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Abstract: Future wireless communication systems are facing with many challenges due to their
complexity and diversification. Orthogonal frequency division multiplexing (OFDM) in 4G cannot
meet the requirements in future scenarios, thus alternative multicarrier modulation (MCM) candidates
for future physical layer have been extensively studied in the academic field, for example, filter
bank multicarrier (FBMC), generalized frequency division multiplexing (GFDM), universal filtered
multicarrier (UFMC), filtered OFDM (F-OFDM), and so forth, wherein the prototype filter design
is an essential component based on which the synthesis and analysis filters are derived. This paper
presents a comprehensive survey on the recent advances of finite impulse response (FIR) filter design
methods in MCM based communication systems. Firstly, the fundamental aspects are examined,
including the introduction of existing waveform candidates and the principle of FIR filter design.
Then the methods of FIR filter design are summarized in details and we focus on the following
three categories—frequency sampling methods, windowing based methods and optimization based
methods. Finally, the performances of various FIR design methods are evaluated and quantified by
power spectral density (PSD) and bit error rate (BER), and different MCM schemes as well as their
potential prototype filters are discussed.

Keywords: multicarrier modulation; prototype filter design; frequency sampling methods;
windowing based methods; optimization based methods

1. Introduction

The rapid increase of mobile devices and the emergence of new technologies as well as services
demand more efficient wireless cellular networks [1–4]. The 5th generation (5G) communication
networks need to support abundant business scenarios, such as Internet of Vehicles [5–7], Internet of
Things [8–10], virtual reality [11,12], device-to-device communications [13–16], and so forth. Therefore,
plenty of important technologies are worth studying in future communication networks, for example,
multicarrier modulation, massive multiple-input multiple-output (MIMO), millimeter wave, and so
forth [1–4]. Due to the critical role of the prototype filter played in multicarrier modulations, that is,
it determines the system performance such as stopband attenuation, inter-symbol interference (ISI),
inter-channel interference (ICI) and phase noise caused by high operating frequencies, herein various
prototype filter design methods in multicarrier communication networks are summarized.

It is known that cyclic-prefix orthogonal frequency division multiplexing (CP-OFDM) as the
air interface of the 4th generation (4G) communication networks is capable of avoiding ICI and ISI.
The modulated and demodulated signals are respectively generated through inverse fast Fourier
transform (IFFT) and fast Fourier transform (FFT), thereby greatly reducing the system complexity
and improving the signal transmission rate. OFDM has been used in conjunction with other
technologies, for example, wavelet OFDM (WOFDM) [17,18], orthogonal frequency division multiple
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access (OFDMA) [19–21], Alamouti coded OFDM (AC-OFDM) [22–25], and MIMO-OFDM [26–28].
Although OFDM has been widely applied, it also has the following limitations: serious out-of-band
leakage characteristic; strict synchronization and orthogonality among the subcarriers are needed;
high peak to average power ratio (PAPR) resulting in non-linear distortion of the signal; sensitive to
frequency offset, which has a significant impact on the system performance [29,30].

The above situations drive the urgency to conceive an appropriate modulation scheme in future
communication networks. Faced with the requirements of the ultra-low latency, high spectrum
efficiency, high transmission rate and business diversity in the future networks, researchers and
practitioners in related fields have exerted a tremendous fascination on a number of alternative
single-carrier or multicarrier modulation techniques [31], including CP-Discrete Fourier Transform
spread OFDM (CP-DFT-s-OFDM) [32], filter bank multicarrier (FBMC) [33–39], generalized
frequency division multiplexing (GFDM) [40,41], universal filtered multicarrier (UFMC) [42–44],
and filtered-orthogonal frequency division multiplexing (F-OFDM) [45–47], and so forth. Apart from
typical waveform design methods where waveform parameters are obtained manually, with the
development of machine learning, waveform design methods with data-driven models have attracted
increasing attention [48,49]. These modulation waveforms have their own merits and drawbacks in 5G
communication scenarios, respectively. The prototype filter determines the performance of a specific
modulation waveform, thus the evaluation standard of prototype filter is primarily characterized
by minimizing the stopband energy, minimizing the maximum stopband ripple, minimizing the
total interference (ISI and ICI) [50,51], and so forth. Digital filters are very important in digital
communications and are generally divided into two categories—infinite impulse response (IIR) filter
and finite impulse response (FIR) filter [52]. Based on the fact that only linear phase FIR filters are
suitable for wireless communication systems [53], the FIR filter design has been the major research
topic to realize prototype filters in the literature.

There have already been a few representative survey works related to prototype filters.
In Reference [4], a survey of multicarrier communications about prototype filters, lattice structures
and the implementation aspects is reported by A. Şahin et al., and this work provides four classes of
filters according to the design criteria—energy concentration, rapid decay, spectrum nulling and
channel/hardware characteristics. In Reference [54], the methods of prototype filter design for
cosine modulated filter banks (CMFBs) with nearly perfect reconstruction (NPR) are reviewed by
K. Shaeen et al., and these methods are categorized into nonlinear optimization methods [55–63],
spectral factorization methods [64], linear search methods [65–70], interpolated finite impulse response
(IFIR) methods [71–73], and frequency response masking (FRM) methods [58,74–79], and so forth.
The authors of Reference [80] provide the basic introduction of the FIR filter, some relevant works on
FIR and various factors which effect the performance of FIR filter in communication systems.

In this paper, we pay more attention to the literature from more recent years and provide a
survey on various FIR filter design methods in multicarrier systems. Compared with the existing
surveys in References [4,54,80], this paper provides an in-depth introduction to advanced filter design
methods, which are not categorized based on the design criteria. In addition, this work can serve as
an extension of the survey in Reference [54], which is dedicated to the aspect of CMFBs. Specifically,
we firstly introduce the FIR filter design criteria, that is, the objective to be optimized. The evaluation
criteria and the implementation methods are summarized in canonical form. Subsequently, the design
methods of realizing the objectives are divided into three categories: frequency sampling methods,
windowing based methods and optimization based methods. Lastly, the reviewed filter design methods
are analyzed for multicarrier modulation schemes in terms of power spectral density (PSD) [81,82],
bit error rate (BER) [83–85], spectral efficiency, latency, computational complexity, and so forth, which
are important measurements to characterize the performance of modulation waveforms. We expect
that this survey can provide a reference on how to select multicarrier modulation schemes and their
corresponding prototype filters in future wireless communication systems.
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The remainder of this overview paper is organized as follows. Section 2 introduces the concepts
of different multicarrier modulations and the evaluation criteria of FIR filter design. In Section 3,
the classification of FIR prototype filter design methods and corresponding implementation procedures
are described in details. The discussions of different filter design methods in multicarrier modulation
systems in terms of PSD and BER performances are presented in Section 4. Finally, Section 5 concludes
the paper.

2. Multicarrier Modulations and FIR Filter

By splitting the transmitting data into several components and sending each of these components
over separate carrier signals, multicarrier modulation (MCM) has numerous advantages compared to
single carrier modulation, including the relative immunity to multipath fading, less susceptibility to
interference caused by impulse noise, and enhanced immunity to ISI. In the following subsection, five
important MCM waveforms—OFDM, FBMC, GFDM, UFMC and F-OFDM are introduced.

