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Abstract: In the field of deep learning, the generative model did not attract much attention until
GANs (generative adversarial networks) appeared. In 2014, Google’s Ian Goodfellow proposed
a generative model called GANs. GANs use different structures and objective functions from the
existing generative model. For example, GANs use two neural networks: a generator that creates a
realistic image, and a discriminator that distinguishes whether the input is real or synthetic. If there
are no problems in the training process, GANs can generate images that are difficult even for experts
to distinguish in terms of authenticity. Currently, GANs are the most researched subject in the field of
computer vision, which deals with the technology of image style translation, synthesis, and generation,
and various models have been unveiled. The issues raised are also improving one by one. In image
synthesis, BEGAN (Boundary Equilibrium Generative Adversarial Network), which outperforms the
previously announced GANs, learns the latent space of the image, while balancing the generator and
discriminator. Nonetheless, BEGAN also has a mode collapse wherein the generator generates only a
few images or a single one. Although BEGAN-CS (Boundary Equilibrium Generative Adversarial
Network with Constrained Space), which was improved in terms of loss function, was introduced, it
did not solve the mode collapse. The discriminator structure of BEGAN-CS is AE (AutoEncoder),
which cannot create a particularly useful or structured latent space. Compression performance is not
good either. In this paper, this characteristic of AE is considered to be related to the occurrence of
mode collapse. Thus, we used VAE (Variational AutoEncoder), which added statistical techniques to
AE. As a result of the experiment, the proposed model did not cause mode collapse but converged to
a better state than BEGAN-CS.

Keywords: deep learning; mode collapse; generative adversarial networks; boundary equilibrium
generative adversarial networks; variational inference; computer vision; artificial intelligence

1. Introduction

The term deep learning has become so familiar [1]. Deep learning has rapidly expanded its range of
use from AlphaGo’s go match, which we all watched with interest, to professional jobs such as doctors
and lawyers and to cultural and artistic fields that require creativity. There are countless cases of using
deep learning, such as talking to AI voice secretaries on smart phones, receiving recommendations
for the necessary products, preventing fraudulent credit card transactions, filtering spam mails, and
detecting and diagnosing diseases. Global companies like Google, Facebook, Apple, Amazon, and
IBM (International Business Machines) also invest heavily in researching and applying deep learning
technology. Deep learning opened up new possibilities and became indispensable in everyday life.
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The characteristics of deep learning models can be divided into discriminative and generative
models for comparison. discriminative models distinguish and classify differences in input patterns.
If one is to enter an image of a dog, the dog will be determined with a specific probability. The training
model is trained to maximize the probability that a label called Y will be output when given the data X.
In other words, the discriminative model is a deep learning model that classifies or recognizes data
and directly modeling conditional probability p(y

∣∣∣x) . Generative models, on the other hand, contain
more information than discriminative models. Knowing the distribution of joint allows you to find the
conditional probability and the distribution of the data itself. The generative model can understand
and explain the structure of the input data.

Before the introduction of GANs (generative adversarial networks) in 2014, the generative model
did not draw much attention in the deep learning field [2]. This is because loss calculation and
the back-propagation learning of the generative model are difficult, and there was no methodology
to raise the likelihood [3]. GANs use a structure and an objective function that are different from
those of the previously introduced generative model. They use two neural networks called generator
and discriminator. The generator generates images such as real, and the discriminator distinguishes
whether they are real or synthetic. In the course of training, the generator learns more sophisticated
synthetic techniques, and the discriminator grows into more accurate appraisers. GANs present a
model that diligently refines the abilities of generators and discriminators.

The areas where GANs are utilized the most today are computer vision, such as image style,
translation and image synthesis. Nowadays, they are also being used to generate non-image data such
as voice and natural language [4,5]. The potential uses of GANs are growing.

GANs have introduced hundreds of applied models in recent years, with the problems cited
improving. BEGAN (boundary equilibrium generative adversarial network), which performed better
than the previously introduced GANs in image synthesis, learns the latent space of images while
balancing and adjusting the generator and the discriminator [6].

In BEGAN, however, there is a fundamental problem with GANs called mode collapse. Although
BEGAN-CS (Boundary Equilibrium Generative Adversarial Network with Constrained Space), which
was improved in terms of loss function, was introduced, it did not solve the mode collapse [7].

Mode collapse is a phenomenon in which the generator generates only a few or a single image
and is divided into partial collapse and complete collapse. In general, if the generator is updated every
step, the discriminator initially assigns a low probability to the previous output of the generator, so the
generator appears as a cycle of convergence or endless mode hopping. When a mode collapse occurs,
the discriminator penalizes the images generated in the mode to increase the loss of the generator, and
the generator moves to another mode to avoid it. This is called mode hopping. Mode collapse has
emerged as a fundamental problem for GANs. Therefore, in this paper, research was conducted to
alleviate or solve mode collapse.

Structural improvements in BEGAN-CS are also needed to address mode collapse.
AE (AutoEncoder) cannot create particularly useful or well-structured latent space. Compression
performance is not good either. In this paper, we saw these limitations in relation to the occurrence of
mode collapse. Therefore, we used VAE (Variational AutoEncoder), which added statistical techniques
to AE. The KLD (Kullback–Leibler Divergence) term was added to the loss function as a regularization
loss that would create latent space well and reduce overfitting to the training data. In the KLD
calculation process, BEGAN’s hyperparameter k was added. k makes the decoded image equal to the
original input, and it is included in the regularization loss calculation. In other words, the discriminator
VAE is trained as two loss functions. We have also changed the structure of encoder and decoder.
The activation function has been changed from ELU (Exponential Linear Unit) to Leaky ReLU (Leaky
Rectified Linear Unit) [8,9]. Leaky ReLU, whose negative part is unsaturated, is thought to work better
than ELU, whose negative part is saturated, so it was changed.

This paper presents an alternative research on the fundamental problem of GANs. Optimization
studies were also conducted to improve the performance of BEGAN-CS, and problem solving was
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sought. Finally, the GANs model with VAE as the discriminator was implemented to verify the
performance of mode collapse, training instability, and evaluation criteria.

