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Abstract: In the Fifth Generation of telecommunications networks (5G), it is possible to use massive
Multiple Input Multiple Output (MIMO) systems, which require efficient receivers capable of reaching
good performance values. MIMO systems can also be extended to massive MIMO (mMIMO) systems,
while maintaining their, sometimes exceptional, performance. However, we must be aware that
this implies an increase in the receiver complexity. Therefore, the use of mMIMO in 5G and future
generations of mobile receivers will only be feasible if they use very efficient algorithms, so as to
maintain their excellent performance, while coping with increasing and critical user demands. Having
this in mind, this paper presents and compares three types of receivers used in MIMO systems, for
further use with mMIMO systems, which use Single-Carrier with Frequency-Domain Equalization
(SC-FDE), Iterative Block Decision Feedback Equalization (IB-DFE) and Maximum Ratio Combining
(MRC) techniques. This paper presents and compares the theoretical and simulated performance
values for these receivers in terms of their Bit Error Rate (BER) and correlation factor. While one of
the receivers studied in this paper achieves a BER performance nearly matching the Matched Filter
Bound (MFB), the other receivers (IB-DFE and MRC) are more than 1 dB away from MFB. The results
obtained in this paper can help the development of ongoing research involving hybrid analog/digital
receivers for 5G and future generations of mobile communications.
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1. Introduction

With the constant increase in users’ needs, in particular, the interconnection of all their
communication devices, and its access to the Internet everywhere, the Fourth Generation (4G) of
telecommunications has to be rethought. The Fifth Generation (5G) of telecommunications networks
arises as a response to existing technology limitations. The 5G network is predicted to have an increase
of 10 times in spectral efficiency and 1000 times of system capacity when compared to 4G. It is also
expected that this technology is energy efficient [1].

According to the report published by [2], at the end of 2019, about 13 million subscribers to the 5G
technology were already expected. In October 2019, right before the official launch of this technology,
more than 10 million users have already been registered. Despite the 5G launch ramp, 4G will still be
dominant and will reach its peak in 2022, and then it will become superseded by 5G technology. It is
also expected that by 2025, 4G will cover around 90% of the world’s population, and 5G will cover only
65% of the population but at half of the data traffic. Also, according to the same report, the providers
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of this technology are working on a second generation that intends to reduce power consumption,
increase frequencies and implement more integrated designs.

The migration to 5G implies new developments in the system design, changes in components
and system architecture. One way to achieve these changes is to use massive Multiple Input Multiple
Output (mMIMO) [3]. This architecture consists of the existence of multiple antennas in the receiver
and transmitter. This implementation allows these systems to have a substantial increase in the data
rate and an improvement, not only in energy efficiency, but also in reliability of the connections [1,4].

Channel estimation is one of the limiting factors in this type of system. Another problem is related
to the assignment of sequences of finite orthogonal pilots. When the sequences of pilots is reused, it
increases the contamination of pilots and coherent interference [3].

With the mMIMO system, the Single-Carrier with Frequency-Domain Equalization (SC-FDE) can
be used since this technique allows a lower envelope fluctuation, when compared with Orthogonal
Frequency Division Multiplexing (OFDM) [5–7]. SC-FDE allows an efficient power amplification at the
Mobile Terminal (MT). In the uplink transmission, the linear Frequency-Domain Equalization (FDE)
can be replaced with an iterative FDE on the receiver, such as the Iterative Block Decision Feedback
Equalization (IB-DFE) [8]. This replacement leads to an increase in the receiver performance [9].

In the mMIMO system, the number of antennas in the receiver and transmitter increases to tens
or hundreds of antennas. This implies the use of large matrices, which is a serious problem in receivers
based on the IB-DFE concept [10,11], since this type of receiver requires matrix inversions for each
subcarrier and each iteration implies intensive computational processing. Some iterative receivers that
achieve similar performance do not require matrix inversions. These receivers can implement, e.g.,
Maximum Ratio Combining (MRC), which requires the calculation of the hermitian of the channel
matrix, or the Equal Gain Combining (EGC) that only needs phase rotations [12,13]. The main problems
associated with these low complexity receivers are related to the high interference between different
transmitted streams and the Inter-Symbol Interference (ISI).