2.1. Modulation Waveforms

2.1.1. OFDM

Compared with conventional OFDM, windowed orthogonal frequency division multiplexing
(W-OFDM) has a similar transceiver structure but non-rectangular transmit windows are utilized to
smooth the edges of rectangular pulse, accordingly provide better spectral localization and reduce
ICI [86]. For a raised cosine shape based non-rectangular window used in W-OFDM, the CP needs
to be extended to maintain the orthogonality and the spectral efficiency will decrease for W-OFDM
compared to OFDM [87]. In order to utilize non-contiguous spectrum fragments, resource block filtered
OFDM (RB-F-OFDM) aims to split the available spectrum fragments into several resource blocks which
make a chunk of some contiguous subcarriers. It generates and filters the signal transmitted on each
resource block individually [88]. Analogous to the subcarrier filtering based modulation, spectrum
leakage among these resource blocks is unavoidable in the case that the spacing between these blocks
is narrow [89]. In CP-OFDM with weighted overlap and add (WOLA), some data parts are copied
and added to the right and left part of conventional OFDM, then a pulse with soft edges takes place
in the rectangular prototype filter, in the meanwhile, the soft edges are added to the cyclic extension
by a time domain windowing and this results in a sharper side-lobe decay in frequency domain [90].
Therefore, CP-OFDM with WOLA is a special case of OFDM, aiming to improve the prototype filter
such that it has more reasonable pulse shape used in regular CP-OFDM. Furthermore, for the sake
of addressing the sacrifice of time resource resulting from added parts and avoiding possible data
collision before transmission due to windowing process, overlap process is employed [91].

2.1.2. FBMC

The FBMC modulation technique, as one of the waveform candidates in 5G communication
networks, has attracted a great amount of research attention. In the 1960s, the concept of FBMC
modulation was firstly proposed by Chang and Saltherg [92]. However, it did not receive much
attention by researchers due to its complexity. The well-known discrete multi-tone (DMT) modulation
and discrete wavelet multi-tone (DWMT) modulation reported in the 1990s are two specific cases
of FBMC modulation [93]. Currently, FBMC based systems have been extensively studied from
the aspects of spectrum efficiency analysis [94–96], system complexity analysis [97], prototype filter
design [98–101], frequency offset estimation [102,103], MIMO [104–106], and so forth. Ever-emerging
research projects investigate the application of FBMC modulation in practical scenarios, for example,
PHYDYAS [107], METIS [108], 5GNOW [109]. FBMC is robust against frequency offset because of its
negligible spectrum leakage. Furthermore, FBMC does not need the guard band in frequency domain,
which greatly improves the spectrum efficiency, thus FBMC can flexibly control the interference
between adjacent subcarriers, and the synchronization requirement among subcarriers is relaxed [36].
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Simultaneously, there are still some underlying issues of FBMC, for instance, high PAPR, which may
well result in signal nonlinearities. Though many existing methods have been dedicated to lowing
PAPR of FBMC [110–113], it is actually a trade-off between low PAPR and other characteristics, that is,
in Reference [110], the PAPR reduction is at the expense of higher computation complexity. In spite of
this, advantages above still make FBMC popular in the academic field, and FBMC has already been
considered as the waveform candidate in future MCM networks [33].

2.1.3. GFDM

The GFDM modulation waveform, as a new 5G multicarrier modulation technique, was proposed
by Fettweis et al. in 2009 [41]. Compared to OFDM, GFDM aiming to generalize traditional OFDM is
based on separate block modulation, which makes it more flexible by configuring different subcarriers
and symbols. To accommodate various types of services, GFDM can work with different prototype
filters and different types of CPs. The design of the conforming prototype filter reduces the sidelobe
interference, and the modulation process is converted from linear convolution to cyclic convolution
through tail biting operation, thus shortening the length of CP. Similar to FBMC, GFDM is also robust
against time-frequency offset but has a low PAPR. However, each subcarrier in GFDM modulation
does not keep the orthogonality in the frequency domain and ICI is introduced even under ideal
channel, which increases the complexity of the receiver algorithm and meanwhile raises BER.

2.1.4. UFMC

UFMC modulation technique was proposed by Vida Vakilian et al. to solve the ICI problem in
OFDM systems [42]. UFMC modulation enjoys the following advantages of relaxing the requirement
of CP, having high spectrum efficiency, relaxing carrier synchronization, and being suitable for
fragmented debris spectrum utilization. In addition, UFMC supports short burst asynchronous
communication because the filter lengths depend on the sub-band widths. Nevertheless, similar to
OFDM, the performance of UFMC is also inevitably affected by the carrier frequency offset (CFO),
which has attracted a lot of research interest in order to mitigate the significant impact of CFO on
UFMC based system performance [114–116].

2.1.5. F-OFDM

The basic principle of F-OFDM technique is to divide the carrier bandwidth of OFDM into
sub-bands with different parameters, filter the sub-bands, and leave less isolation bands in the
sub-bands [46]. Firstly, to support diverse businesses, F-OFDM modulation supports flexible sub-band
configurations for different subcarrier spacing. Secondly, it supports different sub-band configurations
allowing different CP lengths to better adapt transmission channels, and different sub-bands on
asynchronous signal transmission are also supported, thus saving the signaling overhead. Finally,
with better out of band suppression characteristics compared to OFDM, it saves the cost of protection
zone, that is, the spectral efficiency is improved. However, filters need to be dynamically designed for
each fragment, which makes the use of F-OFDM systems challenging [88].

2.2. FIR Filter

In this subsection, we introduce the basic principle of digital FIR filters as well as the evaluation
criteria of a designed filter. It is known that the condition of distortionless transmission and filtering is
that the amplitude response of the system should be constant in the effective spectral range of the signal,
and the phase response should be a linear function of the frequency (i.e., linear phase). The prototype
filter is required to have linear phase characteristic in wireless communication applications. In contrast
to the IIR filter, the FIR filter has the ability to achieve linear phase filtering [117]. In addition, as an
all-zero filter, the hardware and software structures of the FIR filter could be established without
considering the stability problem. Therefore, FIR filters have been widely used in the field of wireless
communications [53].
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Assuming the length of the impulse response h(n) of a linear phase FIR filter is N, then the
frequency response function is defined as

H(ejω) =
N−1

∑
n=0

h(n)e−jωn, (1)

where ω is the angular frequency. According to the parity of N and the symmetry of h(n), there are
four types of FIR transfer functions. The condition for the most widely used low-pass FIR filter is
given by

h(n) = h(N − 1− n), 0 ≤ n ≤ N − 1. (2)

The ripples are observed in both the passband and stopband, and the maximum approximation
error δp is described by

1− δp ≤| H(ejω) |≤ 1, | ω |≤ ωp. (3)

The amplitude of the stopband is approximated by the maximum error δs, that is,

| H(ejω) |≤ δs, ωs ≤| ω |≤ π, (4)

where ωp and ωs are passband and stopband boundary frequencies, δp and δs are passband and
stopband ripples, respectively (Gibbs effect), and ωs − ωp is the transition bandwidth. In order
to make designed filters close to the ideal low-pass filter, several evaluation criteria are given
in [50,51], including least-squares (LS), minimax, peak-constrained least-squares (PCLS), minimum
total interference (ICI and ISI), and and so forth.

