
electronics

Article

Capacitive Coupling Wireless Power Transfer with
Quasi-LLC Resonant Converter Using Electric
Vehicles’ Windows

KangHyun Yi

School of Electronic and Electric Engineering, Daegu University, Daegudaero 201, Gyeongbuk 712714, Korea;
khyi@daegu.ac.kr; Tel.: +82-53-850-6652

Received: 18 March 2020; Accepted: 18 April 2020; Published: 21 April 2020
����������
�������

Abstract: This paper proposes a new capacitive coupling wireless power transfer method for charging
electric vehicles. Capacitive coupling wireless power transfer can replace conventional inductive
coupling wireless power transfer because it has negligible eddy-current loss, relatively low cost and
weight, and good misalignment performance. However, capacitive coupling wireless power transfer
has a limitation in charging electric vehicles due to too small coupling capacitance via air with a very
high frequency operation. The new capacitive wireless power transfer uses glass as a dielectric layer
in a vehicle. The area and dielectric permittivity of a vehicle’s glass is large; hence, a high capacity
coupling capacitor can be obtained. In addition, switching losses of a power conversion circuit are
reduced by quasi-LLC resonant operation with two transformers. As a result, the proposed system
can transfer large power and has high efficiency. A 1.6 kW prototype was designed to verify the
operation and features of the proposed system, and it has a high efficiency of 96%.

Keywords: capacitive coupling wireless transfer; dielectric layer; quasi-LLC resonant operation;
electric vehicles

1. Introduction

Power conversion systems are widely researched for transportation electrification and the rise in
electric vehicle (EV) development. More than 5.1 million EVs were produced in 2018. In particular,
charging technology for batteries is important to expand the EV market, so on-/off-board charging and
fast-charging systems have been investigated [1]. Figure 1 shows methods of charging an EV. Figure 1a,b
shows a slow charging method that receives alternative current (AC) input and a quick charging
method that receives direct current (DC) input. However, the prior approaches have drawbacks such
as galvanic isolation, the size and weight of the charger, and user inconvenience. Wireless power
transfer (WPT) charging will be an alternative charging solution to address the drawbacks of wired
charging and give the consumers convenience as shown in Figure 1c. Furthermore, it has inherent
galvanic isolation, low weight, and reduced cost for charging systems in EVs.

Generally, the types of the WPT are inductive coupling wireless power transfer (ICWPT) and
capacitive coupling wireless power transfer (CCWPT). ICWPT uses the magnetic field between a
transmitting coil and receiving coil under the EV as shown in Figure 1c. The WPT charging method
exchanges information between the charger and the electric vehicle through wireless communication
to control charging. While this technology has good efficiency and commercialization techniques,
there are disadvantages such as one position power transfer, heat dissipation in the metal barrier,
and large coil volume [2]. Furthermore, it fundamentally has power transfer interference by the metal.
CCWPT uses the displacement current in two capacitors with four copper plates and a dielectric
layer [3–5]. Compared to the magnetic coupling WPT system, the capacitive coupling WPT system
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does not make significant eddy-current losses in nearby metals, and there is no concern about the
temperature rising in metal. In addition, metal plates are used in a capacitive coupling WPT system to
transfer power, which can reduce the system’s cost and weight.
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Figure 1. Electric vehicle charging method. (a) Slow wired charging. (b) Quick wired charging.
(c) Wireless power transfer (WPT) charging.

