classification accuracy.

Subject Session Class Online Accuracy Subject Session Class Online Accuracy

S1
1 RF 47.0

S7
1 LF 57.0

2 RF 57.0 2 RF 53.0

S2

1 LF 79.0
S8

1 LR 56.0
2 LR 82.0 2 RF 52.0
3 LR 65.0

S9
1 LF 90.0

4 LR 93.3 2 LF 71.3
5 LR 88.7 S10 1 RF 70.0

S3

1 RF 81.0
S11

1 RF 67.3
2 LF 87.0 2 RF 58.7
3 RF 87.0

S12
1 LF 75.3

4 RF 86.0 2 LF 82.7
5 LF 92.0

S13
1 LF 88.7

S4

1 RF 89.0 2 LF 94.0
2 RF 78.0

S14
1 LF 90.0

3 RF 51.0 2 LF 61.3
4 LF 78.7

S15
1 RF 91.3

5 LF 54.0 2 RF 44.0

S5
1 LF 49.0
2 RF 45.0

S6

1 RF 60.0
2 LF 92.0
3 LF 97.0
4 LF 98.7
5 LF 99.3

3.2. BCI Performance Predictors Using Eyes-Open or Eyes-Closed Resting State Alone

Next, we investigated the high- and low-performance groups’ spectral power distributions.
To reduce inter-subject variability, we considered the relative spectral power (defined by the RPL)
in this analysis. Figure 2a illustrates the data distribution and box plots of the RPL values of the
eyes-open state over four spectral bands (theta, alpha, beta, gamma). The distributions of the high- and
low-performance groups’ RPL values were also compared. We note that the RPL is the mean of three
channels (C3/C4/Cz) located near the motor cortex. From this investigation, we observed the following:

• The high-performance group’s alpha power was significantly higher than that of the
low-performance group (p < 0.01).

• The high-performance group’s beta power was significantly lower than that of the low-performance
group (p < 0.01).

• The theta powers did not differ significantly between the two groups (p > 0.1). However, except
for two data points, the theta powers in the high-performance group had a significantly lower
distribution than did those in the low-performance group (p < 0.05).

• The gamma powers did not differ significantly between the two groups (p > 0.1). However, the
median of the gamma powers in the high-performance group was slightly lower than that in the
low-performance group.

Based on these observations, three types of simple MI-BCI predictors (EO predictors) for the
eyes-open resting state can be proposed in a way similar to Ahn et al.’s approach [23], as follows:

1. Combination of two significant spectral bands’ (alpha and beta) powers

EO predictor2B = α/β (1)

2. Combination of three spectral bands’ (theta, alpha, and beta) powers

EO predictor3B = α/(θ+ β) (2)
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3. Combination of all four spectral bands’ (theta, alpha, beta, and gamma) powers

EO predictor4B = α/(θ+ β+ γ) (3)

The numerators in the predictors above consist only of the alpha band power that is correlated
positively with online BCI performance, and the denominators consist of the spectral band powers
that are correlated negatively with online performance. We note that these EO predictors are forms
of modified PP factors. We conducted a correlation analysis of the online BCI classification accuracy
and the EO predictors. The EO predictor that used the three spectral bands yielded the strongest
positive correlation with online BCI performance, after five outliers (blank dot, 90% confidence interval)
were excluded (r = 0.67, p < 0.1× 10−4), as shown in Figure 2b, while the EO predictors with two or
four bands yielded relatively low correlations (r = 0.56, p < 0.1 × 10−2 and r = 0.54, p < 0.1 × 10−2,
respectively). From these results, we found that an EO predictor using Equation (2) that combines
three spectral bands (theta, alpha, beta) produces the best results.

Figure 2. Eyes-open resting state: (a) The RPL distributions of theta, alpha, beta, and gamma powers
between the high- and low-performance groups. (b) Regression analysis between the EO predictor
with three frequency bands (theta, alpha, and beta) and online BCI classification accuracy.

Similarly, we performed the same investigation for the eyes-closed resting state, and the RPL
distributions and correlation analysis are illustrated in Figure 3. Our findings from these observations
were as follows:

• The high-performance group’s alpha power was higher than that of the low-performance group,
but was only mildly significant (p < 0.1).

• The high-performance group’s beta power was significantly lower than that of the low-performance
group (p < 0.05).
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• There was no significant difference in the theta and gamma powers between the low- and
high-performance groups (p > 0.1). However, theta’s median in the high-performance group was
slightly higher than that in the low-performance group, while gamma’s median was slightly lower.