The implementation model was able to resolve mode collapse. In addition, we were able to learn
a continuous, structural latent space to separate hair, hairstyle, hair color, skin, etc. Moreover, the blur
phenomenon as a disadvantage of VAE did not occur.

The rest of this paper is organized as follows: Section 1 describes the background, purpose,
and content and scope of the research; Section 2 presents the latest research related to the structure
and application of GANs; Section 3 discusses the structure of BEGAN-CS, learning algorithms, and
problems that arise during training; in Section 4, we compare and describe how the features of the
proposed model designed for performance improvement are different from those of the existing models;
Section 5 presents our experimentation and evaluation as to whether the performance of the proposed
model improved as intended; Section 6 discusses the conclusion and future tasks.

2. Related Work

2.1. Structure of GANs

In the first announced GANs structure, both generator and discriminator consisted of fully
connected layers. This type of structure can be trained with relatively simple datasets, such as the
hand-written numeric dataset MNIST (Modified National Institute of Standards and Technology),
CIFAR (Canadian Institute For Advanced Research)-10, and Toronto Face Dataset.

The convolutional GAN is a natural phenomenon because the CNN (Convolutional Neural
Network) specializes in the field of computer vision. Training of the initial convolutional GAN using
CIFAR-10 was more difficult than CNN. LAPGAN (Laplacian Pyramid of Generative Adversarial
Network) decomposes the generation process on multiple scales and provides one solution [10].
In LAPGAN, the real data, which is the correct answer image, is itself decomposed into a Laplacian
pyramid and is trained to generate layers from it.

Radford proposed DCGAN (Deep Convolutional Generative Adversarial Network) to improve
the quality of the generated images [11].

DCGAN performs spatial down-sampling and up-sampling with stride convolution and transpose
convolution. The operation above is useful when mapping from the image space to the low-dimensional
latent space and discriminator because of the fast sampling rate and well-captured position change.
Looking at the structure of Figure 1, the CNN and the operation process are reversed. For example,
VGGNet receives an image measuring 3 × 224 × 224 as input and outputs a vector of 1000 values,
whereas DCGAN receives an image with 100 values as input and outputs an image measuring
3 × 224 × 224 [12]. Such a difference is attributable to the fact that DCGAN is a generative model,
whereas VGGNet is a discriminative model. Figure 1 shows the structure of DCGAN [11].

The generative model needs more understanding of the data generation process than the
discriminative model [13]. MLP (multi-layer perceptron), deep MLP, and CNN are discriminative
models. The discriminative model corresponds to supervised learning that can be learned only when
feature vector X = {x1, x2, . . . , xn} and label information Y = {y1, y2, . . . , yn} are given as a training set.
At this time, the learning algorithm does not need to find out the probability distribution of feature
vector x. If we can only estimate the conditional probability P(y

∣∣∣x) , we can solve the classification
or regression problem. Regression is an algorithm that models the relationship between one or more
characteristics x and successive target variables y. Characteristics are also called explanatory variables,
and targets are response variables. On the other hand, the generation model estimates the probability
distribution for vector x. This corresponds to unsupervised learning that does not require label
information; if label information is available, it may be used. In summary, the discriminative model is
supervised learning to estimate P(y

∣∣∣x) , and the generative model is unsupervised learning to estimate
P(x) or P(x

∣∣∣y) , P(x, y).
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Wu introduced GANs, which create 3D composite images, such as chairs, tables, and cars [14],
and also suggested how to map the description or content of a 2D image to a 3D version.

Mirza extends the GANs framework to conditional settings by making the generator and
discriminator class conditional [15]. Figure 2 shows the structure of cGAN (conditional generative
adversarial nets).
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The cGAN in Figure 2 performs the conditional distinguishing of real and synthetic images of
discriminators. cGAN provide a better representation in a variety of data generation.

The discriminator in InfoGAN (Information maximizing Generative Adversarial Network)
estimates the class label [16]. The expressions learned by InfoGAN are known to represent facial poses,
lighting, and emotional changes well. The goal of the future research is to draw a parallel line between
cGAN and InfoGAN to decompose the noise source into an Incompressible source and a latent code
and to maximize the mutual information between the latent code and the generator output to discover
the latent factor of the transformation. Latent code can be used to find object classes. Figure 3 shows
the structure of InfoGAN.
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2.2. Application of GANs

Since GAN can quantitatively evaluate the features extracted from unsupervised learning, it can
be applied to image classification. For example, if there is a constraint on the generated image, GAN
can be applied to image synthesis. Constraints are conditions on how the training objectives should be
achieved. Better super-resolution is possible by adding adversarial loss to the existing approach. It is
also applicable to image-to-image, which automatically converts an input image into an output image.
In other words, the application fields of GANs are very wide.

The trained GANs model can be used for other downstream tasks. Downstream is data transmitted
from the upper medium to the lower medium. For example, the discriminator’s convolution layer
output can be used as a feature extractor and combined with a linear model like SVM (support vector
machine). This is a structure wherein a feature vector that has passed through a feature extractor uses
a classifier, such as SVM, as new input data. Radford achieved excellent classification performance
when this method was applied to all supervised learning, unsupervised learning, and non-trained
datasets [11].

Hostile training like ALI (Adversarially Learned Inference) can improve image quality when
learning inference mechanisms simultaneously [17]. The representation vector generated in the last
three hidden layers of the ALI encoder achieves a lower misclassification ratio than DCGAN. Higher
performance was achieved when label information was added to the ALI.

When there is less labeled training data, GANs can be used to generate more training data.
Shrivastava improved the synthetic image while maintaining annotation information [18] and
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achieved state-of-the-art performance in posture and gaze estimation work with synthetic images
only. Spatiotemporal GAN also reported good results for gaze estimation and prediction [19]. When a
model trained as a synthetic image is applied to a real image, however, it does not always show good
results [20].