There are several studies regarding the different receivers that can be used with mMIMO
systems [14–17], where the performance achieved is compared with the Matched Filter Bound (MFB).
Authors from in [18] propose a hybrid receiver that combines IB-DFE with MRC, achieving performance
values similar to MFB in its second iteration.

In this paper, the performance achieved by IB-DFE, MRC, the hybrid receiver and the correlation
factor is presented and compared with the theoretical values for the same receiver. The work presented
in this paper can be extended to hybrid analog/digital equalization scenarios for massive MIMO
systems as presented in [19,20].

In Section 2 the comparison of receivers that can be used in mMimo systems is presented. In
Section 3 the proposed system is described and in Section 4 the IB-DFE, MRC and hybrid receivers
are presented, followed by Section 5 where the Bit Error Rate (BER) performance and the correlation
factors are calculated for the same receivers. In Section 6, the results are presented and discussed.
Lastly, in Section 7, the conclusions achieved are drawn.

The following denotation is employed in this paper: In general, the lower case letters denote
time-domain variables, while upper case letters denote frequency-domain variables. Bold upper letters
represent matrices or vector; IN is the identity matrix N × N; the complex conjugate, transpose and
Hermitian of x is denoted by x∗, xT and xH respectively. The expectation of x is represented by E[x]
and x̃, x̂, x, denotes respectively sample, "hard decision" and "soft decision" estimation of x.

2. Receivers

In the literature [14–17] we can find the description of very efficient and appropriate receivers for
use in MIMO systems, able to be extended for mMIMO. This section summarizes their main properties.

• ZF: Zero Forcing (ZF) [21] is a simple receiver technique that applies the inverse of the channel
frequency response to the received signal to equalize the communications channel. It allows for a
perfect separation of the different users as well as the removal of the ISI, however, it cannot be
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used in most practical applications as when the received signal is very weak, that is when the
Signal-to-Noise ratio (SNR) is very low, it compensates by amplifying the received signal and
completely deteriorates the overall SNR when trying to invert values close to zero. In terms of
complexity it is not very efficient as well, since it requires the inversion of matrices;

• IB-DFE: The IB-DFE receiver is an iterative receiver where each stream is detected one at a time
and the interference is canceled with the help of the streams already detected. When the number of
iteration increases, the interference cancellation is improved, improving the overall performance.
As with the ZF, this receiver also has the disadvantage of using matrix inversions;

• MRC: The MRC receiver combines the different received branch signals in order to maximize the
received SNR ratio. The main advantage is that there are no matrices inversions;

• EGC: The EGC receiver only involves phase rotations, combining all received signals with unitary
weights to achieve a high SNR. Like MRC, the EGC does not need matrices inversions.

Table 1 presents a summary of the BER performance achieved by the previous receivers, as well as
the number of required iterations to achieve it, where applicable, based on the work presented in [15].

Table 1. Eb/N0 [dB] for the Bit Error Rate (BER) performance of the scenarios presented in [15].

BER Iteration MFB ZF IB-DFE MRC EGC

10−2 1 4.2 4.8 4.8 9.1 10.9

10−4 4 8.4 − 8.5 − −

As we can observe, the referred ZF and IB-DFE receivers have the same BER performance as the
MFB, for very similar values of Eb/N0, remarkably for the IB-DFE. In this table, only the non-iterative
versions of MRC and EGC receivers were considered.

3. System Characterization

This paper explores a scenario that implements massive MIMO communications in a highly
frequency selective channel and a Single Carrier modulation in the uplink transmission. In this scenario,
the communication is established between a MT equipped with P single transmitting antennas and a
Base Station (BS) equipped with R receiving antennas, with R >> P and a perfect synchronization.