The structure of the capacitive coupler or the characteristics of the dielectric and the compensation
method of the power conversion circuit determine the performance of CCWPT. The capacitive coupler
structure is generally a parallel plate structure, which can be implemented with rectangular or circular
discs [6–8]. If the transmission distance is more than 10 cm, the coupling capacitance is determined
by the edge effect of air as the dielectric. This coupling capacitance is relatively small. In order to
obtain a larger coupling capacitance, a study was also conducted to form a coupling capacitance using
a vehicle bumper with large relative permittivity as a dielectric [9]. In addition, a method of using a
plurality of plates has also been proposed to improve the coupling of the plate coupling capacitance [10].
Compensation circuit topologies have been proposed to deliver large amounts of power with very
small coupling capacitance [11–18]. A Class-E inverter can be employed, and the coupling capacitor is
used as a regular resonant component [11,12]. However, the disadvantage of Class-E inverter-based
topology is its sensitivity to parameter variations such as the coupling capacitance or other reactive
components, and it is difficult to increase the system power level. Simple full-bridge inverters with
a series compensated inductor are proposed [13–15]. It is very simple but very sensitive with the
coupling capacitance. Another compensation topology is a double-sided LCLC, LCL, or CLLC in
which two external inductors and two external capacitors are used on each side of the coupling
capacitor [16–18]. These can deliver large amounts of power but require large inductors or a lot of
passive elements. The disadvantage is that it is difficult to design because many passive elements
are used, and the operation frequency is very high. In summary, the prior conventional capacitive
coupling WTP systems are sensitive to parameter variations or have a number of devices that use many
passive components. Moreover, when air is used as the dielectric, a strong electric field is formed,
which is a safety problem [18–20].

In this paper, a new CCWPT system is proposed for charging EVs. The proposed CCWPT uses
copper plates and transparent plates such as indium tin oxide (ITO) between glass dielectric layers of
the EV’s windows. The proposed CCWPT system uses a dielectric layer of vehicle’s windows for the
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coupling capacitor and has the previously studied step-up and step-down transformers to obtain a low
quality factor [21]. The glass has large relative permittivity, and the EVs have large areas of glass in front
and on the back and sides. This results in large coupling capacitance and output power, relatively, and a
strong electric field can be trapped in the dielectric, which has the advantage of stability. Switching
loss in the power conversion circuit can be reduced with the quasi-LLC resonant operation. As a result,
turn-on loss of the power MOSFET by zero voltage switching (ZVS) in a transmitter and turn-off loss
of the rectifier by zero current switching (ZCS) in rectifier diodes can be decreased. The operation and
features of the proposed system were verified with a 1.6 kW prototype for charging EVs.

2. The Proposed CCWPT System

2.1. Substrates for Dielectric Layers in Vehicle

Table 1 shows the relative permittivity of material in the vehicle exterior. The bumpers and the
plastic exterior of headlights are made of polypropylene or acrylonitrile-butadiene-styrene (ABS) resin,
and the windows in the vehicle are glass [22]. As shown in Table 1, the glass has the largest relative
permittivity and large coupling capacitance that can be obtained with glass because the area of the
front and back windows is large. Therefore, a coupling capacitor can be formed with the vehicle’s
window glass. One electrode outside of the vehicle is copper plate and the other inside the vehicle
is a transparent electrode for visibility in not charging the vehicle, as shown in Figure 2. When an
electric vehicle is charged, the copper plates mechanically adhere to the front and back window glass
outside of the vehicle with high pressure. Transparent electrodes on the front and back window glass
inside the vehicle are formed with physical vapor deposition or chemical vapor deposition. ITO will
be a candidate for transparent electrodes. The window glass for the vehicles has a polyvinyl butyral
(PVB) film sandwiched between two sheets of glass [23]. If the electrode ITO in the vehicle is formed
after the PVB film, an insulation is possible as shown in Figure 2. ITO’s visible light transmittance is
more than 80%, so it is possible to ensure visibility even when charging an electric vehicle with a glass
window [24]. Two coupling capacitors can be made with the window glass of the vehicle to transfer
power wirelessly as in Figure 3.

Table 1. Relative permittivity of according to material in vehicle’s exterior.

Material Relative Permittivity

Air 1.0005
Glass 4–7

Polypropylene 2.2–2.4
ABS Resin 2.3–2.5
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Figure 3. Proposed capacitive coupling wireless power transfer (CCWPT) charging system using the
windows of an electric vehicle.