Bousmalis proposed a method of matching the synthetic image of the source domain with the
target domain [20]. Liu proposed a method of using multiple GANs with combined weights to
synthesize images from different domains [21].

A significant part of the recent GANs research is to improve the quality and usefulness of the
generated images. LAPGAN introduces cascades of convolutional networks to generate images in a
rough way. Once initiated, Cascade refers to a series of stages wherein each stage is triggered due to
the previous stage and the results are continued until the end. LAPGAN expanded the cGAN wherein
the generator and the discriminator take additional label information as input. The idea was later
extended to address the problem of natural language processing. Huang changed the algorithm above
to work in intermediate expressions rather than low-resolution images [22].

Reed used GANs to synthesize the images with text description [23]. For example, if a text
description such as “head is black, wing is orange, beak is a white bird” is the input of the network,
GANs generate a plausible image.

For ground truth rows in Figure 4, the first entry corresponds, and is directly connected, to the
caption; the next two entries are sampled from the same species.

In GAWWN (Generative Adversarial What-Where Network), the location of the image is
determined according to the conditions [24]. GAWWN supports an interactive user interface that
enables gradually drawing large images with a description of the object and a bounding box.
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Figure 4. Comparison of GAWWN (Generative Adversarial What-Where Network) with GAN-INT-CLS
from Reed, including the ground-truth images. GAN-INT is Learning with manifold interpolation,
GAN-CLS is Matching-aware discriminator, and GAN-INT-CLS is a combination of GAN-INT and
GAN-CLS [25].
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This way, cGAN can synthesize new images with specific properties and develop tools that can
intuitively edit images such as changing hairstyles, wearing glasses, and reducing age [25,26].

The Pix2Pix model is a model that maps from an input image to an output image [27]. Therefore,
the training images are also a pair of inputs and outputs. This model showed excellent results in a
variety of computer vision problems, such as semantic segmentation, map generation from aerial
photographs, and the colorization of black and white images.

Wang suggested the idea of synthesizing the surface normal map as shown in Figure 5 and
subsequently mapping the image to a natural scene.

Electronics 2020, xx , x FOR PEER REVIEW  7 of 31 

Wang suggested the idea of synthesizing the surface normal map as shown in Figure 5 and 

subsequently mapping the image to a natural scene. 

CycleGAN (cycle-consistent generative adversarial network) introduced cycle-consistent loss to 

preserve the original image in the process of transformation and inverse transformation [28]. 

CycleGAN's training does not require matching pairs of images, unlike Pix2Pix. This solved the 

researchers' dilemma regarding large-scale data collection. 

The artistic style transfer in Figure 6 trains on paintings and natural images and renders with 

painter-style images like Picasso or Monet [28]. Rendering is the process of converting two-

dimensional or three-dimensional data described by numbers and equations into human-

recognizable images. 

 

Figure 5. Surface normal map-to-natural scene mapping example. 

 

Figure 6. Artistic style transfer using cycle-consistent adversarial networks [28]. 

3. Boundary Equilibrium Generative Adversarial Network with Constrained Space 

Both BEGAN and BEGAN-CS have not solved the mode collapse, but the proposed method is 

based on boundary equilibrium and constrained space algorithms. The characteristics of the 

proposed model are covered in the next chapter, and this chapter describes the structure and learning 

algorithm of BEGAN and BEGAN-CS. 

Figure 5. Surface normal map-to-natural scene mapping example.

CycleGAN (cycle-consistent generative adversarial network) introduced cycle-consistent loss
to preserve the original image in the process of transformation and inverse transformation [28].
CycleGAN’s training does not require matching pairs of images, unlike Pix2Pix. This solved the
researchers’ dilemma regarding large-scale data collection.

The artistic style transfer in Figure 6 trains on paintings and natural images and renders with
painter-style images like Picasso or Monet [28]. Rendering is the process of converting two-dimensional
or three-dimensional data described by numbers and equations into human-recognizable images.
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3. Boundary Equilibrium Generative Adversarial Network with Constrained Space

Both BEGAN and BEGAN-CS have not solved the mode collapse, but the proposed method is
based on boundary equilibrium and constrained space algorithms. The characteristics of the proposed
model are covered in the next chapter, and this chapter describes the structure and learning algorithm
of BEGAN and BEGAN-CS.

BEGAN calculated the Wasserstein distance lower bound between the real data loss distribution
in Equations (1) and (2) and the generated data loss distribution and studied the effect when the
loss distribution was matched. Wasserstein distance is the minimum cost of moving A’s probability
distribution to B’s probability distribution. Distribution is a function of probability density.

(ν) = |ν−D(ν)|η where



D : RNx 7→ RNx

η ∈ 1, 2

ν ∈ RNx

(1)

Lmeans loss RNx 7→ RNx for training AE per pixel. D denotes an AE function, η is a target norm,
and ν denotes Nx-dimensional image.

W1(µ1,µ2) = inf
γ∈Γ(µ1,µ2)

E(x1,x2)∼γ[|x1 − x2|] (2)

W is Wasserstein distance, µ1,µ2 is the distribution of AE losses, γ is an element of Γ, and Γ is
the set of two distributions. inf is short for Infimum, the greatest lower bound. In other words, it is
the largest value of the lower limit. E is the expected value as the average of the values that can be
obtained by infinitely repeating a random process. ~ is a tilde, a symbol describing the relationship
between variables and distribution. Distributions µ1 of x1 and µ2 of x2 are used to explain that it is
drawn from γ.

Inf E[|x1 − x2|] ≥ Inf E[|x1 − x2|] = |m1 −m2| (3)

Equation (3) is the Wasserstein distance, optimizing the lower bound of the Wasserstein distance
between AE loss distributions. m1 −m2 ∈ R is the means of representation. The Jensen inequality can
be used to derive the lower bound ofW1(µ1,µ2).

The discriminator is designed to maximize the value calculated in Equation (1), which can be
maximized through selection, or in Equation (4).