In order to remove the ISI, a cyclic prefix, which is larger than the maximum system delay, is added
to each transmitted block and removed in the reception side. The MT pth transmits a block of N data
symbols {xn,p; n = 0, 1, . . . , N− 1} which is received in the rth BS antenna as {y(r)n ; n = 0, 1, . . . , N− 1}
corresponding to a frequency-domain block {Y(r)

k ; n = 0, 1, . . . , N − 1}. The {Y(r)
k } block can also be

represented in the matrix format Y(r)
k = [Y(1)

k , · · · , Y(R)
k ]T , being given by Equation (1):

Yk = HkXk + Nk, (1)

where the channel matrix R× P for the kth subcarrier is represented by Hk, the frequency-domain
block of the transmitted block xn is represented by Xk and Nk represents the channel noise. In Figure 1
the considered scenario is depicted.

MT 1 

MT P 

. .
 . AWGN 

Chanenel

{xn
(1)}

{xn
(P)}

{yn
(1)}

{yn
(R)}

{Yk
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{Yk
(R)}

DFT

DFT

Receiver

{xn
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{xn
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Figure 1. System scenario.



Electronics 2020, 9, 533 4 of 12

4. Receivers Design

Since massive MIMO systems are expected to operate with a great number of antennas in the
transmitter and the receiver, it is important that the receivers used in these systems have as few
matrix inversions as possible. The necessary resources used in matrix inversion increase significantly
with the number of entries in that matrix. The greater the number of R and T, the higher the
associated complexity.

Throughout this section, different iterative receivers based on FDE are presented. In this type of
receiver, the estimated signal at the ith iteration for the kth subcarrier X̃(i)

k,p is given by:

X̃(i)
k,p = FT

k,pYk − B(i)T
k,p X(i−1)

k,p , (2)

with FT
k,p = [F(1)

k,p , · · · , F(R)
k,p ]T denoting the feedforward coefficients and BT

k,p = [B(1)
k,p , · · · , B(P)

k,p ]
T

denoting the feedback coefficients, responsible to reduce the residual ISI after the first iteration.

X(i−1)
k,p represents the estimated signal for the previous iteration which is the Discrete Fourier Transform

(DFT) of xn,p. xn,p is selected according to a mapping rule, in this case, a Quadrature Phase-Shift
Keying (QPSK) with Gray mapping, (i.e., xn,p = ±1± j). The average values for xn,p, according to [22],
are given by:

xn,p = tanh

(
LRe

n,p

2

)
+ j tanh

(
LIm

n,p

2

)
, (3)

where
LRe

n,p =
2

σ2
n,p

Re{s̃n,p}, (4)

LIm
n,p =

2
σ2

n,p
Im{s̃n,p}, (5)

and

σ2
n,p =

1
2N

N−1

∑
n′=0

∣∣∣s̃n′ ,p − sn′ ,p

∣∣∣2 ' 1
2N

N−1

∑
n′=0

∣∣∣s̃n′ ,p − ŝn′ ,p

∣∣∣2 . (6)

For the first iteration, and since there are no previous iterations, Equation (2) can be simplified to:

X̃(i)
k,p = FT

k,pYk. (7)

Each FDE receiver has different equations for the Fk,p and Bk,p coefficients. Sections 4.1, 4.2 and 4.3
present the equations for three distinct receivers.

4.1. IB-DFE

The IB-DFE receiver has already been extensively tested and validated, as mentioned in Section 1.
In order to minimize error probability, authors from [11,14,16] define expressions for Fk,p and Bk,p
coefficients, which are given by:

FT
k,p = κΛk,pHH

k,pI, (8)

and
BT

k,p = FT
k,pHH

k,p − I, (9)

where κ is a normalization parameter ensuring that the overall frequency-response of the "channel
plus receiver" for each MT has an average value of 1, i.e.,

1
N

N−1

∑
k=0

R

∑
r=1

F(r)
k,p H(r)

k,p = 1. (10)
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The Λ is given by:

Λk,p =

(
HH

k,p

(
IP − P2

)
Hk,p +

σ2
N

σ2
S

IR

)−1

, (11)

where P is a diagonal matrix containing the correlation factor between transmitted and detected
symbols. σ2

N and σ2
S represents the variance of the real and imaginary parts of the channel noise and

data samples, respectively.

