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Featured Application: The presented scheme can be used to detect the potential steganography
in the Voice-over-IP (VoIP) streams, and thereby prevent cybercrimes based on covert VoIP
communications.

Abstract: Steganalysis of adaptive multi-rate (AMR) speech is a hot topic for controlling cybercrimes
grounded in steganography in related speech streams. In this paper, we first present a novel AMR
steganalysis model, which utilizes extreme gradient boosting (XGBoost) as the classifier, instead of
support vector machines (SVM) adopted in the previous schemes. Compared with the SVM-based
model, this new model can facilitate the excavation of potential information from the high-dimensional
features and can avoid overfitting. Moreover, to further strengthen the preceding features based
on the statistical characteristics of pulse pairs, we present the convergence feature based on the
Markov chain to reflect the global characterization of pulse pairs, which is essentially the final state
of the Markov transition matrix. Combining the convergence feature with the preceding features,
we propose an XGBoost-based steganalysis scheme for AMR speech streams. Finally, we conducted
a series of experiments to assess our presented scheme and compared it with previous schemes.
The experimental results demonstrate that the proposed scheme is feasible, and can provide better
performance in terms of detecting the existing steganography methods based on AMR speech streams.

Keywords: steganalysis; steganography; convergence feature; extreme gradient trees; adaptive
multi-rate speech

1. Introduction

Steganography is a security technique of embedding secret information into a certain carrier while
the secret information can be extracted accurately. Thus, this technology can be applied to covert
communication. Such ancient security technology has existed for more than two thousand years [1].
In ancient battlefields, soldiers made use of the board to conceal information to mislead enemies; in a
letter, the special shape of some characters was changed and some strokes were added for the same
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purpose. Over time, these carriers have evolved from the image [2,3] to other fields, such as text [4,5],
then video [6,7], network protocol [8,9], audio [10–12], and Voice over IP (VoIP) [13–16]. In contrast
with other carriers, VoIP has many advantages, such as high convert bandwidth, flexible conversation
length, and a large amount of carrier data. Therefore, many researchers have been taking VoIP as
carriers to embed secret information.

As internet communication technologies (3G and 4G speech services [17–19]) that are mainly
used for VoIP develop, we are exposed to digital audiovisual products, including Snapchat, WeChat,
and others. In 4G speech services, adaptive multi-rate (AMR) codec is considered to be a significant
compression measurement for coding. Furthermore, it is also leveraged to store AMR-encoded spoken
audio for a file format. Thanks to its wide application in the communication domain, a large number
of researchers have been regarding AMR as ideal carriers for information embedding [14–16,20,21].

AMR speech codec adopts algebraic code-excited linear prediction. Functionally, it consists of
three parts, one of which includes algebraic codebook indices (ACIs) also called fixed-codebook (FCB).
Lots of studies have been devoted to FCB [20,21], as FCB accounts for a large proportion of AMR
speech codecs. Geiser and Vary [20] embedded two secret bits into a track pulse with the modified
fixed-codebook-search algorithm. Moreover, to make the process of embedding information more
flexible, and adaptive suboptimal pulse combination method was proposed by Miao et al. [21]. To be
specific, the steganographic capacity [21] can be regulated through the introduction of embedding factor
η. Taking the AMR speech codec at 12.2 kbps mode as an example, η usually has three setting values
(1, 2, 4), which correspond to different steganographic bandwidths. Their experiments demonstrated
that, by selecting an optimal η, this method could achieve a good balance between speech quality and
embedding capacity.

However, just like a coin has two sides, steganography may be an effective tool for criminals
to commit crimes. Especially, AMR speech streams can pass through various firewalls and network
listening devices without barriers. In other words, unauthorized data can be leaked and transported,
which will result in an information security problem. For example, it may be utilized to carry out
terrorist activities. Therefore, the protective measures called steganalysis are a subject worth our
studying [22–30], which is applied to detect whether the AMR speech has been inserted into secret
messages. In this research, we mainly focus on the steganalysis on AMR speech streams, which has a
wide application in VoIP streams.