Figure 3. Eyes-closed resting state: (a) The relative power level (RPL) distributions of theta, alpha, beta,
and gamma powers between the high- and low-performance groups. (b) Regression analysis between
the EC predictor with two frequency bands (alpha and beta) and online BCI classification accuracy.

Except for theta power, the alpha, beta, and gamma powers in the eyes-closed resting state
behaved quite similarly to those in the eyes-open resting state, although the significance of alpha
differed somewhat. Similar to the derivation of the EO predictor, from these observations, the EC
predictors for the eyes-closed state were proposed, as follows:

1. The combination of two significant or moderately significant spectral bands’ (alpha and
beta) powers

EO predictor2B = α/β (4)

2. The combination of three spectral bands’ (theta, alpha and beta) powers

EO predictor3B = (θ+ α)/β (5)

3. The combination of all four spectral bands’ (theta, alpha, beta and gamma) powers

EO predictor4B = (θ+ α)/(β+ γ) (6)

A regression analysis was conducted between the EC predictors and online BCI performance, and
after three outliers were excluded (at the 90% confidence interval), the predictor that used two spectral
bands yielded the strongest positive correlation (r = 0.59, p < 0.1× 10−2). In addition, the EC predictors
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with three or four spectral bands had relatively low correlations (r = 0.43, p < 0.1× 10−1 and r = 0.45,
p < 0.1 × 10−1, respectively). From these results, we found that the EC predictor using Equation (4)
that combines two spectral bands (alpha and beta) is preferable.

3.3. BCI Predictor Using both Eyes-Open and Eyes-Closed Resting States

Rather than using a single resting state alone (either eyes-open or eyes-closed), both resting states
may be used to propose a BCI predictor. Based on all of the observations in Section 3.2, the following
resting state predictor (RSP) can be proposed as a combination of EO and EC predictors:

RSP = (αeo + αec)/(θeo + βeo + βec) (7)

Here, the subscripts ‘ec’ and ‘eo’ represent the eyes-closed and eyes-open states, respectively.
We note that this proposed RSP considered the alpha and beta powers of both resting states and

the theta band of the eyes-open state. We conducted a regression analysis between the RSP value and
online BCI classification accuracy with this RSP, and found that the RSP and online BCI performance
were correlated strongly (r = 0.71, p < 0.1× 10−7), as Figure 4a shows. A permutation test with 5000
iterations was conducted to test whether the correlation was significant, and it was found to be quite
significant for our proposed predictor (p < 0.1× 10−2). For comparison, we computed the PP factors in
Ahn et al. [23] with those in our dataset, which yielded a correlation with BCI classification accuracy of
r = 0.48 (p < 0.1× 10−1), as presented in Figure 4b. This correlation between the PP factors and online
BCI performance was significant (p < 0.05 from the permutation test), but lower than that reported in
Ahn et al.’s study (r = 0.59) [23]. This result suggests that the PP factors may depend on the dataset
because of variability in a single state.

Figure 4. (a) Regression analysis between our proposed resting state predictor (RSP) and online BCI
classification accuracy, (b) Regression analysis between the PP factor (Ahn et al. [23]) and online BCI
classification accuracy. Outliers (at the 90% confidence interval) are shown as blank markers.

In addition, offline data were computed with regression models in the same way. The data
distributions were similar to those of the online data, and the correlation between the RSP and PP
factors were r = 0.58 (p < 0.1× 10−3) and r = 0.42 (p < 0.1× 10−1), respectively. Compared to the online
data, the values were slightly smaller because there were fewer session data with lower classification
accuracy in the offline data. Nevertheless, our proposed predictor yielded higher correlations than the
PP factor.
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4. Discussion

4.1. Relation between Spectral Powers and MI-BCI Performance

The sensorimotor µ-rhythm and beta rhythm are related closely to MI because the alpha and
beta powers are attenuated to a greater extent during motor imagination than during the resting state,
and are representative features of the MI paradigm [11,12,29,30]. In addition, the alpha rhythm is
associated with both mental effort and relaxation [31]. Accordingly, the alpha potential is generally
considered to be the core band power to predict performance [4,22,23]. In this work as well, we found
that the high-performance group demonstrated relatively higher alpha power distributions in both the
eyes-closed and eyes-open states.

Some studies have reported that theta oscillations were related to sensorimotor integration or
haptic information recall [32,33] and conscious awareness [34], and thus, MI-BCI performance may
reflect this. For example, Ahn et al. reported a potential negative association between theta power and
MI-BCI performance [23]. In our dataset, we observed a slightly negative, insignificant correlation
between theta power in the eyes-open resting state and BCI performance, which seems somewhat
relevant to Ahn et al.’s [23] result. However, we observed no association between theta power and
MI-BCI performance in the eyes-closed resting state, although the median of theta power in the
high-performance group was slightly higher than that in the low-performance group. The eyes-closed
state demonstrated a notably higher alpha power than did the eyes-open state; thus, it is believed that
the other bands’ relative powers may be reduced, and result in less difference in the theta RPL between
the high- and low-performance groups.