• LS criterion

The goal of the least-squares criterion is to minimize the stopband energy of the filter, whose
objective function is

J =
∫ π

ωs
| H(ejω) |2 dω. (5)

• Minimax criterion

The goal of the minimax criterion is to minimize the maximum stopband ripple, and its objective
function can be written as

J = max
ω∈[ωs ,π]

| H(ejω) | . (6)

• PCLS criterion

The PCLS criterion establishes a trade-off between the LS and the minimax criteria. The PCLS
criterion can be described as below

J =
∫ π

ωs
| H(ejω) |2 dω

s.t. | H(jejω) |≤ δ,
(7)

where δ is a prescribed value. If δ is close to zero, the PCLS criterion approaches the minimax
criterion, while in the limit of δ, that is, δ is up to infinite, the criterion turns out the LS criterion.

• Minimum total interference criterion

This criterion is to minimize the total interference of ICI and ISI for filter bank structure.
Its objective function is defined as

J = ISI + ICI, (8)

where

ISI = max
k

(
∑
n
([TTMUX(n)]k,k − δ(n−4))2

)
, (9)
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ICI = max
k

(
N−1

∑
l=0,l 6=k

∑
n
([TTMUX(n)]k,l)

2

)
, (10)

where TTMUX(n) is the transfer matrix, the element [TTMUX(n)]a,b represents the relationship
between the input signal X(zN) and the output signal Y(zN), where z is the complex argument of
z-transform. δ(n) is the ideal impulse, and4 denotes the delay of the TMUX system. Thus the
transfer function between input and output signals is given by

Y(zN) = TTMUX(zN) · X(zN), (11)

where
X(zN) = [X0(z) X1(z) · · · XN−1(z)]T , (12)

Y(zN) = [Y0(z) Y1(z) · · · YN−1(z)]T . (13)

3. FIR Prototype Filter Design

As discussed in Section 2, there are some design criteria to customize the performance of FIR.
Thus, there must be some specific methods of FIR design corresponding to these criteria. In this work,
the filter design methods are divided into three major categories: the frequency sampling methods,
the windowing based methods, and the optimization based methods. For each type of method, we
firstly introduce their basic concepts and subsequently some typical design examples are given. At last
the advantages and disadvantages of the summarized methods are discussed.

3.1. Frequency Sampling Methods

The idea of frequency sampling is conceived from the frequency domain perspective. This kind
of method takes uniform spacing sampling of an ideal frequency response Hd(ejω), which is given by

Hd(k) = Hd(ejω)|ω= 2π
N k. (14)

Then Hd(k) is used as the sampled values of the actual linear phase FIR filter, written as

H(k) = Hd(k), k = 0, 1, · · · , N − 1. (15)

The N-point inverse discrete Fourier transform (IDFT) for H(k) yields the following
impulse response

h(n) =IDFT
[

H(k)
]

(16)

=
1
N

N−1

∑
k=0

H(k)W−kn
N , n = 0, 1, · · · , N − 1,

where WN = e−j 2π
N .

The exponential form of H(k) is given by

H(k) = A(k)ejθ(k), (17)

where A(k) and θ(k) are amplitude sampling and phase sampling, respectively. To design a linear
phase FIR filter in practical applications, the condition in Equation (2) should be satisfied. Thus certain
constraint conditions are imposed on A(k){

A(k) = A(N − k), N is odd,

A(k) = −A(N − k), N is even,
(18)
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and also on θ(k)

θ(k) = −ω

(
N − 1

2

)∣∣∣∣∣
ω= 2πk

N

= −
(

N − 1
N

)
πk. (19)

A series of frequency sampling based filter design methods have been reported according to the
above formulations. Some of commonly used methods are described in the following subsections.

3.1.1. Bellanger’s Method

In [118], Bellanger et al. use a typical frequency sampling method to design a filter, which is chosen
as the prototype filter of FBMC modulation system in PHYDYAS project. Specific implementation is as
follows [119]: assuming an integer K, the number of subcarriers is F and the number of samples is KF,
two conditions are proposed:

Condition 1: To approximately meet the Nyquist criterion, the following equation should
be satisfied 

H0 = 1,

H2
k + H2

K−k = 1,

HKF−k = Hk, 1 ≤ k ≤ K− 1,

Hk = 0, K ≤ k ≤ KF− K,

(20)

where Hk(0 ≤ k ≤ KF− 1) is the kth frequency weighting coefficient.
Condition 2: To ensure stopband performance, the following equation is satisfied

H0 + 2
K−1

∑
k=1

(−1)k Hk = 0. (21)

When K = 3 and 4, the filter weighting coefficients are{
K = 3 : H0 = 1; H1 = 0.9144; H2 = 0.4114,

K = 4 : H0 = 1; H1 = 0.9720; H2 =
√

2; H3 = 0.2351.
(22)

Then the impulse response is obtained by IDFT

h(t) =


1 + 2

K−1

∑
k=1

(−1)k Hk cos(
2πt
KT

),− KT
2
≤ t ≤ KT

2
,

0, otherwise.

(23)

3.1.2. Viholainen’s Method

Similar to the design in [118], Condition 1 is also considered in Viholainen’s method [51],
but Condition 2 is relaxed and it is assumed that H1 = χ. When K = 3 and K = 4, the filter
weighting coefficients are

K = 3 : H0 = 1; H1 = χ; H2 =
√

1− χ2,

K = 4 : H0 = 1; H1 = χ; H2 = 1/
√

2; H3 =
√

1− χ2.
(24)

According to a specific objective function, the optimal solution can be obtained by a simple global
search algorithm.

In [51], the LS criterion and the minimax criterion are selected for comparison with the method
in [118]. The frequency responses of prototype filters in [51,118] based on the LS criterion are shown in
Figure 1a, where the number of subcarriers is 16. As can be seen, the side-lobes of the prototype filters
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when K = 4 are lower than those with K = 3, that is, better stopband performance is benefited by a
larger value of K. Furthermore, the first side-lobe of the prototype filter in [51] is a little lower than
that in [118]. Figure 1b shows the frequency responses of prototype filters in [51,118] based on the
minimax criterion. Similarly, the prototype filters in [118] have higher first side-lobe levels. It is also
observed from Figure 1, the prototype filters based on the minimax criterion improve the stopband
performance at the cost of sacrificing the main-lobe width.
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Figure 1. (a) Frequency responses of prototype filters implemented based on the least squares (LS)
criterion in [51] and the method in [118] (K = 3 and K = 4). (b) Frequency responses of prototype filters
based on the minimax criterion in [51] and the method in [118] (K = 3 and K = 4).