To detect the above AMR speech steganography methods, several related AMR speech steganalysis
methods have been proposed [31–33]. In their methods, they all adopt statistical features as steganalysis
features and support vector machines (SVM) as the classifier. First, Miao et al. [31] used Markov
transition probabilities (MTP), which were utilized to capture the link between pulse positions. As for
the second method, the related information-entropy methods (conditional entropy, joint entropy) were
applied to extract the feature, which could represent the distribution of pulse positions. However,
the exchange of the pulse positions in the encoding process makes the above two methods fail to
distinguish between the cover sample and steganographic sample effectively. Moreover, Ren et al. [32]
put forward the statistical characteristics of the same pulse positions (SPP). Specifically, the probabilities
of the same pulse positions were adopted as detecting features, which was aimed at the pulse positions
in the same track. Nonetheless, a problem occurs. If secret information could not be inserted into the
same positions in the track-pulse, Fast-SPP would be out of work. Therefore, more integral features
were put forth [33] for the steganalysis of AMR speech. To address the above problem, the statistical
features of pulse pairs (SCPP) were raised and it was composed of three parts. The first was the
long-term distribution of speech signals, which adopted probabilities of pulse pairs. The second was
short-term invariant characteristic of speech using MTP of pulse pairs. The last was the track-to-track
correlation also related to MTP, exploiting joint probability matrices to discover the correlation of pulse
pairs on different tracks. Furthermore, Adaboost [34] was adopted for feature selection to reduce the
dimension and the dimension of the final feature of the steganalysis feature is 498 at AMR 12.2 kbps.
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However, the above steganalysis methods have demerits to some degree. First and foremost, the
classifiers employed by the above steganalysis methods are SVM, failing to prevent the classification
model from overfitting, when the dimension of feature is high. Furthermore, SVM performs poorly on
generalization performance. Last but not least, all features related to the MTP neglect its stationary
state [35–37]. It represents the global and stable characterization of the MTP and it is called the
convergence feature. Specifically, the MTP will reach a convergence state by multiplying itself
several times.

In this work, motivated by the above analysis, we present an AMR-based speech steganalysis
based on extreme gradient boosting (XGBoost) [38–43]. Our contributions can be summarized as
follows. First, we propose a convergence feature for detecting the FCB-based steganography, which
describes the global characteristics of AMR speech streams. Since the state-of-the-art feature SCPP [33]
mainly reflects local characteristics of AMR speech streams, the presented convergence feature is a
useful complement to SCPP. Second, we propose a new steganalysis feature using both the convergence
feature and SCPP. Finally, we present a new steganalysis model for AMR speech, which employs
XGBoost rather than traditional SVMs employed in previous schemes as the classifier. It enjoys some
advantages, such as mining the potential information from the hybrid features, avoiding overfitting
(making assumptions too strict to get consistent ones) and having a strong generalization ability.

The remaining of this paper is organized as follows. In Section 2, preliminary knowledge is
introduced, consisting of the AMR-based steganography method and a review of the preceding feature
for AMR-based steganalysis, then a brief introduction about XGBoost is made including the boost and
decision trees. In Section 3, the convergence features grounded in the Markov chain and the proposed
scheme based on XGBoost is presented. In Section 4, our presented scheme is evaluated with a set of
experiments and the experimental results are analyzed. In the final section, a conclusion about our
work is presented.

2. Preliminary and Relate Work

To make readers understand our idea, First, we give a brief introduction to the AMR speech
steganography [20,21]; we then review the preceding scheme for AMR-based steganalysis; finally,
we introduce the XGBoost classification model, which includes boosting and decision trees.

2.1. AMR-Based Steganography Method

According to the searching process of the fixed codebook [18], the codebook vector is acquired
by the depth-first-tree-search, which is suboptimal. In other words, as for all significant positions,
the searching process only accounts for a small proportion. Motivated by this, taking the AMR speech
codec at 12.2 kbps, for example, a steganographic method was First presented by Geiser and Vary [20],
by restricting the searching range of second pulse position in each track. Moreover, by combining
the content of the secret message with the pulse position in each track, the secret is inserted into the
encoding process. To be specific, in the k-th track (k = 0,1, . . . ,4), ik and ik+5 indicates the first and
second pulse position. (m)2k,2k+1 is the two embedded bits. For the two positions of the ik+5, it satisfies
the following equation [20]:

ik+5 =

 −1
(
Z
(⌊ ik

5

⌋)
⊕ (m)2k,2k+1

)
.5 + k

−1
(
Z
(⌊ ik

5

⌋)
⊕ (m)2k,2k+1 + 4

)
.5 + k

, (1)

where Z indicates the encoding operations and Z−1 is the decoding operations, which is based on
table lookup, “⊕” indicates the XOR operation, and bxc indicates floor operation. Therefore, the secret
message (m)2k,2k+1 can be extracted as follows:

(m)2k,2k+1 =

(
Z
(⌊ ik

5

⌋)
⊕Z

(⌊
ik+5

5

⌋))
mod4. (2)
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Based on Geiser’s steganography method, adaptive information hiding is achieved by Miao et al. [21].
It brings in an embedding factor to controls the process of embedding, which is slightly different from
Geiser’s steganography method. To be specific, in order to embed the secret message mk into k-th track,
the pulse position in k-th track should satisfy the following equation:

mk =

Hk−1∑
j=0

Z


⌊
pk, j

⌋
N


⊕ η, (3)

where Hk indicates the total number of non-zero pulses in the k-th track, Z indicates the encoding
operation, N is the total number of the tracks for the specific speech encoding mode, and η indicates
the embedding factor. Therefore, the secret message can be extracted from Equation (3). For more
detail about the above adaptive information hiding, please refer to [21].

2.2. Review of the State-Of-The-Art for AMR-Based Steganalysis

Steganalysis based on statistical characteristics of pulse pairs (SCPP) [33] for AMR speech includes
three parts. In this section, we mainly pay our attention to the short-term features (STFS) and
track-to-track features (TTFS), due to its connection to the Markov transition matrix.

To better illustrate the above features, we first introduce the pulse pair and the Markov transition
matrix. There are N subframes, with each subframe containing T tracks. Specifically, a pulse pair
(p j,i, p j,i+T) (0 ≤ i ≤ T − 1, i indicates the i-th track) composed of two pulse positions can be extracted
in terms of the j-th (0 ≤ j ≤ N − 1) subframe. In each track, for every pulse, there are τ candidate
positions. Because of interchange in each track of AMR speech codec,

(
p j,i, p j,i+T

)
is equal to (p j,i+T, p j,i).

Therefore, for each track, we can get the number of pulse pairs ψ:

ψ = τ2
−
τ(τ− 1)

2
=
τ2 + τ

2
. (4)

Grounded in the short-term invariance of speech signals, in the same track, the pulse pair of the
current subframe is connected to the pulse pair of the prior subframe strongly. Precisely, in terms
of the i-th track, each pulse pair can be represented as gi, j and the sequence of pulse-position pairs
Gi =

{
gi,0, gi,1, . . . , gi,N−1

}
is a Markov chain. Therefore, the first-order Markov chain of Gi satisfies

P(gi, j
∣∣∣gi,0, gi,1, . . . , gi, j−1) = P(gi, j

∣∣∣gi, j−1). (5)

For all subframes in the i-th track, the probability P((γ1,κ1)
∣∣∣(γ2,κ2)) that the pulse pair (γ1,κ1)

occurs after the pulse pair (γ2,κ2) is

P((γ1,κ1)|(γ2,κ2)) = P(gi, j = (γ1,κ1)|gi, j−1 = (γ2,κ2)) =
P(gi, j = (γ1,κ1), gi, j−1 = (γ2,κ2))

P(gi, j−1 = (γ2,κ2))
. (6)

Naturally, the Markov transition matrix (denoted by Mi) is determined as follows:

Mi =


P(ηi,0|ηi,0) P(ηi,0|ηi,1) . . . P(ηi,0|ηi,ψ−1)

P(ηi,1|ηi,0)
. . .

...
. . .

P(ηi,ψ−1|ηi,0) · · · · · · P(ηi,ψ−1|ηi,ψ−1)

, (7)
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where ηi,t =
(
µi,x,µi,y

)
indicates the t-th (0 ≤ t ≤ ψ− 1) pulse-position pair in terms of the i-th track.

Then, for each pulse, assuming it exists τ candidate positions: x, y, and t satisfy the equation:

t =


y, x = 0, 0 ≤ y ≤ τ− 1
x−1∑
i=0

(τ− i) + y− x 1 ≤ x ≤ τ− 1, 0 ≤ y ≤ τ− 1
. (8)

As mentioned above, in each track, the number of pulse-position pairs is ψ. Therefore, the
dimension of each Markov transition matrix is ψ × ψ. When taking all tracks into account, the
dimension of the feature is high. To tackle this problem, the average Markov transition matrix is
applied as the steganalysis features instead. Naturally, we can get the average Markov transition
matrix (denoted by M) by calculating the following equation:

M =

T−1∑
i=0

Mi

T
. (9)

Thus, the dimension of STFS is ψ×ψ.
Moreover, with regard to pulse pairs in different tracks, joint probability matrices are applied to

represent the TTFS feature. Concretely, for the pulse pair in different tracks, the joint probability matrix
(JPM) Ji,m is

Ji,m =


P(λi,0,λm,0) P(λi,0,λm,1) · · · P(λi,ψ−1,λm,ψ−1)

P(λi,1,λm,0)
. . .