4.2. MRC

As shown in Section 4.1, the IB-DFE receiver requires the inversion of the channel matrix in the
estimation of the received signal. This situation requires too much complexity when moving to an
mMIMO system, where there are multiple receiving and transmitting antennas.

As explained in [14,15,17], the MRC receiver combines the different received branch signals in
order to maximize the received SNR ratio. In fact, the phases of the received signals are fixed and the
conjugate of the channel matrix is used to weight them. The small correlation between the different
transmitting and receiving antennas allows us to make the following approach:

HH
k,pHk,p ≈ RI. (12)

When considering moderate R/P values, the residual interference cannot be neglected. In order
to improve the performance of this receiver, an iterative version should be implemented, such as the
IB-DFE receiver. Equation (2) is also considered by this receiver by only changing the feedforward
and feedback coefficient equations. Therefore, feedback coefficients are given by Equation (9) and the
feedforward coefficients are given by:

FT
k,p = κHH

k,p, (13)

where κ is a diagonal matrix and the element (t, t)th is given by

(
N−1

∑
k=0

R

∑
r=1

∣∣∣H(r,t)
k,p

∣∣∣2)−1

.

4.3. IB-DFE Receiver Combined with MRC

A receiver for mMIMO scenarios was provided in [18] and it reduces the complexity of matrix
inversion since it only occurs on the first iteration, achieving performance values very close to MFB at
the end of the second iteration. This receiver, in the first iteration, behaves as an IB-DFE receiver and,
in the remaining iterations, as the MRC receiver.

The feedforward coefficients are given by Equations (8) and (11), which can be simplified to:

Λk,p =

(
HH

k,pHk,p +
σ2

N
σ2

S
IR

)−1

, (14)

In the remaining iterations, the feedforward and feedback coefficients are given by Equations (9)
and (13), respectively.

In Figure 2, the structure of this receiver is depicted.
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Figure 2. Iterative Block Decision Feedback Equalization (IB-DFE) receiver combined with the
Maximum Ratio Combining (MRC) structure.

5. Theoretical BER Performance

Each of the receivers presented so far aims to minimize the Mean Squared Error (MSE) which,
in turn, decreases BER performance. This minimization takes place through precise selection of
feedforward and feedback coefficients. For a QPSK constellation with Gray mapping rule, as considered
in this paper, the BER can be calculated by:

BERp ' Q

(√
1
θp

)
, (15)

where Q(x) represents the Gaussian error function and θp is given by:

θp =
1

N2

N−1

∑
k=0

Θk,p. (16)

The MSE, represented by Θk,p, can be calculated using:

Θk,p = E
[∣∣∣X̃k,p − Xk,p

∣∣∣2] = E
[∣∣∣FT

k,pYk − BT
k,pXk,p − Xk,p

∣∣∣2] (17)

As presented in [23] and [11], Xk,p ' ρpX̂k,p where X̂k,p ≈ ρpXk,p + ∆k,p allowing the redefinition
of Xk,p to Xk,p ≈ ρ2

pXk,p + ρp∆k,p. In matrix format, Xk,p is given by:

Xk,p ' P2Sk,p + P∆k,p, (18)

where ∆k,p is a mean zero error vector for Pth MT and P = diag(ρ1, · · · , ρP), with ρ defined by:

ρp =
E
[

x̂n,px∗n,p

]
E
[∣∣xn,p

∣∣2] , (19)
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which, in turn, defines the correlation factor that supplies a blockwise reliability measure of the
estimates employed in the feedback loop and associated to the (i− 1)th iteration [22,24]. For a QPSK
constellations, ρp = 1− Pe and can be approximately given by:

ρp ≈
1

2N

N−1

∑
n=0

(∣∣∣ρRe
n,p

∣∣∣+ ∣∣∣ρIm
n,p

∣∣∣) , (20)

with

ρRe(i)
n,p = tanh


∣∣∣LRe(i)

n,p

∣∣∣
2

, (21)

and

ρIm(i)

n,p = tanh


∣∣∣LIm(i)

n,p

∣∣∣
2

. (22)

Once the data and noise components have zero mean and are uncorrelated, Equation (17) which
represents the MSE can be extended, resulting in Equation (23):

Θ = FHE
[
Y∗YT

]
F− FHE

[
Y∗XT

]
B− FHE

[
Y∗Xp

]
B− BHE

[
X∗YT

]
F+

BHE
[
X∗XT

]
B + BHE

[
X∗Xp

]
− FTE

[
YX∗p

]
+ BTE

[
XX∗p

]
+E

[
X∗pXp

]
,

(23)

For simplicity, in Equation (23), the user and subcarrier dependency has been dropped, with the
exception for the Sp factor. We assume:

E
[
Y∗YT

]
= RY; (24)

E
[
X∗XT

]
= RX,X; (25)

E
[
Y∗Xp

]
= RY,Xp ; (26)

E
[
X∗Xp

]
= RX,Xp

; (27)

E
[
X∗Y

]
= RX,Y (28)

and
E
[

XpX∗p
]
= RX. (29)

Equation (23), after some manipulation, can be written as:

Θ = FHRYF + BHRX,XB− 2Re
{

FHRY,Xp

}
+ 2Re

{
BHRX,Xp

}
− 2Re

{
BHRX,YF

}
+ RX. (30)

With Equation (30), it is possible to obtain the BER performance through Equation (15) for any of
the receivers previously presented.

6. Performance Results

In this section, performance results for the three mentioned receivers are presented. For these
results, there are different scenarios where the number of transmitting and receiving antennas are
changed. Initially, a MIMO scenario with 3 iterations, 4 transmitting antennas and 8 receiving antennas
is presented. Then, this scenario is extended to a massive MIMO scenario and the number of antennas
was increased 8 times, while keeping the same R/P ratio and number of iterations.
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For simulation purposes, it is considered that in each MT, P, a SC-FDE modulation is applied
transmitting 100 blocks with 256 data symbols (N = 256), selected from a QPSK constellation under
Gray mapping. Perfect synchronization and channel estimation are also assumed.

Performance values are presented as BER values, which in turn is in function of Eb/N0, where
Eb is the average bit energy associated with the receiving antennas and N0 represents the unilateral
power spectral density of the Additive White Gaussian Noise (AWGN) channel noise. The lowest
bound for the BER performance that a receiver can reach is fixed in the MFB performance which is also
presented.

6.1. MIMO Scenario

In this scenario, a set of 3 iterations with P = 4 and R = 8 antennas is considered.
In Figure 3, the theoretical/simulated BER performance for both receivers (IB-DFE and MRC) is

depicted in Figure 3a, as well as the correlation factor, shown in Figure 3b.

T=4, R=8, NIter=3.pdf
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(b)
Figure 3. Theoretical/simulated BER performance and correlation factor for IB-DFE and MRC
receivers in a Multiple Input Multiple Output (MIMO) system with 3 iterations. (a) BER performance.
(b) Correlation factor (ρ).

According to Figure 3a, it is possible to verify that the IB-DFE receiver has a BER performance
closer to the MFB. In its third iteration, for a BER of 10−4, this receiver presents a difference of less than
1 dB to the MFB. For the same BER, MRC receivers present a worse performance. When comparing
the simulated and theoretical values of BER performance, it should be pointed out that the theoretical
curves achieve better performance, with the exception of the first IB-DFE iteration where the two
curves are identical. In Figure 3b, both receivers, for the first iteration, present values for the correlation
factor that never reach the optimum value 1, which implies a worse BER performance, as depicted in
Figure 3a. From the second iteration onward, the correlation factor values are close to 1, allowing the
achievement of BER performance values close to the MFB.