(a)



W1(µ1,µ2) ≥ m1 −m2

m1 → ∞

m2 → 0

or (b)



W1(µ1,µ2) ≥ m2 −m1

m1 → 0

m2 → ∞

(4)

µ1 is the loss distribution of L(x), x is the real image, µ2 is the loss distribution of L(G(z)), G
is a generating function with condition RNx 7→ R+ , and z ∈ [−1, 1]Nz is the Nz-dimensional uniform
distribution image. In general, we choose method (b) because minimizing m1 will naturally encode
the real image.

Equation (5) expresses the problem as a purpose of GANs. Objective means the object to
be optimized. 

LD = L(x;θD) − L(G(zD;θG);θD) f or θD

LG = −LD f or θG

(5)
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θD,θG is the weight of the discriminator and generator and is updated to minimize loss LD,LG.
zD, zG is the output from z. z is the noise vector, which is the input of the generator or discriminator. A
later paper used abbreviated G(·) = G(·,θG) and L(·) = L(·,θD).

In general, the generator and the discriminator are not well-matched in terms of balance, with the
discriminator winning easily. The concept of equilibrium is introduced to address this situation.

When the generator and the discriminator of GANs are in equilibrium, this can be expressed as
Equation (6).

E[L(x)] = E[L(G(z))] (6)

In Equation (6), the loss distribution when the discriminator cannot distinguish between the
generated image and the real image should be the same as that when the predictive loss is included to
equalize the performance of the generator and the discriminator. BEGAN attempted to balance the
two models by introducing a new hyperparameter γ, as shown in Equation (7). γ is a real number
between 0 and 1.

γ =
E[L(G(z))]
E[L(x)]

(7)

γ is used as a variable to determine the diversity ratio. The lower values of γ reduce the variety of
images because the focus is on the automatic encoding of the real images.

As a result, the objective function of BEGAN becomes equal to Equation (8). The objective function
means that the target function needs to be optimized.

LD = L(x) − kt · L(G(ZD)) f or θD

LD = L(G(zG)) f or θG

kt+1 = kt − λk(γL(x) −L(G(zG))) f or each training step ′t′
(8)

Equation (8) maintains equilibrium E[L(G(z))] = γE[L(x)] based on the theory of proportional
control. The proportional control theory is one of the automatic control methods; the more the force
deviates from the target point, the greater the force to return to the target point. Then, use kt to control
how much emphasis is placed on L(G(zD)) as the gradient is falling. The range of variable kt is a real
number between 0 and 1. At the start of training, kt is initialized to zero. To establish Equation (7), kt is
used as a form of feedback control adjusted at each training stage. λk is the learning rate for k.

The data generated during the initial training phase is close to zero; since the real data distribution
has not been trained yet, it produces data that can be easily reconstructed in AE. This is denoted as
L(x) > L(G(z)), and equilibrium may be constrained in subsequent training.

The approximation of Equation (3) and γ of Equation (7) influences the Wasserstein distance
modeling. Therefore, it is important to verify the data generated from various γ values. θD,θG is
updated based on each loss.

The problem of mode collapse often occurs in BEGAN, so BEGAN-CS has been proposed to solve
this problem as a model that adds the concept of latent space constraint as a loss function.

The images generated in the model share a latent vector similar to the real image. BEGAN-CS
proposes latent space constraint loss L(c) using this feature, where c is a constraint and loss limits the
norm of the difference between latent vector z and encoder Enc(G(z)).

Constrained losses during training are optimized only for the discriminator. Mode collapse occurs
on the generator side but does not add constraint loss to the generator. Constraint loss is a regularizer
that regards function Enc(G(·)) as an identity function. This way, the encoder maintains the diversity
and balance of randomly extracted z ∈ Z.

As objective functions, Equations (9) to (10) are similar to BEGAN except for the additional
constraint loss. 

LG = L(G(zG;θG);θD), f or θD

LD = L(xreal;θD) − kt·L(G(zD;θG);θD) + α·Lc, f or θG

(9)



Electronics 2020, 9, 688 10 of 31


Lc =‖ zD − Enc(G(zD)) ‖, the constraint loss

kt+1 = kt + λ(γL(x;θD) −L(G(zG;θG);θD)), f or the epoch
(10)

Total loss Lc of the generator and total loss LD of the discriminator are optimized to solve θD and
θG, respectively. The θD-related function L(x;θD) = ‖ x−D(x) ‖ calculates the norm of the difference
between given image x and reconstructed image D(x) in the discriminator decoder. Latent vectors zD

and zG are randomly generated from z. Variable kt ∈ [0, 1] controls the importance of L(G(zD;θG);θD).
Hyperparameter γmaintains balance between lossL(x;θD) of the real image and lossL(G(zG;θG);θD)

of the generated image. Hyperparameter α is the weight of constraint loss. Constraint loss Lc forces
Enc(G(·)) to be an identity function for zD.

4. Proposed Avoiding Method

The weights of the proposed model are trained with two loss functions. Reconstruction losses
make the decoded image the same as the original input, and regularization losses form the latent
space well and reduce overfitting to the training data. The reconstruction loss uses L2 loss rather
than cross-entropy, and KLD is used for regularization loss [29]. KLD is a function used in the
information theory.

As a branch of applied mathematics that has been established to transmit discrete data to a
noisy communication channel, the information theory provides a method of calculating the average
length of message samples extracted from code optimization and specific probability distributions.
Code optimization is a process applied to intermediate codes or object codes in order to minimize the
wasted resources of the compiler. In deep learning, the information theory can be used to quantify
the similarity of two probability distributions with a particular continuous probability variable that is
difficult to interpret.

KLD calculates the difference between the real data distribution and the model-estimated data
distribution. KLD does not have negative values. When probability distributions P and Q are present
for two random variables, KLD is equal to Equation (11).

DKL(P ‖ Q) =
∑

x
P(x) log

P(x)
Q(x)

= (−
∑

x
P(x) log Q(x)) − (−

∑
x

P(x) log P(x)) (11)

The KLD of Equation (11) can be expressed as Equation (12) using expected value E.