3.1.3. Cruz-Roldán’s Method I

A frequency sampling method for arbitrary length FIR filters is proposed in [120]. Define the
frequency response of the prototype filter H(ejω), let H[k] = H(ejωk ), where ωk = (k + α) · 2π/N,
0 ≤ k ≤ (N − 1) and α = 0 or 1/2. The authors in [120] assume h(n) is real and symmetric, thus the
filter coefficients are obtained according to [117] when α = 0

h[n] =
1
N

{
P[0] + 2

bN/2c−1

∑
k=1

P[k] cos
(
(n + 1/2) · 2πk

N

)}
, (25)

where P[k] = H[k] · e−jkπ/N , bMc denotes the largest integer less than M. While if α = 1/2, the filter is
expressed as

h[n] =
2
N

bN/2c−1

∑
k=0

P[k] sin
(
(n + 1/2) · 2π

N
· (k + 1/2)

)
, (26)

where P[k] = H[k] · e−j(N−2k−1)π/(2N).
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Initial values of H[k] are determined before optimization, and the center of the transition band
is ωr = (r + α) · 2π/N, r ∈ Z+. In the transition band, the number of samples L (L > 1) should be
defined. Thus the magnitude response is defined as

| H[k] |=



1, 0 ≤ k ≤ r− dL/2e,
(passband)

f (k), r− dL/2e+ 1 ≤ k ≤ r + bL/2c,
(transition band)

0, r + bL/2c+ 1 ≤ k ≤ b(N − 1)/2c,
(stopband)

(27a)

| H[N − 1− k] |=| H[k] |, b(N − 1)/2c+ 1 ≤ k ≤ N − 1, (27b)

where dMe denotes the smallest integer more than M. And the phase response arg{H[k]} is defined as

arg{H[k]} =



− N − 1
2
· 2π

N
· (k + α),

0 ≤ k ≤ b(N − 1)/2c,
N − 1

2
· 2π

N
·
(

N − (k + α)
)

,

b(N − 1)/2c+ 1 ≤ k ≤ N − 1.

(28)

The function f (k) in (27a) is to obtain the magnitude values of the transition band samples.
In [121], f (k) is chosen as

f (k) =
ωs − k · 2π/N

ωs −ωp
. (29)

While in [120] f (k) has a different expression as below

f (k) = 0.95−
(

ωs − (L + 1− k) · 2π/N
ωs −ωp

)2

. (30)

When the initial values are determined, the specific steps of the optimization procedure are
as follows:

(a) Initialize the filter length N and the required number of samples L in the transition band.
(b) Initialize the frequency response in (27) and (28). The resulting vector |H[k]| is presented as

follows

|Hopt[k]| =

 1 ... 1︸ ︷︷ ︸
passband

f [q + 1] ... f [q + L]︸ ︷︷ ︸
transition

0 ... 0︸ ︷︷ ︸
stopband

 , (31)

where 0 ≤ k ≤ b(N − 1)/2c, q = r− dL/2e.
(c) Let f =

[
f [q + 1] f [q + 2] · · · f [q + L]

]
be the vector whose elements are the samples of the

magnitude response at the transition band. Find fopt and minimize an objective function ψ

defined as [122]
ψ = max

n,n 6=0
| g[2Mn] |, (32)

where M is related to the number of channels, G(ejω) is the DFT of g[n] and defined as G(ejω) =|
H(ejω) |2.
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(d) Calculate the optimum values of the frequency response samples Hopt[k]. These values are
obtained from (27) and (28), by replacing the initial values of the magnitude response in the
transition band in (27a) by the optimised values fopt obtained in the previous step

|Hopt[k]| =

 1 ... 1︸ ︷︷ ︸
passband

fopt[q + 1] ... fopt[q + L]︸ ︷︷ ︸
transition

0 ... 0︸ ︷︷ ︸
stopband

 , (33)

|Hopt[N−1− k]| = |Hopt[k]|,
b(N − 1)/2c+ 1 ≤ k ≤ N − 1. (34)

(e) Based on Hopt[k], the prototype filter coefficients are obtained through (25) or (26).

In [65], the objective function ψ in step 3 is defined as

ψ = max
ω

{
|H(ejω)|2 + |H(ej(ω−π/M))|2 − 1

}
. (35)

The minimization algorithms in MATLAB Optimization Toolbox [120] can be used to solve this
optimization problem.

3.1.4. Cruz-Roldán’s Method II

In [123], a multi-objective optimization technique based on the Cruz-Roldán’s method I in [120] is
proposed. The difference between [120,123] lies in the objective function, and the objective function of
Cruz-Roldán’s method II is

ψ =
1

2π

∫ 2π−ωs

ωs
|H(ejω)|2dω

= hShT

=
1

N2 HT(W−1
N )TSW−1

N H,

s.t.

 max
ω∈[0,π]

(|T0(ejω)|)− min
ω∈[0,π]

(|T0(ejω)|) ≤ δini
pp ,

MSA ≥ MSAini,

(36)

where h = [h(0), h(1), · · · h(N − 1)], hT = (1/N)W−1
N H, W−1

N is the IDFT matrix, and the elements of
N × N matrix S are given by

[Si,j] =


1− ωs

π
, i = j,

− sin[ωs(i− j)]
π(i− j)

, otherwise.
(37)

The values of δini
pp (amplitude distortion [121]) and MSAini (minimum stopband attenuation) are

the initially fixed goals of the problem. The overall distortion transfer function T0(ejω) is obtained as

T0(ejω) =
e−jω(N−1)

F

2F−1

∑
k=0
|H(ej(ω−k·π/F))|2, (38)

where F is the number of subcarriers. This method requires the values of δini
pp and MSAini to be selected

appropriately, and the MATLAB function fgoalattain can solve the multi-objective optimization problem.
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3.1.5. Salcedo-Sanz’s Method

In [124], the authors propose the variable limits evolutionary programming (VLEP) based on
the evolutionary programming (EP) to design the prototype filter, including variable limits classical
evolutionary programming (VLCEP) and variable limits fast evolutionary programming (VLFEP).
The final optimum solutions are sensitive to the initial values of f (k) in [120], while the algorithm
in [124] can solve this problem.

Three design methods in [120,123,124] are analyzed in terms of amplitude distortion peak, aliasing
error and minimum stopband attenuation, as presented in Table 1. The number of subcarriers is 128
and the length of the prototype filter is 2049. We select the VLFEP algorithm in [124]. Generally, all
of the three methods can obtain nearly perfect reconstruction (NPR) filter banks. By comparison,
the method in [123] achieves the best filter design performance. To summarize, the essence, pros and
cons of aforementioned frequency sampling methods are presented in Table 2.

Table 1. Analysis of prototype filter design in [120,123,124] by amplitude distortion peak, aliasing error,
minimum stopband attenuation.

Prototype Filter Design Amplitude Distortion Peak Aliasing Error Minimum Stopband Attenuation

Ref. [120] 7.0449× 10−4 −139.48 dB 78 dB
Ref. [123] 3.5001× 10−5 −151.39 dB 108 dB
Ref. [124] 1.2848× 10−4 −93.27 dB 69 dB

Table 2. Summary of frequency sampling methods.

Methods Comments Pros and Cons

Bellanger’s
method [118]

Design the filter parameter under the
constraints of controlling stopband
performance and satisfying Nyquist criterion.

Pros: Favorable stopband attenuation.
Cons: Long filter length (Long latency).

Viholainen’s
method [51]

Optimize the filter parameters according to
different evaluation criteria under the condition
of Nyquist criterion.

Pros: Good stopband attenuation; Flexibly
select suitable filter parameters according to
different evaluation criteria.
Cons: Need long filter length.

Cruz-Roldán’s
method I [120]

An optimization scheme based on frequency
sampling is proposed to obtain the filter
parameters.

Pros: Low computational complexity;
Design a filter with arbitrary length.
Cons: Difficult to choose the sampling
values of transition band for fast
convergence.

Cruz-Roldán’s
method II [123]

Based on the optimization algorithm proposed
in [120], the objective function is improved to
achieve multi-objective optimization.

Pros: The stopband energy and stopband
attenuation are minimized simultaneously.
Cons: Need to appropriately select initial
parameters to ensure the performance.

Salcedo-Sanz’s
method [124]

The VLEP algorithm [124] is proposed
based on the classical and fast evolutionary
programming algorithm.