The performance results of a receiver that combines IB-DFE in the first iteration with MRC in the
remaining iterations are depicted in Figure 4. According to Figure 4a, the BER performance of the
receiver, in its first iteration is about 3 dB away from MFB and in the remaining iterations, the result
approaches the MFB. The theoretical and simulated BER performance values are also very similar. The
poor values of BER performance are accompanied by the correlation factor values. As represented in
Figure 4b in its first iteration, these values are quite far from the optimal value 1. In the remaining
iterations, the value of the correlation factor converges faster to 1.
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Figure 4. Theoretical/simulated BER performance and correlation factor for a receiver that combines
IB-DFE and MRC in a MIMO system with 3 iterations. (a) BER performance. (b) Correlation factor (ρ).

In fact, in the third iteration, this receiver has a difference of 0.5 dB when compared with the MFB,
for a BER of 10−2 while for a BER of 10−4 this difference is reduced to approximately 0.1 dB.

6.2. Massive MIMO Scenario

By increasing the number of transmitting and receiving antennas P = 32 and R = 64, the system
can be considered as a massimo MIMO system.

Figure 5 shows the performance results for IB-DFE and MRC receivers. As for the MIMO system,
the first iteration of the MRC presents weak values as shown in Figure 5a. For a BER of 2× 10−4,
the simulated value for IB-DFE is 1.2 dB higher than MFB. In the case of MRC, when compared to
MFB, the theoretical value is increased by 1.7 dB and the simulated value also increases by 3.8 dB.
In Figure 5b the correlation factor is very similar to the one presented in Figure 3b. This is due to the
fact that the R/P ratio is the same.

When analyzing the results for the receiver that combines the IB-DFE with the MRC (Figure 6),
the results obtained via simulation practically match with the theoretical values for the BER
performance, as shown in Figure 6a. At the end of the second iteration, for a BER of 10−4, the receiver
is approximately 0.4 dB away from MFB and in its third iteration, the difference for the MFB is only
0.1 dB. The correlation factor, depicted in Figure 6b in the second iteration of the receiver, for an Eb/N0

of 5 dB, is practically 1.
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Figure 5. Theoretical/simulated BER performance and correlation factor for IB-DFE and MRC receivers
in an mMIMO system with 3 iterations. (a) BER performance. (b) Correlation factor (ρ).
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Figure 6. Theoretical/simulated BER performance and correlation factor for a receiver that combines
IB-DFE and MRC in an mMIMO system with 3 iterations. (a) BER performance. (b) Correlation factor (ρ).

7. Conclusions

This paper presents the study of FDE-type receivers that can be used in massive MIMO systems.
The structures of three receivers, where the complexity depends on the estimation of the received
signal, are discussed.

The BER performance of these receivers is simulated and compared with theoretical values.
The impact of the correlation factor on BER performance is also studied.

One of the receivers propose in this paper is a receiver that combines, in its first iteration, the
IB-DFE receiver and in the remaining iterations the MRC receiver. The BER performance achieved by
this receiver, in massive MIMO scenarios, is only 0.1 dB away from the MFB, in its third iteration, and
the simulated/theoretical values match very closely.