∑
x

P(x) log
P(x)
Q(x)

= Ex∼P[log P(x)] −Ex∼P[log Q(x)] (12)

The second term in Equation (12), −Ex∼P[log Q(x)], is cross-entropy. When the distribution of
input data is pdata, and the distribution of data estimated by the model is pmodel, Equation (12) can be
derived as in Equation (13).

DKL(pdata ‖ pmodel) = Ex∼pdata [log pdata(x) − log pmodel(x)] (13)

pdata in Equation (13) is a fixed value during training. Since Equation (13) aims to minimize the
value, pmodel should be as similar as possible to pdata.

Variational inference [30] is a problem of finding an estimation distribution q(z) that is close to the
posterior distribution and can be expressed as in Equation (14).

q(z) = argminqDKL(q(z) ‖ p(z|x)) (14)
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In Equation (14), KLD can derive the lower bound for marginal likelihood p(x), as in Equation
(15).

DKL(q(z) ‖ p(z|x)) = Eq(z)[log q(z) − log p(z|x)]
= Eq(z)[log q(z)] −Eq(z)[log p(z|x)] = Eq(z)[log q(z)] −Eq(z)[log p(z, x)] + log p(x)

(15)

Equation (15) can be restructured into Equation (16).

log p(x) = DKL(q(z) ‖ p(z
∣∣∣x)) −Eq(z)[log q(z)] +Eq(z)[log q(z, x)]

≥ −Eq(z)[log q(z)] +Eq(z)[log p(z, x)]
= −Eq(z)[log q(z)] +Eq(z)[log p(z)] +Eq(z)[log p(x

∣∣∣z)]
= −DKL(q(z) ‖ p(z)) +Eq(z)[log p(x

∣∣∣z)]
(16)

In Bayes’ theorem, p(x) is called evidence. Therefore, the lower bound of log p(x) in Equation (16)
is called ELBO (Evidence Lower Bound).

The decoder of VAE is optimized as the log p(x) value increases. Nonetheless, optimization is
not easy because there are many latent vectors (z). Variable inference can derive the lower bound of
log p(x), as shown in Equation (17).

log p(x) ≥ −DKL(q(z|x) ‖ p(z)) +Eq(z)[log p(x|z)] (17)

Variable inference assumes a single normal distribution for all data. The model is simple, but
learning is difficult when data complexity is high. To solve this problem, VAE uses the parameter of q
as a function of input data x. Adjusting q to maximize ELBO −DKL(q(z|x) ‖ p(z)) + Eq(z)[log p(x|z)]
in Equation (17) changes the distribution of q as input data x changes. When using a gradient
descent-based optimizer, the objective function of VAE becomes equal to Equation (18).

L = −Eq(z)[log p(x|z)] + DKL(q(z|x) ‖ p(z)) (18)

The first term in Equation (18) is the reconstruction loss. The encoder receives input data x and
outputs z from q. The decoder receives z and restores x′. In other words, the reconstruction loss is
the cross-entropy of input data x and reconstruction data x′. The second term in Equation (18) is
the regularization loss. Give prior x the controllability of the output z of the encoder. As such, the
condition that q(z

∣∣∣x) should be similar to p(z). The first term induces convergence in the direction that
the objective function is smaller with a larger value. The second term induces convergence such that
the smaller the value is the smaller the objective function.

As the regularization loss of Equation (18), KLD can be broken down into Equation (19).

L = −Eq(z)[log p(x|z)] −H(q(z|x)) + H(q(z|x), p(z)) (19)

The second term in Equation (19) is the entropy of the posterior distribution. H means entropy.
The larger the diversity of A sampled in the distribution, the smaller the objective function is. The
larger the diversity of z sampled in the corresponding distribution, the smaller the objective function
is. In addition, mode collapse is alleviated, and learning is stable. In Equation (19), the third term is
the cross-entropy of prior and post distributions; the more similar the information, the smaller the
objective function becomes.

We have changed the discriminator structure from AE to VAE, taking into account the stable
training environment of VAE and the benefits of mitigating mode collapse. Because VAE uses two
losses, there are variations in terms of loss function. If KLD is DKL(P(x) ‖ Q) when the real image
is inputted to the encoder and KLD is DKL(P(G(z) ‖ Q) when the synthetic image is inputted to the
encoder, the final regularization loss is equal to Equation (20).

LR = DKL(P(x) ‖ Q) − k·DKL(P(G(z) ‖ Q) (20)
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In the process of calculating LR in Equation (20), BEGAN’s hyperparameter k was added since
we determined that k, which determines the importance of real and synthetic images, is necessary for
regularization loss. Subscript R means regularization.

Reconstruction losses used L2 losses rather than cross-entropy. As a result, the objective function
LD of Equation (9) is changed to Equation (21).

LD =
(L(xreal;θD) − kt·L(G(zD;θG))) +LR

2
+ α·Lc, f or θG (21)

We used VAE as the discriminator and matched the loss distribution, not the data distribution.
Generator and discriminators train to balance. The proposed model is similar to the training objective
of WGAN (Wasserstein GAN) [31]. It does not require the discriminator to be a K-Lipschitz sheet
because it does not use the Kantorovich and Rubinstein duality theorem, as in BEGAN [32]. Figure 7
shows the discriminator structure of the proposed model.
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The proposed model transforms the input image into a parameter of a specific statistical distribution,
unlike BEGAN-CS, which compresses the input image with fixed coding of latent space. This assumes
that the input image is generated through a statistical process. It also adds randomness to the encoding
and decoding process. The proposed model extracts a random image from the normal distribution
using mean µ and variance σ. This image is decoded and restored to the original input.