According to the literature [35–38], gamma rhythm is significantly related to the frontal-parietal
network, which is associated with the mirror neuron system (MNS). The MNS recalls previous motor
experiences, i.e., gamma power is related to movement memory during motor imagination or motor
movement observation. However, in this work, we did not observe any notable correlation between
gamma power and MI-BCI performance. We analyzed only three channels in the central region, and
thus, gamma oscillation’s influence in certain areas may be less than that in the frontal-parietal network.

4.2. Using Beta Oscillations to Predict BCI

The PP factor was proposed to be a combination of theta, alpha, beta, and gamma powers in the
eyes-open state. In particular, theta and alpha powers predict MI-BCI performance significantly, while
beta and gamma powers have only a marginal ability to do so. However, in our work, beta power
affected MI-BCI performance significantly, and was correlated with it negatively in the eyes-open
state, while it was correlated with performance positively in the eyes-closed state. To investigate beta
power’s effect, we explored three cases in our dataset:

Case 1: beta power is in the numerator (PP factor; Figure 4b)

PP factor = (α+ β)/(θ+ γ) (8)

Case 2: beta power is in the denominator (Equation (3); Figure 5a)
Case 3: beta power is dropped (Figure 5b).

EO predictor without beta = α/(θ+ γ) (9)

A regression analysis for these three cases yielded correlations of r = 0.48 (p < 0.1× 10−1), r = 0.54
(p < 0.1× 10−2), and r = 0.53 (p < 0.1× 10−2), respectively. Three outliers were excluded in this analysis.
Case 2 yielded the highest correlation, and thus, in our dataset, the beta band may play a positive role
in predicting BCI. However, this finding may depend on the dataset.
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Figure 5. (a) Regression analysis between the modified PP factor (Case 2, beta power in the denominator)
and online BCI classification accuracy, and (b) Regression analysis between the modified PP factor
(Case 3, no beta power) and online BCI classification accuracy. Outliers (90% confidence interval) are
shown as blank markers.

4.3. Comparisons with Previous Works

Blankertz et al. reported the neurophysiological prediction of MI-BCI performance using the
eyes-open resting state first and calculated the alpha potentials on the C3, C4 channels [4]. Because
this measures the potential for an alpha power decrease (attenuation), it is likely to overestimate the
performance of some subjects with similar SMR attenuation patterns in different classes, although
they have large SMR powers (large potential to decrease alpha power). In addition, it is difficult to
determine curve-fitting parameters with the SMR predictor because of the cumbersome numerical
procedure. Therefore, the PP factor was proposed to estimate this easily by computing spectral powers.
Further, the PP factor may be more robust to variations in alpha power because it considers multiple
spectral powers rather than alpha power alone.

The PP factor derives from the combination of four spectral band powers, and highlights theta and
alpha powers more than others. However, it is expected that even relative spectral powers may vary
according to mental states, such as attention and motor-related memory load [23]. In addition, other
prediction studies that have used spectral entropy have argued that the eyes-closed state outperformed
the eyes-open state [22] because the former may eliminate electrooculography artifacts and attenuate
cognitive activities. In our work, we followed Ahn et al.’s approach for the eyes-closed and eyes-open
state combined using 41 online MI-BCI data points. We found that a single state alone (eyes-open
or eyes-closed state) yielded less comparable predictions, while using both yielded better prediction.
We inferred from this result that prediction using multiple states may reduce variation attributable to
inherent factors (subjects’ innate band power, mental states, background noise, and so on). Thus, our
proposed predictor using multiple states may be a more stable predictor of MI-BCI performance.