Pros: Robust to the initial conditions; The
minimum of the objective function can be
reliably obtained.
Cons: High computational complexity.

3.2. Windowing Based Methods

The idea of windowing based methods is to use the digital FIR filter to approximate the desired
filtering characteristics. Assuming that the desired filter frequency response function is Hd(ejω),
the impulse response is denoted as hd(n). Considering the windowing based methods focus on the
perspective of time domain, the ideal hd(n) with a certain shape of window function is intercepted
as h(n) with finite length, whose frequency response H(ejω) approximates the desired frequency
response Hd(ejω). The specific design steps of windowing based methods are as follows:
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step 1: Taking linear phase low-pass FIR filter as an example, the general selection of Hd(ejω) is

Hd(ejω) =

{
e−jωτ , |ω| ≤ ωc,

0, ωc ≤ |ω| ≤ π,
(39)

where τ is a constant.
step 2: Determine hd(n) via IDFT

hd(n) =
1

2π

∫ ωc

−ωc
Hd(ejω)ejωndω =

sin[ωc(n− τ)]

π(n− τ)
. (40)

step 3: The impulse response h(n) of the linear phase FIR filter is obtained by multiplying a specific
window w(n), as below

h(n) = hd(n)w(n). (41)

Thus the corresponding H(ejω) is obtained by DFT.

3.2.1. Jain’s Method

Like the concept of Bartlett-Hanning window, a new window consisting of a Hamming window
and a Blackman is proposed in [125], which is given by

w(n) =λ

(
0.54− 0.46 cos

2πn
N − 1

)
(42)

+ (1− λ)

(
0.42− 0.5 cos

2πn
N − 1

+ 0.8 cos
4πn

N − 1

)
,

where 0 ≤ |n| ≤ (N − 1)/2.
Note that the formula in (42) becomes a Hamming window if λ = 1 and a Blackman window if

λ = 0. Figure 2 shows the frequency responses of Hamming window, Blackman window and this
new window, where the variable λ is evaluated as 0.0625 to ensure superior performance than using
Blackman window or Hamming window alone, and the length of the filters is N = 128. Compared
with Blackman and Hamming windows, the new window has the best first side-lobe level, the best
maximum side-lobe level and the best spectral efficiency.

3.2.2. Kumar’s Method

In [126], the Hamming and Gaussian windows are combined as a new window function, whose
expression is

w(n) =
[

0.54 + 0.46 cos(
2πn

N − 1
)

]
e−

1
2 (

2αn
N−1 )

2
, (43)

where 0 ≤ |n| ≤ (N − 1)/2, and the value of the parameter α determines the performance of the filter.
Figure 3 shows the frequency responses of Hamming window, Gaussian window and the new

window proposed in [126] for N = 64. Note that the window in [126] has the best side-lobe attenuation
compare with Hamming and Gaussian windows. However, it increases the width of the main-lobe.
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Figure 2. Frequency responses of Hamming window, Blackman window and the new window
proposed in [125].
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Figure 3. Frequency responses of Hamming window, Gaussian window and the new window proposed
in [126].

3.2.3. Mottaghi-Kashtiban’s Method

In [127], a special case of raised cosine windows is presented. The proposed window function is

w[n] = a0 − a1 cos(
2πn

N − 1
)− a3 cos(

6πn
N − 1

), 0 ≤ n ≤ N − 1. (44)

For normalization, that is, w
[

N−1
2

]
= 1, then

a0 + a1 + a3 = 1. (45)

This new window is symmetric about (N − 1)/2, and it has linear phase, thus the window
function is obtained by

w[n] + w[n− (N − 1)/2] = 2a0,
N − 1

2
≤ n ≤ N − 1. (46)
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The expression in Equation (44) is a 4th order raised cosine window [128] and its third term is zero

w[n] =
3

∑
i=0

ai cos
(

2iπn
N − 1

)
, 0 ≤ n ≤ M, a2 = 0. (47)

The optimal values are found by optimization and approximation. The relationship between the
parameters in (47) and the length of window function N can be expressed as

a0 = 0.537− 0.3
N + 14

,

a1 = 0.46 +
0.25

N + 14
,

a3 = 1− a0 − a1.

(48)

Figure 4 shows the frequency responses of Hamming window, Gaussian window and the
new window proposed in [127] for a typical filter length of N = 41. All of the windows have
approximately equal mainlobe width. Compared with Hamming window, the new window has better
peak level of maximum side-lobes, meanwhile it has better performance of side-lobe attenuation than
Gaussian window.

3.2.4. Rakshit’s Method

In [129], a new form of adjustable window function combining a tangent hyperbolic function
and a weighted cosine series is proposed. In this paper, the modified tangent hyperbolic function is
given as

y1 = tan

{
n− N−1

2 + cosh2(α)

B

}

− tan

{
n− N−1

2 − cosh2(α)

B

}
, (49)

and the weighted cosine function is expressed as

y2 = 0.375− 0.5 cos
(

2πn
N − 1

)
+ 0.125 cos

(
4πn

N − 1

)
, (50)

where α and B are the constants, and the symbol n = 0, 1, 2, 3, · · · , (N − 1). Then the new window
function can be expressed as

w(n) =

(y1 × y2)
γ

1
5 , 0 ≤ n ≤ N,

0, otherwise,
(51)

where γ is a variable which controls the shapes and frequency response of window function, and “× ”
denotes dot product.

Figure 5 shows the frequency responses of Gaussian window and the new window proposed
in [129]. The length of the filters is N = 65, and B = 1, α = 2.5, γ = 1.5 for the new window in [129].
It can be observed that the new window has much less side-lobe peak level than Gaussian window
while its main-lobe width keeps exactly the same.
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Figure 4. Frequency responses of Hamming window, Gaussian window and the new window proposed
in [127].
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Figure 5. Frequency responses of Gaussian window and the new window proposed in [129].

3.2.5. Martin-Martin’s Method

In [130], a window designing method for cosine-modulated transmultiplexers is proposed, which
is called generalized windowing method for transmultiplexers (GWMT). A 4th order generalized
cosine window function is expressed as

w(n) =
3

∑
i=0

(−1)i Ai cos
(

2πin
N − 1

)
, (52)

where n = 0, 1, 2, · · · , N− 1, and Ai are the weights of the terms for i = 0, 1, 2, 3. The designed window
function is normalized as

3

∑
i=0

Ai = 1. (53)
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The weights Ai and the cut-off frequency ωc of the ideal low-pass filter can be adjusted by
minimizing the objective function

φ(x) = − 1
F

F−1

∑
f=0

E f (x)

βE( f )
ICI(x) + (1− β)E( f )

ISI (x)
, (54)

and 

E f =
1
π

∫ π

0
(|Tf f (ejω)|2)dω,

E( f )
ICI =

1
π

∫ π

0

(
F−1

∑
l=0,l 6= f

|Tf l(ejω)|2
)

dω,

E( f )
ISI =

1
π

∫ π

0

{
‖Tf f ‖1 − |Tf f (ejω)|

}2
dω,

‖Tf f ‖1 =
1
π

∫ π

0
|Tf f (ejω)|dω,

(55)

where F is the channel number, β is the compromise factor satisfying 0 ≤ β ≤ 1, T describes
the transfer function, x = [A0, A1, A2, ωc] denotes the adjustable parameter vector, and A3 can be
obtained by the Equation (53). This optimization problem is solved by the Nelder-Mead simplex
minimization algorithm.