Author Contributions: Conceptualization, D.F., F.C. and R.D.; investigation, D.F., F.C. and R.D.; software, D.F.;
supervision, F.C. and R.D.; validation, F.C. and R.D.; visualization, D.F.; writing—original draft, D.F., F.C. and R.D.;
writing—review and editing, F.C. and R.D. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by projects CoSHARE (LISBOA-01-0145-FEDER-0307095-PTDC/
EEI-TEL/30709/2017), MASSIVE5G (SAICT-45-2017-02) and Instituto de Telecomunicações (UIDB/EEA/



Electronics 2020, 9, 533 11 of 12

50008/2020), and funded by Fundo Europeu de Desenvolvimento Regional (FEDER), through Programa
Operacional Regional LISBOA (LISBOA2020), and by national funds, through Fundação para a Ciência e
Tecnologia (FCT).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, C.X.; Haider, F.; Gao, X.; You, X.H.; Yang, Y.; Yuan, D.; Aggoune, H.M.; Haas, H.; Fletcher,
S.; Hepsaydir, E. Cellular architecture and key technologies for 5G wireless communication networks.
IEEE Commun. Mag. 2014, 52, 122–130. [CrossRef]

2. Ericsson. Ericsson Mobility Report—November 2019; Technical report; Ericsson: Stockholm, Sweden, 2019.
3. Boccardi, F.; Heath, R.; Lozano, A.; Marzetta, T.; Popovski, P. Five disruptive technology directions for 5G.

IEEE Commun. Mag. 2014, 52, 74–80. [CrossRef]
4. Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems.

IEEE Commun. Mag. 2014, 52, 186–195. [CrossRef]
5. Chang, R.W. Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission. Bell Syst.

Tech. J. 1966, 45, 1775–1796. [CrossRef]
6. Sari, H.; Karam, G.; Jeanclaude, I. An analysis of orthogonal frequency-division multiplexing for mobile

radio applications. In Proceedings of IEEE Vehicular Technology Conference (VTC), Stockholm, Sweden,
8 June 1994; pp. 1635–1639. [CrossRef]

7. Falconer, D.; Ariyavisitakul, S.; Benyamin-Seeyar, A.; Eidson, B. Frequency domain equalization for
single-carrier broadband wireless systems. IEEE Commun. Mag. 2002, 40, 58–66. [CrossRef]

8. Benvenuto, N.; Tomasin, S. Block iterative DFE for single carrier modulation. Electron. Lett. 2002, 38, 1144–1145.
[CrossRef]

9. Benvenuto, N.; Dinis, R.; Falconer, D.; Tomasin, S. Single Carrier Modulation With Nonlinear Frequency
Domain Equalization: An Idea Whose Time Has Come—Again. Proc. IEEE 2010, 98, 69–96. [CrossRef]

10. Dinis, R.; Kalbasi, R.; Falconer, D.; Banihashemi, A. Iterative Layered Space-Time Receivers for Single-Carrier
Transmission Over Severe Time-Dispersive Channels. IEEE Commun. Lett. 2004, 8, 579–581. [CrossRef]

11. Ribeiro, F.; Dinis, R.; Cercas, F.; Silva, A. Receiver design for the uplink of base station cooperation systems
employing SC-FDE modulations. EURASIP J. Wirel. Commun. Netw. 2015, 2015, 7. [CrossRef]

12. Dinis, R.; Carvalho, P.; Borges, D. Low Complexity MRC and EGC Based Receivers for SC-FDE Modulations
With Massive Mimo Schemes. IEEE Glob. Conf. Signal Inf. Process. Glob. SIP 2016, 1, 1–4.

13. Montezuma, P.; Dinis, R. Iterative receiver based on the EGC for massive MIMO schemes using SC-FDE
modulations. Electron. Lett. 2016, 52, 972–974. [CrossRef]

14. Bento, P.; Pereira, A.; Dinis, R.; Gomes, M.; Silva, V. Frequency-Domain Detection without Matrix Inversions
for mmWave Communications with Correlated Massive MIMO Channels. IEEE Veh. Technol. Conf. 2017, 2017,
[CrossRef]

15. Cabral, L.; Fernandes, D.; Cercas, F.; Dinis, R. Efficient frequency-domain detection for massive MIMO
systems. In Proceedings of the 2017 South Eastern European Design Automation, Computer Engineering,
Computer Networks and Social Media Conference (SEEDA-CECNSM), Kastoria, Greece, 23 September 2017;
pp. 1–5. [CrossRef]