...
. . .

P(λi,ψ−1,λm,0) · · · · · · P(λi,ψ−1,λm,ψ−1)

, (10)

where λi,h
(
λm,h

)
indicates the h-th (0 ≤ h ≤ ψ− 1) pulse pair for the i-th (m-th) track. To be specific, for

the joint probability of the pulse pair in the different tracks, it is calculated by the following equation:

P((αi, βi), (αm, βm)) =

N−1∑
k=0

(σ(uk,i = (αi, βi))&(σ(uk,m = (αm, βm))))

N
, (11)

where uk,i
(
uk,m

)
is the pulse pair in i-th (m-th) track of k-th subframe (0 ≤ k ≤ N − 1). Therefore, similar

to STFS, the average JPM is adopted as TTFS sets to reduce the dimension of the feature and the
training time for the classification model. The average JPM (marked by J) can be calculated by the
following equation:

J =
2

T−1∑
i=0

T−1∑
m=i+1

Ji,m

T(T − 1)
. (12)

Thus, the dimension of TTFS is ψ×ψ.
Finally, the total dimension of all two features is 2 × ψ × ψ. In this paper, for the AMR-based

speech codec, we assume it is at 12.2 kbps mode. In each subframe, it exists five tracks (i.e., T = 5).
Eight candidate positions can be selected by two pulses (i.e., τ = 8) on the same track. Therefore,
ψ is equal to 36, which is determined by Equation (4). Then, the total dimension is 2592. However,
the dimension of these features is so high that some problems can be caused thereafter, such as the long
training time of classification and the classification model being overfitting. To address this problem,
Adaboost [34] is applied to feature selection in the feature set. Thus, the 498 features are acquired for
AMR-based steganalysis.

From the above process, we can learn that the above steganalysis feature neglects the global
property of the Markov chain. Thus, we can get the convergence feature representing the global
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property of the Markov chain in the two aspects. First, for the pulse pair in the same track, we can
extract the Markov chain from AMR speech. Second, for the pulse pair on a different track, we also can
extract the Markov chain from AMR speech. Motivated by this, the convergence feature is proposed in
our work. The convergence feature plus the SCPP feature can better characterize the AMR speech.

2.3. XGBoost Model

Compared to SVM (support vector machine), XGBoost (eXtreme Gradient Boosting) [41–46] has
some advantages as follows. First, XGBoost can avoid overfitting, when the dimension of the feature is
high. Second, XGBoost can mine the potential information from the hybrid features to provide better
performance for classification. Last but not least, XGBoost is not sensitive to noise and thus has a better
generalization ability. To have a better understanding of XGBoost, we first introduce the boosting
algorithm; then we discuss decision trees; finally, we give a brief introduction to XGBoost.

2.3.1. Boosting

The boosting algorithm is grounded in the weakly learnable theory, in which bias and variance
can be reduced. Theoretically, weak learning algorithms can be combined into a strong one by a
boosting algorithm. Its main idea is to enhance the learning algorithm for training samples that are
easily misclassified so that the integrated classifiers subsequently focus on these samples. For example,
Adaboost is the typical application of the boosting algorithm. The method of how to construct the
integrated classifiers on the misclassified training samples and the hypothesis of integrated classifiers
can be utilized to distinguish the difference between various boosting algorithms.

2.3.2. Decision Trees

The decision tree is a flowchart-like structure. In terms of each internal node and each branch in a
tree decision, it respectively corresponds to a test on an attribute and an output for the sample. Besides,
each leaf node represents a category. The node at the top of the decision tree is the root node and
contains a collection of all the data. Each internal node is a decision condition, and containing a dataset
that satisfies all conditions from the root node to the current node. Thus, the dataset corresponding to
the internal node is divided into two or more child nodes, and the number of branches is determined
by the characteristics of the features on the internal node. To better elaborate on the decision tree,
we take the C4.5 algorithm as an example. In C4.5 decision trees, information gain is adapted to select
the splitting feature as a criterion. Each decision tree is constructed recursively.