Figure 6 displays the frequency responses of Blackman window, Kaiser window and the generated
window by GWMT method. The length of the filters is N = 2KF, where K = 3, F = 32. It is seen
that the GWMT method based window has the highest signal-to-overall-interference ratio levels.
The comments, pros and cons of the above windowing based methods are summarized in Table 3.
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Figure 6. Frequency responses of Blackman window, Kaiser window and the new window by
the GWMT [130].
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Table 3. Summary of windowing based methods.

Methods Comments Pros and Cons

Jain’s method [125]
Connecting Hamming window and
Blackman window by a parameter λ.

Pros: Best first side-lobe level and spectrum
efficiency compared to Hamming and
Blackman windows.
Cons: Large transition bandwidth.

Kumar’s
method [126]

Product of Hamming window and
Gaussian window.

Pros: Excellent performance of stopband
attenuation compared to Hamming and
Gaussian windows.
Cons: Under the same parameter setting,
the width of main-lobe will increase.

Mottaghi-Kashtiban’s
method [127]

Design a four-semester raised cosine
window by optimizing window parameters.

Pros: Narrower main-lobe under similar
conditions compared to Hamming window.
Cons: Although with improved
performance of stopband attenuation,
the performance gain is inconspicuous.

Rakshit’s
method [129]

A window function combining tangent
hyperbolic function and weighted cosine
series using an adjustable parameter γ.

Pros: Higher side-lobe roll-off ratio under
the same main-lobe width compared to
Gaussian window.
Cons: Need to constantly adjust the
parameters γ.

Martin-Martin’s
method [130]

The parameters of a four-term generalized
cosine window are optimized on the basis
of a given objective function.

Pros: Best performance of
signal-to-overall-interference ratio
compared to Kaiser and Blackman
windows.
Cons: High algorithm complexity.

3.3. Optimization Based Methods

In optimization based methods, some design parameters are usually given, including the filter
length, the passband cutoff frequency, the stopband cutoff frequency, the number of channels,
the maximum allowable distortion, and so forth. According to corresponding evaluation criteria,
different objective functions and algorithms are proposed to optimize the filter parameters. This type
of filter design methods is more flexible due to adjustable objective functions and constraints. Both
constrained and unconstrained optimization problems can be formulated for the filter design.

3.3.1. Ababneh’s Method

In Reference [131], the authors propose designing the FIR filter by the particle swarm optimization
(PSO) algorithm. For each particle i, the position Pi and the velocity Vi are shown as

Pi = (pi,1, pi,2, · · · , pi,D), (56a)

Vi = (vi,1, vi,2, · · · , vi,D), (56b)

vi,d+1 = µvi,d + c1β1(pbi,d − pi,d) + c2β2(gbd − pi,d), (56c)

pi,d+1 = pi,d + vi,d+1, (56d)

where D is the iteration of velocity and position, µ is the weighting function, c1 and c2 are the
acceleration constants, β1 and β2 are random numbers in the range [0, 1]. In addition, the pbest pbi,d
denotes the personal best of the ith particle vector at the dth dimension. The gbest gbd denotes the group
best at the dth dimension. During each iteration, the position and the velocity are calculated by the
Equations (56c) and (56d), respectively.
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3.3.2. Luitel’s Method

In Reference [132], the differential evolution particle swarm optimization (DEPSO) algorithm
combined by differential evolution and PSO is proposed to design the FIR filter. In the DEPSO
algorithm, the offspring is generated by the nutation of the parent, the Gaussian distribution is
considered and the parent can be represented by the gbest. For mutation, there are four random
particles chosen from the population to produce an offspring. A mutation operator is expressed
as below

i f (rand < RR or d == m)

Ti,d = gbd + δ2,d,
(57)

δ2,d =
(pb1,d + pb2,d) + (pb3,d + pb4,d)

2
, (58)

where RR is the reproduction rate, rand is a random number in the range of [0, 1], m means a dimension
which is randomly chosen, Ti,d is the offspring and δ2,d is the weighted error in different dimensions.

3.3.3. Gupta’s Method

In Reference [133], the restart PSO (RPSO) is used to design the FIR filter. Compared with PSO,
the RPSO algorithm depends on the two following criteria:

Criterion 1: Terminate if the fitness’s standard deviation of swarm is smaller than 10−3. In this
case, the particles are randomly redistributed in the search space with a probability of 1/D.

Criterion 2: Terminate if the change in fitness of the objective function is below 10−8 for certain
generations, then the particles are restarted by calculating derivatives to gbest.

Figure 7a shows the frequency responses of the PSO and RPSO algorithms, and Figure 7b shows
the frequency responses of the PSO and DEPSO algorithms. Note that the filters designed by the
three algorithms have similar performance. Compared to the PSO algorithm, the RPSO algorithm can
prevent the results from falling into a local optimal solution, while the DEPSO algorithm has better
convergence performance.

(a) (b)

Figure 7. (a) Frequency responses of the designed filters by the PSO algorithm and the RPSO algorithm.
(b) Frequency responses of the designed filters by the PSO algorithm and the DEPSO algorithm.

3.3.4. Li’s Method

In Reference [134], a method to design the FIR filter based on genetic algorithm (GA) is proposed.
We summarize this algorithm in Algorithm 1.
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Algorithm 1 The GA Algorithm

Input: Initialize parameters: population size NP, current generation g = 1, maximum generation

Gmax, swarm S;
Output: The best resolution BS;

1: while g ≤ Gmax do
2: for i = 1 to NP do
3: Evaluate fitness of Sg;
4: end for
5: for i = 1 to NP do
6: Select operation to Sg;
7: end for
8: for i = 1 to NP/2 do
9: Crossover operation to Sg;

10: end for
11: for i = 1 to NP do
12: Mutation operation to Sg;
13: end for
14: for i = 1 to NP do
15: Sg+1 = Sg;
16: end for
17: g = g + 1;
18: end while
19: return The best resolution BS.

3.3.5. Karaboga’s Method

In Reference [135], an FIR filter is designed based on the differential evolution (DE) algorithm.
The main difference between DE algorithm and GA algorithm is that GA algorithm relies on the
crossover, while DE algorithm relies on the mutation operation. The specific steps of the DE algorithm
are provided in Algorithm 2.

In order to evaluate the performance of the designed FIR filters by GA and DE algorithms, the least
mean squared error (LMSE) is used, and the fitness function is defined as

Fitness =
1

LMSE
, (59)

and the LMSE is given as

LMSE =

(
∑
k
(|Hi(e−jωk )| − |Hd(e−jωk )|)2

) 1
2

, (60)

where Hi(e−jωk ) is the frequency response of ideal filter, and Hd(e−jωk ) is the frequency response of
designed filter.