16. Ribeiro, F.C.; Guerreiro, J.; Dinis, R.; Cercas, F.; Silva, A. Reduced complexity detection in MIMO systems
with SC-FDE modulations and iterative DFE receivers. J. Sens. Actuator Netw. 2018, 7. [CrossRef]

17. Pereira, A.; Bento, P.; Gomes, M.; Dinis, R.; Silva, V. Iterative MRC and EGC Receivers for MIMO-OFDM
Systems. IEEE Veh. Technol. Conf. 2018, 2018, 1–4. [CrossRef]

18. Fernandes, D.; Cercas, F.; Dinis, R. Iterative Receiver Combining IB-DFE with MRC for Massive MIMO
Schemes. Procedia Comput. Sci. 2017, 109, 305–310. [CrossRef]

19. Magueta, R.; Enes, R.; Teodoro, S.; Silva, A.; Castanheira, D.; Dinis, R.; Gameiro, A. Hybrid Nonlinear
Multiuser Equalizer for mmWave Massive MIMO CE-OFDM Systems. IEEE Int. Symp. Pers. Indoor Mob.
Radio Commun. PIMRC 2019, 2019. [CrossRef]

20. Magueta, R.; Castanheira, D.; Pedrosa, P.; Dinis, R. Wideband Millimeter Wave Massive MIMO Systems.
Sensors 2020, 20, 575. [CrossRef] [PubMed]

21. Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005. [CrossRef]

http://dx.doi.org/10.1109/MCOM.2014.6736752
http://dx.doi.org/10.1109/MCOM.2014.6736746
http://dx.doi.org/10.1109/MCOM.2014.6736761
http://dx.doi.org/10.1002/j.1538-7305.1966.tb02435.x
http://dx.doi.org/10.1109/VETEC.1994.345373
http://dx.doi.org/10.1109/35.995852
http://dx.doi.org/10.1049/el:20020767
http://dx.doi.org/10.1109/JPROC.2009.2031562
http://dx.doi.org/10.1109/LCOMM.2004.835339
http://dx.doi.org/10.1186/s13638-014-0237-6
http://dx.doi.org/10.1049/el.2016.0012
http://dx.doi.org/10.1109/VTCSpring.2017.8108380
http://dx.doi.org/10.23919/SEEDA-CECNSM.2017.8088227
http://dx.doi.org/10.3390/jsan7020017
http://dx.doi.org/10.1109/VTCSpring.2018.8417595
http://dx.doi.org/10.1016/j.procs.2017.05.356
http://dx.doi.org/10.1109/PIMRC.2019.8904265
http://dx.doi.org/10.3390/s20020575
http://www.ncbi.nlm.nih.gov/pubmed/31968706
http://dx.doi.org/10.4018/jitn.2009010102


Electronics 2020, 9, 533 12 of 12

22. Gusmão, A.; Torres, P.; Dinis, R.; Esteves, N. A turbo FDE technique for reduced-CP SC-based block
transmission systems. IEEE Trans. Commun. 2007, 55, 16–20. [CrossRef]

23. Casal Ribeiro, F.; Dinis, R.; Cercas, F.; Silva, A. On the performance of SC-FDE receivers for Base Station
cooperation systems with rate-limited backhaul links. In Proceedings of 2013 9th International ITG
Conference on Systems, Communication and Coding, SCC 2013. Munich, Germany, 1 June 2013; p. 9.

24. Silva, F.; Dinis, R.; Montezuma, P. Estimation of the Feedback Reliability for IB-DFE Receivers.
ISRN Commun. Netw. 2011, 2011, 1–7. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCOMM.2006.887482
http://dx.doi.org/10.5402/2011/980830
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Receivers
	System Characterization
	Receivers Design
	IB-DFE
	MRC
	IB-DFE Receiver Combined with MRC

	Theoretical BER Performance
	Performance Results
	MIMO Scenario
	Massive MIMO Scenario

	Conclusions
	References