2.2. Quasi-LLC Power Conversion Circuit for Adjusting Impedance of a Coupling Capacitor

Figure 4 shows a proposed CCWPT power conversion circuit for charging EVs. The dielectric layer
for the coupling capacitor in the EVs is glass. A full-bridge inverter makes the AC voltage, a step-up
transformer increases the equivalent capacitance of the coupling capacitor, and an output voltage
can be determined with a step-down transformer. Wireless power transfers by resonance between
a resonant inductor Lr and the equivalent coupling capacitance. Figure 5 shows key waveforms of
the proposed CCWPT power conversion circuit. The step-up transformer can make impedance of the
coupling capacitance small and the step-down transformer can adjust the impedance of load resistance
and quality factor. The magnetized inductor in the step-down transformer can make a zero voltage
switching (ZVS) of switches in the full bridge inverter. Moreover, a zero current switching (ZCS)
of rectifier diodes in the full bridge rectifier can be achieved by the quasi-LLC resonant operation.
The operation is similar to a conventional LLC resonant DC/DC converter, as shown in Figure 5.
For mode analysis, the following assumptions are made.

(1) All analyses are performed in steady-state operation.
(2) The capacitances of Cb and Co are sufficiently large to make their voltages constant.
(3) M1–M4 are ideal except for their internal diodes and output capacitors.
(4) D1–D4 are ideal except for their junction capacitors.
(5) The inductance of Lm2 is several times greater than the inductance of Lr.
(6) It is assumed that the inductance of Lm1 is large enough and is infinite.
(7) The turn ratio of the step-up transformer T1 is n1.
(8) The turn ratio of the step-down transformer T2 is n2.

Mode 1 (t0–t1): This mode begins when M1 and M4 are turned off at t0. At this moment, resonant
inductor Lr current is positive, so that it will flow through the output capacitors of M2 and M3. In this
mode, the junction capacitors of the D1 and D4 rectifiers are charged and the junction capacitors of the
D2 and D3 rectifiers are discharged.

Mode 2 (t1–t2): This mode begins when drain-source voltages of M2 and M3 are zero. At this
moment, the resonant current will flow through the body diodes of M2 and M3, which creates a ZVS
condition for M2 and M3. The gate signals of M2 and M3 should be applied during this mode.
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Mode 2 (t2–t3): Switches M2 and M3 have been turned on in the ZVS condition, and the energy is
transferred from the input to the electric vehicle. In this mode, the circuit works like a series resonant
converter with resonant inductor Lr and resonant capacitor Cr. This mode ends when Lr current is the
same as iLm2/n1 current. The output current reaches zero. The primary inductor current and the voltage
across the magnetized inductor can be expressed by a series resonance with an initial value as follows.
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iLr(t) = ILr(t2) cos 1
√

LrCr
(t− t2) + (−Vin − n1(VCc1(t2) + VCc2(t2)) + n1n2Vo)/

√
Lr
Cr

sin 1
√

LrCr
(t− t2) (1)

Cr =
1
n2

1

(
CC1CC2

CC1 + CC1

)
(2)

vLm2(t) = −n2Vo (3)

The capacitance of coupling capacitors can be increased by the turn ratio of the T1 transformer.
The quality factor of the proposed power CCWPT system can be shown as

Q =

√
Lr/

(
(CC1 ×CC2)/

(
n2

1(CC1 + CC2)
))

Rac
(4)

Rac = n2
1
n2

2
8Ro

π2 (5)

where n1 is the turn ratio of the T1 transformer, and n2 is the turn ratio of the T2 transformer. The quality
factor can be adjusted by the turn ratios of the two transformers.

Mode 4 (t3–t4): At t3, the Lr current and Lm2 current divided by n1 are equal. The output current
reaches zero. All of the output rectifier diodes D1 ~D4 are reverse biased. T2 transformer’s secondary
voltage is lower than the output voltage. The output is separated from the T2 transformer. During this
time, since the output is separated from primary, Lm2 is freed to participate in the resonance. It will
form a resonant tank of Lm2 and Lr resonant with Cj1~Cj4.

iLr(t) = ILr(t3) cos 1√
4C j(Lr+n2

1Lm2)/(n2
1n2

2)
(t− t3)

+(−Vin − n1(VCc1(t2) + VCc2(t2))o)/

√
Lr+n2

1Lm2

4C j/(n2
1n2

2)
sin 1√

4C j(Lr+n2
1Lm2)/(n2

1n2
2)
(t− t3)

(6)

Because the junction capacitance is very small, the inductor current looks linear. For the next
half-cycle from t5 to t0’, the operation is the same as analyzed above. The proposed power conversion
circuit has a small coupling capacitance but can be adjusted to have a low quality factor and impedance
of the coupling capacitor by the turn ratio of the step-up transformer. By operating the LLC series
resonant converters, the ZVS of the primary switch and the ZCS of the rectifier located in the electric
vehicle can be obtained even under load fluctuations. Charging control can be done through a wireless
communication like the existing ICWPT [25]. Therefore, it can be suitable as a wireless charging power
conversion circuit using the glass of an electric vehicle.