Randomness allows stable training and the encoding of meaningful representations anywhere in
latent space. The encoder converts the input image into two parameters of the latent space: mean µ
and variance σ. z is randomly extracted from the normal distribution of the latent space assuming
that the input image is generated. Because the encoder may output negative numbers, it is trained to
output the log value of the variance rather than the standard deviation. The decoder maps z of the
latent space as the original input image and restores it. In the process of sampling z, epsilon parameters
are used. This epsilon is made randomly. Therefore, points near the average are decoded into an
image similar to the input image. This process makes the latent space a continuous, meaningful space.
The latent space created by AE may be structural or non-continuous. The latent space created in VAE
is structural and continuous, making it suitable for handling as concept vector. Figure 8 shows the
principle of a variable autoencoder.
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The convolution operation was used from 1 to 4, and the activation function was used in Leaky
ReLU. “1” means 1 × 1 convolution, and “4” means 4 × 4 convolution. Since ReLU does not adjust
the weight when the function is not active, the gradient is zero. When the gradient becomes zero and
sparse, it can interfere with GANs training and slow down learning.

Sparse is often a desirable phenomenon in deep learning, but not GANs. Leaky ReLUs allow for
negative active values, so sparse is alleviated. Considering such advantage, we changed the activation
function from ELU to Leaky ReLU.

The Leaky ReLU function is defined as in Equation (22) and is shown in Figure 9 (right).

ai, j,k = max
(
zi, j,k, 0

)
+ λmin

(
zi, j,k, 0

)
(22)
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In Equation (22), λ is a hyperparameter with range of 0∼1. Since Leaky ReLU compresses the
negative part without mapping them to constant 0 like ReLU, a positive value less than 1 is outputted
even if the function is inactive. In the experiment, the λ value of Leaky ReLU was set to 0.2.
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The ELU function is defined as in Equation (23) and is shown in Figure 9 (left).

ai, j,k = max
(
zi, j,k, 0

)
+ min(λ(ezi, j,k − 1), 0) (23)

Leaky ReLU, PReLU (Parametric Rectified Linear Unit), and RLReLU (Randomized Leaky Rectified
Linear Unit) denote the negative parts of the function graph in the unsaturated form, whereas ELU
appears in the saturated form. In Equation (23), ai, j,k is the final output, zi, j,k is the input from the k
channel to the position (i, j) active function, and λ is a hyperparameter defined to control the saturation
of the function for negative values. Since the performance of activation functions varies depending on
the situation, it is difficult to determine the exact dominance relation between activation functions.
Therefore, it is important to apply it according to the situation [33,34].

The number of filters in the convolution layer increases linearly with each down-sampling, which
is done with stride 2, and up-sampling is performed by the k-NN (nearest neighbors) algorithm. Data
processed at the encoder and decoder boundaries is mapped through the fully connected layer. Input
vector z is randomly extracted from the even distribution between [−1, 1].

Adam (Adaptive Moment estimation) was used as the optimizer [35]. As an algorithm that adds
RMSprop (Root Mean Square propagation) to momentum [36], Adam, like AdaGrad (Adaptive
Gradient), accumulates the previous gradient but follows the exponential moving average of
RMSProp [37]. Adam adjusts the update direction to increase the weight of the current gradient. This
addresses the problem of AdaGrad. Adam can adaptively adjust the learning rate, and the weighted
search path is more efficient than the stochastic gradient descent [38].

5. Experiment Result

The dataset used was CelebA (large-scale celeb faces’ attributes), not the 360K Celebrity Face [39].
The CelebA dataset displays a person’s identity with five facial signs and 40 attributes. There are 10,177
unique people with 202,599 facial images in the dataset. As one of the largest datasets available for
face identification, detection, marking, and attribute recognition problems, CelebA is a good candidate
for experimental datasets because it has many artifacts, such as aliasing, compression, and blur, which
are difficult for the generator in terms of generation. In computer graphics, aliasing is a phenomenon
wherein lines, etc., are limited due to resolution limitations. The mini batch size was set to 128, the
epochs to 300, and the resolution of the training and prediction images to 64 × 64 pixels.

The optimizer used Adam and set learning rate = “0.0001”, coefficient for primary momentum β1
= “0.9”, coefficient for secondary momentum β2 = “0.999”, and epsilon = 10−8. The bias was set to
all zeros. The weight initialization used Glorot’s uniform distribution. The weights were adjusted to
constant per layer as the training progressed. The learning rate of the generator and the discriminator
is the same.

The magnitude of input vector z was set to 64, and γ to 0.5. γwas used as a variable to determine the
diversity ratio. Weight kt, which determines how importantL(x) andL(G(zD)) are, was set to 0.0, and
the learning rate λk of kt was set to 0.001. α, which determines the importance of the constraint loss, was
set to 0.1. The remaining hyperparameters that were not mentioned are the same as those of BEGAN-CS. x
is the real image, andL(x) is the error for the real image. zD is a random vector to input into the generator
when the discriminator learns, andL(G(zD)) is the error of the image generated by the generator.

In this experiment, we avoided the visual artifact problem by lowering the initial learning rate.
The last layer of the encoder was kept at 8 × 8 size. Nh and Nz were set to 128 and 64, respectively, in
the experiment. The model used in the experiment has 10,331,144 parameters. The training time was 8
days, 7 h, and 5 min when L2 loss was used and 8 days, 6 h, and 30 min when L1 loss was used.

For hardware specification, the CPU used was Intel Core i7 7700K Kaby Lake; the graphics card
was NVIDIA TITAN Xp 12GB, the RAM was Samsung DDR4 48GB, and the SSD (Solid State Drive)
was Samsung 850 Pro 512GB. Table 1 shows the hardware specifications for the experiment.
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Table 1. Hardware specifications.

Hardware Specifications

CPU Intel Core i7 7700K
Graphics Card NVIDIA TITAN Xp 12 GB

RAM Samsung DDR4 48 GB
SSD Samsung 850 Pro 512 GB

For software specification, the operating system was ubuntu 16.04.4 LTS; the CUDA (Compute
Unified Device Architecture) was 9.0.176, the cuDNN (cuda Deep Neural Network library) was 7.1,
tensorflow was 1.12.0, and python was 3.5.2 [40]. Tensorflow is a framework for machine learning and
deep learning. Table 2 presents the software specifications for the experiment.

Table 2. Software specifications.