4.4. Inter-Session (Intra-Subject) Variability

Our proposed predictor that uses multiple states may reduce bias from subject-specific band
powers. Further, one may question whether our proposed predictor may be more reliable between
sessions than is a single state alone. Our dataset included the data for 14 subjects who participated in
multiple sessions (2–5), which allowed us to investigate our proposed predictor’s session variability.
For quantitative evaluation purposes, the percentage change to compute was defined as follows:

Percentage change (%) = (Sn − S1)/S1 × 100 (10)

in which S1 is the first session data, and Sn is the nth session data. We computed the percentage
changes in each subject’s online BCI classification accuracy and the predictor value.
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First, we excluded from this analysis certain subjects (sessions) with either a small change
(
∣∣∣ACCS1 −ACCSn

∣∣∣ < 10%), or abnormally larger changes in classification accuracy (
∣∣∣ACCS1 −ACCSn

∣∣∣ >
30%). After reasonable sessions were selected, we analyzed the session reliability in 10 data sessions.
Figure 6a presents the comparisons between the percentage change in online BCI classification accuracy
and percentage change in the two predictors (RSP and PP factors). A regression analysis was performed
for each predictor, as shown in Figure 6b,c. The RSP in our proposed predictors yielded quite a high
positive correlation (r = 0.56, p < 0.1), although it appears less significant because of the small dataset.
In contrast, the PP factor’s correlation was slightly less after one outlier at the 90% confidence interval
was excluded (r = 0.52, p > 0.1). From this observation, we believe that the RSP may be relatively more
robust to session variability than the PP factor.

Figure 6. (a) Comparison between percentage change in BCI classification accuracy and percentage
change in prediction value. (b) Our proposed predictor (RSP) and (c) the PP factor for session variabillity.
Blank markers indicate outliers.

4.5. Limitations of the Study

In this work, we investigated the relationships between MI-BCI performance and spectral powers
in 41 online BCI sessions from 15 subjects. We found that using both states (eyes-open and eyes-closed
resting states) yielded better prediction than using a single state alone. Although we proposed a
predictor that uses a combination of RPL values with resting states and presented its association with
MI-BCI performance, the predictor does not yield classification accuracy directly. Because our dataset
was too small to yield robust classification accuracy, more data are needed to estimate more sound
performance levels. The total of 41 sessions from 15 subjects appeared to be too small to reach a
sound conclusion, and other datasets that include both the eyes-closed and eyes-open resting states are
difficult to find. Physionet’s BCI dataset [39] consists of data on MI and motor movement both in the
eyes-open and eyes-closed state; however, it is difficult to estimate BCI classification accuracy reliably
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because of the very small number of trials in the MI task. Thus, to the best of our knowledge, there
is no MI-BCI dataset that yields reasonable BCI performance and has more sessions or subjects than
does ours. However, to reach more sound conclusions, a greater number of larger datasets is required,
which we will investigate in the future.

Our correlation analysis in this work was conducted after several outliers at the 90% confidence
level were excluded. When we apply a confidence level greater than 90%, the number of outliers
decreases and the correlations with predictors may vary, as shown in Table 2. However, our proposed
predictor, the RSP, always demonstrated higher correlations than the PP factor.

Table 2. Correlation analysis between resting state predictor (RSP)/performance factor (PP factor) and
MI-BCI classification accuracy at various confidence levels.

Predictor

RSP PP Factor

Correlation, p-Value Outlier Correlation, p-Value Outlier

Confidence
Level

90% r = 0.71, p < 0.1× 10−7 4 r = 0.48, p < 0.1× 10−1 3

95% r = 0.66, p < 0.1× 10−6 3 r = 0.31, p < 0.1 1

99% r = 0.50, p < 0.1× 10−1 0 r = 0.20, p > 0.1 0

Furthermore, although we found relations between MI-BCI performance and the eyes-open and
eyes-closed resting states, we could not identify interactions between the two states. Therefore, more
extensive investigation is necessary to develop more optimal predictors and interpret them from a
neurogenesis or neural connections perspective.

In addition, the MI-BCI system is quite useful for amyotrophic lateral sclerosis (ALS) patients
who cannot move their limbs, and thus, our proposed predictor may help prescreen their ability to
conduct MI-BCI without time-consuming experiments. However, our findings derived from healthy
subjects’ data, and thus, verification studies with patient datasets are necessary.

5. Conclusions

To date, MI-BCI systems have been quite difficult to introduce on the market, because these
systems are unsuitable for a significant number of individuals; thus, a BCI performance predictor may
be applied to prescreen whether or not it is suitable for a given user, which will eliminate the need
to perform time-consuming and complex tasks in advance. Previous studies have estimated MI-BCI
performance primarily using either the eyes-open or eyes-closed resting state alone, and thus, they
have not considered subjects’ innate characteristics and the variability in the resting state attributable
to mental state, emotion, or background noise. In this work, we proposed a new predictor that uses
both the eyes-open and eyes-closed resting states, and found that it yielded more reliable regression
results than those that use a single state alone, and showed slightly decreased session variability
attributable to users’ mental states and background noise. Thus, our proposed predictor may be
useful in prescreening individuals’ abilities to use the MI-BCI system in advance before performing
time-consuming BCI tasks.
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