3. Design Considerations of the Proposed CCWPT System

3.1. Capacitor Estimation

Figure 6 shows the simple structure of a capacitor in the transmitter and receiver. The capacitor
can be made with electrodes and dielectric layers in the transmitter, receiver, and air. The capacitance
can be derived using Gauss’s law, as shown in Figure 6. Voltage, V, across the capacitor and capacitance
can be expressed in Gauss’s law as follows.

V = Erd + E0dair =
Q/S
ε0

dair +
Q/S
εrε0

d (7)

Cc =
Q
V

=
S

d/εrε0 + dair
≈ εrε0

S
d

(8)
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where S is the area of the electrode, Er is the electric field in the glass dielectric layer, E0 is the electric
field in the air part, ε0 and εrε0 are the permittivity of the air and glass dielectric substrate, and d and
dair are the widths. The capacitance is critically determined by the width of the glass dielectric layer.
Since the glass dielectric does not induce an edge effect due to fringing fields, Equation (8) is suitable.
As can be seen in Figure 1, the area of the front windshield and rear windshield of the electric vehicle
is large and used as a dielectric, so that a larger bonding capacity can be obtained compared to studies
using conventional air. This is advantageous in terms of stability since a strong electric field can be
limited to a glass dielectric.
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Figure 6. Structure of capacitor with glass dielectric layer.

3.2. Output Voltage DC Gain of the Proposed Power Conversion Circuit

The rectified output voltage for charging the battery varies depending on the battery capacity
of an electric vehicle. The output voltage DC gain is considered to design parameters of the power
conversion circuit in this chapter. Figure 7 shows the equivalent circuit for the output voltage gain
with fundamental harmonic approximation. Inductance of the transformer T1 magnetized inductor
Lm1 is very large; hence, it is neglected for the DC voltage gain. The output voltage DC gain is similar
to that of the conventional LLC converter. The output voltage gain can be expressed as follows.
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Since the wireless charging of the electric vehicle cannot perform accurate feedback control,
it is difficult to set the correct operating frequency to obtain the desired output voltage due to load
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variation or deviation of the coupling capacitance. The proposed power conversion circuit can prevent
the sudden change of output voltage due to load fluctuation and coupling capacitance deviation
without feedback control using a two transformer turn ratio. As shown in Equation (4), the quality
can be adjusted by changing the equivalent resistance of the load and the impedance of the coupling
capacitance by the turn ratio of the two transformers. Figure 8 is a graph of the DC voltage gain
according to the turn ratio of the transformers. If the operating area is at the same point as the resonant
frequency and the switching frequency, the turn ratio of step-up transformer T1 makes the quality
factor decrease. When the quality factor is large, the output voltage becomes sensitive to the change
in resonant frequency by the coupling capacitance deviation. Even when the resonant frequency is
increased by 10%, the turn ratio of the step-up transformer must be 0.55 or less to obtain the desired
output voltage, as shown in Figure 8a. On the other hand, the change in output voltage according to the
change in resonance frequency in the operating region by the turn ratio of the step-down transformer
is small, as shown in Figure 8b. It can be seen that in the case of electric vehicle wireless charging
without precise feedback control, the turn ratio of the step-up transformer can be solved in order to
minimize the influence on the deviation of the resonance inductance and the coupling capacitance.
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4. Experimental Results