Software Specifications

Operating System Ubuntu Linux 16.04.4 LTS
Programming Language Python 3.5.2

GPGPU CUDA 9.0.176
Deep Neural Network Library cuDNN 7.1

Deep Learning Framework Tensorflow 1.12.0

Figures 10–15 are representative images of EBGAN (Energy-Based Generative Adversarial
Network), CEGAN (Calibrating Energy-based Generative Adversarial Network), AVB (Adversarial
Variational Bayes), and VEEGAN (Variational Encoder Enhancement to Generative Adversarial
Network) as well as the proposed model [41–44]. Each image in Figures 10–15 is identical at 64 × 64
resolution. EBGAN is a model wherein the discriminator is an autoencoder, and CEGAN, AVB, and
VEEGAN are models to which the variational principle is applied.
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Figure 15. Representative images of G (left) and VAE (right) in the proposed model (L1 loss).

Figures 14 and 15 show the result of outputting 64 images of 64 × 64 pixels at a time. Unlike the
representative images of other models, various face poses, facial expressions, genders, skin colors, and
hairstyles can be observed in Figures 14 and 15, which present the images generated in 300 epochs.
The experiments show that the combination of variational inference and equilibrium is superior to
the comparative model. All models used CelebA as a training dataset. BEGAN-CS did not insert a
representative image separately because mode collapse occurred.

In this study, the implementation model was verified for mode collapse, training instability, and
evaluation criteria. As an evaluation criterion, we used Mglobal, which is designed to measure the
convergence of the BEGAN model.

In BEGAN-CS, IS (Inception Score) and FID (Frechet Inception Distance) were used [45,46]. IS
may misrepresent performance when generating only one image per class. In other words, the score
may be high even if the images’ diversity is low. FID cannot take into account precision, recall, and F1
score in the harmonic mean of precision and recall. For this reason, we did not use the two evaluation
criteria in this study.

Figure 16 presents the convergence measurement results of BEGAN-CS. In Figure 16a, BEGAN-CS
is most optimal when Mglobal is 1.5. Nonetheless, it is difficult to determine whether the model
converges or collapses with Mglobal values. As can be seen from Section A, no evidence of mode
collapse can be found from the convergence measure value.
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Figure 16. Results of convergence measurement for the BEGAN-CS (Boundary Equilibrium Generative
Adversarial Network with Constrained Space) model.

At the k value of Figure 16b, evidence of mode collapse was found. k is a positive weight that
determines the importance of L(G(zD)). As a result, mode collapse occurred exactly at 199 epochs
Point B, where the k value dropped suddenly.

Figure 17 shows the convergence measurement results of the proposed model. As with BEGAN-CS,
we used L2 loss as reconstruction loss. The model proposed in (a) is most optimal when Mglobal is 1.12,
which is 0.38 lower than BEGAN-CS in Figure 16a. The Mglobal value converges more as it approaches
zero. Nonetheless, it is difficult to determine whether the model converges or collapses with Mglobal

values. In Figure 17b, there was also no section wherein the k value suddenly dropped.
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Figure 17. Convergence measurement results of the proposed model using L2 loss.

The smaller the fluctuation in value is, the higher the training stability. Both Figure 17a,b have a
smaller range of fluctuations in value than BEGAN-CS. The proposed model had no mode collapse
phenomenon at up to 300 epochs and converged better than BEGAN-CS.

Figure 18 presents the convergence measurement results of the proposed model. The model
proposed in Figure 18a is most optimal when the Mglobal value is 0.08. This is 1.42 lower than Figure 16a
and 0.04 lower than Figure 17a. It is difficult to determine by the Mglobal value whether the model
in Figure 18 converges or collapses. In Figure 18b, there was also no section where the k value
suddenly dropped.
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Figure 18. Convergence measurement results of the proposed model using L1 loss.

Even when L1 loss is applied to the proposed model, the mode collapse phenomenon does not
occur up to 300 epochs. Moreover, (a) and (b) of Figure 18 converged in a better state with smaller
fluctuations in values than (a) and (b) of Figures 16 and 17.

Figure 19 compares the generated images for specific times A, B, and C in the proposed model
and BEGAN-CS. Previously, we used Mglobal to confirm whether the model converged or collapsed,
but we could not find any evidence of mode collapse from the convergence measurement value. The
proposed model and BEGAN-CS saw no mode collapse, loss of diversity, or deterioration of quality up
to 100 epochs.

At 199 epochs, however, mode collapse occurred for BEGAN-CS. If mode collapse occurs,
optimization is not possible. In contrast, the proposed model saw no mode collapse up to 300 epochs.
The proposed model showed a stable training process, and it was well versed in producing high-quality
images. In addition, the proposed model showed convergence in a better state than BEGAN-CS. Table 3
compares the experimental results of the proposed model and BEGAN-CS.
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Table 3. Comparison of experimental results between the proposed model and BEGAN-CS.

Model Optimal M Value Number of
Parameters Training Time Mode Collapse

Occurrence

BEGAN-CS 1.50 20,629,320 9 days, 1 h, 45 min 199 epochs

Proposed (L2 loss) 1.12 10,331,144 8 days, 7 h, 05 min -

Proposed (L1 loss) 0.08 10,331,144 8 days, 6 h, 30 min -
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There are three models in all, and training was done up to 300 epochs. We applied a model
checkpoint algorithm to store the model for each epoch and set it to search for the optimal Mglobal

value automatically.
As a result of training, the Mglobal value of the proposed model was 1.12 when L2 loss was used

and 0.08 when L1 loss was used. The Mglobal value of BEGAN-CS was 1.50, recording the lowest
convergence accuracy. The proposed model shows a performance difference of 1.4 with BEGAN-CS at
0.38. The number of parameters was 10,331,144 for the proposed model, which was 10,298,176 fewer
than the 20,629,320 for BEGAN-CS. Because of this, model capacity was also reduced by nearly half.
The training of the proposed model took 8 days, 7 h, and 05 min when using L2 loss and 8 days, 6 h,
and 30 min when using L1 loss. BEGAN-CS took the longest training time with 1 h and 45 min for 9
days. In contrast, training took only 18 h, 40 min and 19 h, 15 min with the proposed model. Finally,
mode collapse occurred at 199 epochs for BEGAN-CS, whereas the proposed model saw no mode
collapse up to 300 epochs.