Figure 8 shows the frequency responses of the FIR filters designed by GA and DE algorithms.
The length of the two filters is N = 21, and Table 4 shows the control parameters of GA and DE
algorithms, which have a significant effect on the performance of these two algorithms. As can be seen
from Figure 8, the FIR filters designed by GA and DE algorithms have similar performance, that is,
the stopband attenuation using GA is slightly better than that using DE. But the convergence speed of
the DE algorithm is faster than GA.
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Algorithm 2 The DE Algorithm

Input: Initialize parameters: population size NP, current generation g = 1, maximum generation

Gmax, dimension D, tolerance ε, swarm S, base vector s, mutant vector v, trial vector u ;
Output: The best resolution BS;

for i = 1 to NP do
for d = 1 to D do

sd
i,g = sd

min + rand · (sd
max − sd

min);
end for

end for
while (| f (BS)| ≥ ε) or (g ≤ Gmax) do

for i=1 to NP do
for d=1 to D do

vd
i,g = Mutation(sd

i,g);
ud

i,g = Crossover(sd
i,g, vd

i,g);
end for
if f (ui,G) < f (si,g) then

si,g = ui,g;
if f (si,g) < f (BS) then

BS = si,g;
end if

else
si,g = si,g;

end if
end for
g = g + 1;

end while
return The best resolution BS.

Figure 8. Frequency responses of the designed filters by the DE algorithm and the GA algorithm.

Table 4. The parameters of GA and DE algorithms.

GA Algorithm DE Algorithm

Population size = 100 Population size = 100
Crossover rate = 0.8 Crossover rate = 0.8
Mutation rate = 0.01 Scaling factor = 0.8
Generation number = 500 Combination factor = 0.8

— Generation number = 500
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3.3.6. Chen’s Method

In Reference [98], the prototype filter is designed by directly optimizing the filter coefficients.
This method is mainly designed for FBMC based systems, aiming to minimize the stopband energy
and constrain the ISI/ICI. The optimization problem is formulated as

min
h(0),h(1),···h(N−1)

∫ π

ω0

|H(ejω)|2dω

s.t.


h(n) = h(N − n− 1), C1

ISI and ICI ≤ T1, C2

∑N−1
n=0 (h(n))

2 = 1, C3

(61)

where T1 is a threshold. However, this optimization problem is non-convex and non-linear,
which greatly increases the computational complexity. Through a series of approximation of the
constraints, the number of unknowns in the optimization problem is enormously reduced. Therefore,
the optimization problem can be solved and the computational complexity becomes acceptable.

3.3.7. Hunziker’s Method

In Reference [136], the design of filter banks for maximal time-frequency (TF) resolution is
proposed. Two properties should be satisfied to compute the optimal DFT filter banks. Firstly,
the window under the filter operation is orthogonal, thus for white input processes, the sampling
at the output of the filter banks generates uncorrelated random variables. Secondly, to ensure the
minimum leakage of signal components outside the target area in TF plane, the prototype window
shows the best TF localization feature. To satisfy the first property, the parametrization of paraunitary
filter banks in Reference [137] is used and longer pulses are extended in Reference [138]. As for the
second property, the Rihaczek distribution is used in TF region, and the objective function along with
the constraints is transformed into a form which can be solved by semi-definite programming (SDP)
algorithm.

3.3.8. Dedeoğlu’s Method

In Reference [139], the FIR filter design based on SDP is proposed. In order to satisfy both
constraints on magnitude and phase responses of the filter, a non-convex quadratic constrained
quadratic programming (QCQP) is constructed. Then, by relaxing the QCQP, a convex SDP is obtained,
where the variables of optimization are limited to rank-1. Finally the global optimum can be found by
using a convex solver. To obtain the rank-1 solution, a novel directed iterative rank refinement (DIRR)
algorithm providing monotonic improvement is proposed, and a sequence of convex optimization
problems are solved to minimize an adaptively chosen cost function. The performance of this design
method is extensively illustrated over design cases under a variety of constraints.

3.3.9. Kobayashi’s Method

A relatively new method of convex optimization is proposed to obtain the filter coefficients
for FBMC, in pursuit of superior spectrum features while maintaining high symbol reconstruction
quality [140]. The objective function is constructed as the minimization of out-of-band pulse energy.
At the meanwhile the constraints include a maximum tolerable self-interference level and a fast
spectrum decay. The main idea of the work in Reference [140] locates in transforming the formulated
problem, which belongs to a non-convex QCQP, into a convex QCQP. In order to circumvent the
non-convexity, a relaxation is utilized to transform the norm-2 equality constraint into a norm-1 equality
constraint. Thus the transformed problem benefits from existent optimization tools. The comments,
pros and cons of the above optimization based methods are summarized in Table 5.
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Table 5. Summary of optimization based methods.

Methods Comments Pros and Cons

Ababneh’s
method [131]

Design the filter using the PSO algorithm.
Pros: Simple and intuitive.
Cons: Poor stopband attenuation performance
of the filter under low-order conditions.

Luitel’s method [132] Design the filter using the DEPSO algorithm.

Pros: Compared with PSO algorithm, the filter
has better convergence consistency.
Cons: Improvement of the stopband
attenuation is not obvious.

Gupta’s method [133] Design the filter using the RPSO algorithm.

Pros: Compared with PSO algorithm, the filter
has better convergence and can avoid falling
into local optimum.
Cons: Improving the performance of the
stopband attenuation is not obvious.

Li’s method [134] Design the filter using the GA algorithm.
Pros: Obtain near global optimum solutions.
Cons: Slow convergence rate and poor
stopband attenuation performance.

Karaboga’s
method [135]

Design the filter using the DE algorithm.

Pros: Better convergence and acceptable
computational complexity compared to GA.
Cons: Improvement of the stopband
attenuation is not obvious.

Chen’s method [98] Directly optimize filter coefficients.
Pros: Minimize the ISI/ICI and the stopband
energy for FBMC modulation.
Cons: High computational complexity.

Hunziker’s
method [136]

An optimization algorithm aiming at
minimizing TF resolution.

Pros: Minimize the TF resolution.
Cons: High first sidelobe.

Dedeoğlu’s
method [139]

Design the filter by convex optimization using
DIRR algorithm.

Pros: Robust design under the phase and group
delay constraints.
Cons: Approximated solution.

Kobayashi’s
method [140]

Minimize the out of band pulse energy through
a relaxed QCQP.

Pros: High symbol reconstruction performance
and desirable spectral features.
Cons: Approximated solution.

4. Discussion

Future wireless communication networks will impose strict requirements on multicarrier
modulation schemes in terms of spectral efficiency, latency, computational complexity, and so forth.
As shown in Table 6, crucial characteristics and applicability of five promising modulation waveforms
are clearly reflected, including spectral efficiency, out of band, CP, synchronization requirement, latency,
effect of frequency offset, PAPR, computational complexity, and short-burst traffic, which implicate a
concrete limit to the real use of different MCM schemes. To further learn about the merits and defects
of various MCM waveforms, interested readers are referred to the related works in Reference [141]
for more detailed information. Since prototype filter design directly affects most characteristics of
modulation waveforms such as spectral efficiency [142,143], out of band [144], it has attracted extensive
research attention in the field of MCM communication. In recent years, various prototype filter design
methods are designed in accordance with the above practical requirements of modulation waveforms
in Table 6, and some commonly used FIR design methods for different multicarrier modulation
waveforms are concluded in Table 7. The contents of this table will be continuously enriched as
time goes on. In addition, we analyze the MCM system performance using three types of FIR design
methods in terms of PSD and BER, which are two another important evaluation criteria [81–83,145–147].
The simulation results of PSD and BER performances are presented in Figure 9, where the FBMC is
selected as the system modulation type, the number of subcarriers for FBMC is 1024, and the offset
quadrature amplitude modulation (OQAM) technology is adopted. In the following, some critical
characteristics and application scope of the three categories of FIR design methods are discussed and
summarized, respectively.
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Table 6. Respective characteristics and applicability of different multicarrier modulation waveforms.