A prototype system was implemented to verify the operation and features of the proposed
CCWPT system. Figure 9 is the experimental set for the prototype system. Table 2 shows parameters
of the prototype. The measured capacitance of the coupling capacitor was approximately 8 nF with
a 2400 cm2 rectangular area. The electrodes are made of copper tape. Even if the electrode is made
of copper and transparent electrode ITO, there was no difference in circuit operation and efficiency
in previous studies [21]. The thickness of the glass dielectric layer is about 2 mm. The area of the
coupling capacitor used in the experiment was set considering the area and thickness of the front and
rear windows of a commercial electric vehicle. The transmitting circuit was composed of a full-bridge
inverter using four switches, and the receiving circuit was composed of four diodes and a full-bridge
rectifier. The maximum output power is 1.6 kW. With reference to the design considerations in Section 3,
the n1 of the turn ratio of the step-up transformer was set to 0.45, and the n2 of the turn ratio of the
step-down transformer was set to 2.2. When the winding ratio of the transformer is designed in this
way, an output voltage of 400 V or more can be obtained even if the load changes with respect to the
input voltage of 400 V. The resonant inductor was designed to be 63 µH so that the output voltage could
be 400 V at a switching frequency of 90 kHz. Figure 10 shows experimental waveforms according to the
load variation. The experimental waveform is consistent with the theoretical analysis. When the M1



Electronics 2020, 9, 676 9 of 12

switch is turned on, the output power is transmitted through the resonance of the coupling capacitors
and the resonant inductor. Even if the load changes, it can be seen that the switch M1 is turned on
after the voltage between the drain source of the switch M1 is completely discharged, and the ZVS
operation is performed and the voltage of the magnetizing inductor of the step-down transformer is
the output voltage, taking into account the turn ratio as shown in Figure 10. The voltage peak of a
coupling capacitor made of the glass depends on the load. This confirms that the proposed CCWPT’s
circuit behavior is the same as the quasi-LLC converter operation. Figure 11 shows the efficiency from
DC input to DC output with load. It shows high efficiency over 95% at 1.6 kW output with the WT333E
power meter. Even if the load is 30% or less, it has an efficiency of 90% or more. The proposed CCWPT
system has high efficiency over the entire load. The proposed CCWPT system has a low operating
frequency because two transformers can make the coupling capacitance large. Due to the low operating
frequency, a typical silicon-based MOSFET can be used. The proposed system is capable of delivering
large power using a window that is widely located in vehicles and has high efficiency.

Table 2. Specific Components of Prototype.

Parameters Symbol Value/Part

Input voltage Vin 400 V
Output power Po 1.6 kW

Resonant inductor Lr 63 µH
n1 and n2 Np1:Ns1 and Np2:Ns2 1:2.2 and 2.2:1

Magnetizing inductor of T2 Lm2 1600 µH
Coupling capacitor CC1 and CC2 16 nF
Transformer core T1 and T2 EI6044
Primary switches M1,2,3,4 STW13NK100Z

Diodes D1,2,3,4 VS-HFA16PA60C-N3
Width of glass - 2 mm

Coupling capacitor electrode - Copper
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5. Conclusions

A new CCWPT system is proposed for charging the EVs. The studied CCWPT uses the EVs’
glass dielectric layer for large coupling capacitance, and sufficient output power can be obtained with
the two transformers such as the step-up and step-down transformers. Coupling capacitance can
be estimated similar to that of a typical flat plate electrode capacitance. The glass has large relative
permittivity and the EVs have large areas of glass in the front, back, and on the sides. This results in
transferring large output power with a relatively large coupling capacitance, and a strong electric field
can be trapped in the dielectric, which has the advantage of stability. The desired output voltage and
power can be obtained, and the deviation of the coupling capacitance and the resonance inductance
can be compensated by adjusting the turn ratios of the two transformers. The proposed CCWPT
system employs quasi-LLC resonant power conversion circuit to reduce the switching loss of power
switches. Since a turn-on loss of the power MOSFET by the ZVS in a transmitter and a turn-off loss
of the rectifier the ZCS in a receiver can be decreased, high efficiency can be obtained. Because the
operating frequency is not high, the proposed CCWPT system can use a low-cost existing silicon-based
MOSFET. Therefore, the proposed CCWPT system is suitable for replacing the conventional ICWPT to
charge EVs.
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