6. Conclusions

The areas where GANs are utilized the most today are computer visions such as image style
translation and image synthesis. Nowadays, they are also used to generate non-image data such as
voice and natural language. BEGAN, which trains while balancing and regulating the generator and
the discriminator, shows excellent performance in image synthesis. Even in BEGAN, however, there is
a fundamental problem of GANs called mode collapse. The constraint loss of BEGAN-CS indicated
that the mode collapse was solved, but the experimental results presented in this paper proved that
such was not the case.

In this study, the BEGAN-CS discriminator structure was changed from AE to VAE in order
to solve mode collapse. It also changed the structure of encoder and decoder, with the activation
function changed from ELU to Leaky ReLU. The KLD term has been added to the loss function of the
discriminator. In the KLD calculation process, hyperparameter k of BEGAN was added because it
determines the importance of real and composite images.

The performance of the proposed model was 0.08 in convergent judging function Mglobal when L1
losses were used; this was 1.42 lower than BEGAN-CS. In BEGAN-CS, the closer the Mglobal value
approaches zero, the higher it converges. In Figures 16–18, the Mglobal value did not show evidence
of convergence or collapsing. Mode collapse was identified by a variation graph of the k value.
BEGAN-CS saw its k value drop sharply at 199 epochs, and mode collapse occurred. The proposed
model had a constant k value for both L1 and L2 losses, and no mode collapse occurred. The proposed
model was also more stable in training than BEGAN-CS, converging in a better state. Nonetheless,
the experimental results in this paper are valid only for the CelebA dataset. This is because the
experimental results may differ depending on the training dataset, and the optimal model structure
and hyperparameters can also be changed.

The proposed model is also expected to achieve higher performance through additional training
and hyperparameter adjustment. Future research needs to develop evaluation criteria that can identify
large and small changes in color, texture, and pattern by supplementing the shortcomings of IS and FID.
Furthermore, it is necessary to develop a model that can work well with various datasets. Applications
including adding layers such as batch, layer, instance group normalization, dropout, and transpose
convolution, quantifying objective functions and regular expressions, and changing the structure of
discriminators like β and total correlation-βVAE are expected to increase.
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Abbreviations

The following abbreviations are used in this manuscript:

BEGAN-CS Boundary Equilibrium Generative Adversarial Network with Constrained Space
AE AutoEncoder
VAE Variational AutoEncoder
IBM International Business Machines
GANs Generative Adversarial Networks
BEGAN Boundary Equilibrium Generative Adversarial Networks
KLD Kullback–Leibler Divergence
ELU Exponential Linear Unit
MNIST Modified National Institute of Standards and Technology
CIFAR Canadian Institute For Advanced Research
CNN Convolutional Neural Network
LAPGAN Laplacian Pyramid of Generative Adversarial Network
DCGAN Deep Convolutional Generative Adversarial Network
MLP Multi-Layer Perceptron
cGAN Conditional Generative Adversarial Nets
ReLU Rectified Linear Unit
PReLU Parametric Rectified Linear Unit
RReLU Randomized leaky Rectified Linear Unit
Adam Adaptive moment estimation
AdaGrad Adaptive Gradient
CelebA large-scale Celeb faces’ Attributes
CUDA Compute Unified Device Architecture
cuDNN cuda Deep Neural Network library
EBGAN Energy-Based Generative Adversarial Networks
CEGAN Calibrating Energy-based Generative Adversarial Networks
AVB Adversarial Variational Bayes
VEEGAN Variational Encoder Enhancement to Generative Adversarial Networks
IS Inception Score
FID Frechet Inception Distance

Appendix A More Generation

Comparison of LSUN BEDROOM and CelebA Dataset

Figures A1–A3 compares the results of image generation for each epoch in the LSUN bedroom and
CelebA datasets. The LSUN bedroom dataset consisted of 162,770 training images, 19,867 validation
images, and 19,962 test images, identical to the CelebA dataset. In addition, both datasets used L2 loss
as reconstruction loss.

The mini batch size was set to 128, the epochs to 200, and the resolution of the training and
prediction images to 64 × 64 pixels. The optimizer used Adam and set learning rate = “0.0001”, β1 =

“0.9”, β2 = “0.999”, and epsilon = 10−8. The bias was set to all 0. The weight initialization used Glorot’s
uniform distribution. The weights were adjusted to constant per layer as the training progressed. The
learning rate of the generator and the discriminator is the same. The magnitude of input vector z was
set to 64, and γ to 0.5. Weight kt was set to 0.0, and learning rate λk of kt was set to 0.001. α was set to
0.1. The last layer of the encoder was kept at 8 × 8 size. Nh and Nz were set to 128 and 64, respectively,
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in the experiment. The model used in the experiment has 10,331,144 parameters. Both datasets used
L2 loss as reconstruction loss. Other hardware and software specifications are the same as before.
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Figure A3. Image generation result of LSUN bedroom and CelebA datasets at 200 epoch.

Mode collapse did not occur in the LSUN bedroom image generated in the VAE up to 200 epoch.
However, there was a ’blur’ phenomenon that deteriorated the quality of the image. In Figures A1–A3,
we determined that the experimental environment of the CelebA dataset is not suitable for generating
the LSUN bedroom data.

Figures A4 and A5 present the convergence measurement results of LSUN bedroom and CelebA
dataset. Similarly, it is difficult to determine whether both datasets converges or collapses with the
Mglobal value. In both datasets, there was no section in which the value of k suddenly dropped in
(b). In order to generate a high-level image, it is necessary to select the optimal data pre-processing,
algorithm, and hyperparameter to train the model. The proposed model is also expected to achieve
higher performance through additional training and hyperparameter adjustment. Future research
needs to develop models that work well on a variety of datasets.
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