OFDM FBMC GFDM UFMC F-OFDM

Spectral Efficiency Medium High Medium High Medium
Out of Band High Low Low Low Low
Cyclic Prefix Yes No Yes No Yes

Synchronized Requirement High Low Medium Low Low
Latency Short Long Short Short Short

Effect of Frequency Offset Medium Low Medium Medium Medium
PAPR High High Low Medium High

Computational Complexity Low High High High Medium
Short-Burst Traffic No No Yes Yes No

Table 7. Summary of filter design methods used in existing multicarrier modulation waveforms.

OFDM FBMC GFDM UFMC F-OFDM

Frequency Sampling Methods — [51,118] [148,149] — —
Windowing based Methods [150,151] [4] [40,152] [42] [45,46,145,153]

Optimization based Methods [154] [140,155–157] [158–161] [162,163] —

4.1. Frequency Sampling Methods

The performances of PSD and BER about different prototype filters using frequency sampling
techniques are given in Figure 9a,b, respectively. From the Figure 9a, it can be seen that the frequency
sampling methods can achieve good PSD performance. The prototype filter designed by Bellanger’s
method has the best performance compared to other frequency sampling techniques, on the other
hand, the prototype filter designed in Reference [123] has the worst BER performance while the others
have the similar performance, as shown in Figure 9b.

Generally, a small number of parameters are simply designed in frequency domain, thus frequency
sampling methods are inclined to optimal design and narrowband filter design where only a few
non-zero values are needed. Furthermore, it is obvious that there are few side-lobes which result
in better spectrum utilization and improving spectral efficiency. For time complexity, Bellanger’s
method achieves the order of magnitude O(N log N) as most of other methods are its improved
versions, and N denotes the filter length. When the value of N increases, low side-lobes may appear
in the frequency domain and adjacent channel interference can be reduced, thus frequency sampling
methods can be taken into consideration while low interference is required. In addition, frequency
sampling techniques can satisfy the NPR condition, the research projects of 5G related networks,
such as PHYDYAS and 5GNOW, consider the frequency sampling technique for FBMC modulation.
Frequency sampling methods are also applied for GFDM modulation [148,149] as concluded in Table 7.
However, frequency sampling methods generally have long filter length, which results in long latency,
that is, there is a trade-off between high spectrum efficiency and low latency. Moreover, the position of
the frequency control point is limited by N-sampling points on the frequency domain. This implies
that the sampling frequency can only be an integral multiple of 2π/N, resulting in that the cutoff
frequency of filter is hard to control. If the cutoff frequency is freely selected, we must increase the
number of sampling points N, that is, increasing the filter length, which is not conducive to short
uplink burst communication in 5G scenarios.
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Figure 9. (a,c,e) The PSD performance comparison of FBMC based systems using different prototype
filter design methods. (b,d,f) The BER performance comparison of FBMC based systems using different
prototype filter design methods.
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4.2. Windowing Based Methods

The performances of PSD and BER about different prototype filters using windowing based
techniques are given in Figure 9c,d, respectively. The aforementioned windowing based techniques
have similar PSD and BER performances while the method in Reference [129] performs relatively poor
compared with other methods.

The windowing based FIR filters are designed in time domain, and the basic idea is that the linear
phase FIR filter multiplies by a specific windowing function, thus the time complexity is proportional
to O(N). Generally, windowing based techniques can be seen as improved versions of classical
windowing functions, nevertheless the performance improvement is not very remarkable compared
with typical techniques such as Hamming window, Hanning window, Blackman window and so on.
From the view of practical use, windowing based functions are easy to implement and bring little
computational complexity burden on systems, therefore they are able to be used for the prototype
filter design in almost all multicarrier modulation systems, as shown in Table 7. However, it is difficult
to accurately control the passband cutoff frequency of the filter. The windowing process leads to
a truncation effect and hence produces a transition band. Although increasing the length of the
window can reduce the transition band, the amplitude of fluctuation cannot be suppressed due to
Gibbs phenomenon. Changing the windowing shape can reduce the passband/stopband attenuation,
but at the expense of increasing the width of transition band.

4.3. Optimization Based Methods

The performances of PSD and BER about different prototype filters using optimization based
techniques are given in Figure 9e,f, respectively. The evolutionary algorithms in References [131–135]
are used for linear phase FIR filter design in recent years, and they could be taken into account
in multicarrier modulation applications. In this paper, FBMC based systems using five different
evolutionary algorithms are simulated, as shown in Figure 9e,f. By analyzing the simulation of the
filters with the same order, it is noted that different evolutionary algorithms achieve similar PSD and
BER performances.

Compared with frequency sampling techniques and windowing based techniques,
the corresponding filter parameters of optimization based methods, that is more concerned
with the local optimization and algorithm convergence problem, can be optimized depending on
different evaluation criteria, and the selected design parameters determine the effectiveness of the
solution to the optimization problem. The complexity of this type of design techniques seems to be
much higher than other two techniques, for instance, the complexity of PSO based method is about
the order of LPO(N2), where L is the iteration size and P is the population size. This complexity is
much less than QCQP based methods or non-convex optimization methods, of which the complexity
is up to O(N3) or higher [164]. Nevertheless, optimization based methods are much more flexible
as they focus on local optimization to support the constraints imposed by various scenarios such
as cognitive radio [157], massive MIMO [156] and so on. For example, when FBMC is applied for
opportunistic spectrum sharing, in order to avoid interfering with other bands, well localized filters
in time and frequency are prone to be designed to minimize Out of Band [140]. Similarly, there are
also some optimization based methods for different waveform candidates, for example, OFDM [154],
FBMC [140,155,156], GFDM [158–161], UFMC [162,163]. In general, the establishment and constraints
imposed on objective functions are often highly non-linear, which increases the computational
complexity and also sensitive to the selection of initial values. In addition, it is possible to fall into
local optimal range and fail to identify global optimal solution, which is one of the major issues to be
solved in optimization based design methods.

As discussed earlier, since multicarrier modulation can enlarge the system capacity and have
the relative immunity to defend the multipath fading effect, it dominates the main stream in future
communication technology. The critical part of multicarrier modulation lies in the FIR filter design.
A good filter design scheme can improve some important performances not only including PSD and
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BER but also some other crucial aspects, consequently increasing the competitiveness of waveform
candidates and improving the communication quality to suit various application scenarios of 5G or
future networks. FIR filters have been widely used in many engineering applications involved with
digital signal processing, such as the communication signal [165,166], the speech signal [167,168] and
the medical signal [169]. We can conclude without exaggeration that where digital signal processing is
needed, where there is a shadow of FIR.

5. Conclusions

The prototype filter plays an important role in multicarrier modulation systems and the FIR
filter is considered to be the suitable choice in wireless communication systems. This paper has
reviewed existing FIR filter design methods which are categorized into frequency sampling methods,
windowing based methods and optimization based methods. The concept and principle of each
method are described in detail, and the merits and drawbacks of corresponding prototype filters are
summarized. Finally, the performances of FIR design methods in different multicarrier modulation
systems are evaluated and discussed in terms of PSD and BER. It is expected that this survey work can
provide a basis for the selection of prototype filters in future wireless communication systems.
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