2.3.3. XGBoost

XGBoost is proposed by Tianqi Chen [43] and is an extensible decision tree-based boosting method.
Its main idea is to continuously add decision trees and continuously perform feature splitting to grow
a decision tree. Each added decision tree is equivalent to a new function to fit the residuals of the last
prediction. The score of each sample relies on the characteristics of each sample. Each sample falls to a
corresponding leaf node in each tree. Each leaf node corresponds to a score, and the predicted value of
each sample can be obtained by the boosting method. To further elaborate XGBoost, it can be from the
following aspects.

First, it is based on gradient boosting decision tree and its objective loss function is determined
as follows,

`(φ) =
n∑

i=1

loss(yi, ŷi) +
K∑

k=1

Ω( fk), (13)

where l(φ) indicates the training loss, Ω( f ) controls the complexity of the decision tree to prevent the
classification model from overfitting, and K indicates the number of trees. By minimizing this objective
function, this model can achieve an optimal state. To tackle this problem, an additive training method
is applied to slow training loss, and Taylor expansion is adapted to optimize the prediction at the
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additive tth training round. The optimal complexity of each decision tree could be solved by the greedy
algorithm.

Moreover, to improve the performance of XGBoost [41–46], several supernumerary technologies
are applied in XGBoost. First, compared to the traditional decision tree-based integrated learning
method [44], it adds the regularity items to the loss function and the regularity items include the weight
of each leaf node and the single tree complexity. By assigning a weight to each leaf node and every
single tree, XGBoost can exploit the correlation of combined features. The single tree complexity is used
to avoid overfitting (overfitting means making assumptions too strict to get consistent assumptions).
In addition to the regularized technology in the objective loss function, Column subsampling and
shrinkage are also utilized to avoid overfitting. Shrinkage updates newly added weights for each
step of tree boosting, by bringing in a factor α. By reducing the weight of every single tree, shrinkage
remains an improvement space for the upcoming trees. This idea is similar to a learning rate in
stochastic optimization. Column subsampling is equivalent to feature selection, which means that the
number of the variable used to establish a decision tree is reduced. The fewer the number of variables
in each decision tree is, the simpler each decision tree is. In other words, XGBoost can avoid overfitting.
Moreover, column subsampling can speed up computation time. Finally, XGBoost supports the parallel
calculation of the gain of each feature and then selects the optimal feature for splitting.

3. Proposed Scheme

For this work, the motivation behind our presented scheme is as follows. First, the convergence
feature can reflect the global and stable features of the AMR speech while the statistical characteristics
of pulse pairs (SCPP) [33] can only represent the local and instantaneous features. On account of this,
the convergence feature combined with the SCPP feature [33] can better represent the characteristics of
AMR speech. Second, compared to the SVM classifier adapted by the previous study [31–33], XGBoost
enjoys an advantage in preventing the classification model from being overfitting and generalization
ability. Finally, XGBoost can mine the potential information from the hybrid feature, which includes
the SCPP feature and the convergence feature.

3.1. Convergence Features Based on Markov Chain

The Markov chain (MC) will converge to a stable probability distribution by multiplying the
Markov transition matrix several times, which can reflect the global characterization of the Markov
chain, according to [45–47]. This property has been applied to many types of research, such as
capturing the dynamics embodied in the data [45], calculating the regional energy efficiency [46],
and optimization problems [47].

The Markov chain is a Markov process with discrete-time and state parameters. In a random
process U = {u1, u2, . . . , uN}, the system state set is recorded as S = {s1, s2, . . . , sn}. For the first-order of
U, it satisfies

P
{
uN+1 = sn+1

∣∣∣uN = sn, uN−1 = sn−1, . . . , u1 = s1
}

= P
{
uN+1 = un+1

∣∣∣uN = sn
}
.

(14)

State transition probability refers to the probability of one state going to another state. The
probability P(s j

∣∣∣si) that the state s j occurs after the state si is

P(s j|si) =
P(um+1 = s j, um = si)

P(um = si)
. (15)
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Moreover, the Markov transition matrix of U (denoted as D) is determined as follows:

D =


P(s1

∣∣∣s1) P(s2
∣∣∣s1) · · · P(sn

∣∣∣s1)

P(s1
∣∣∣s2)

. . .
...

. . .
P(s1

∣∣∣sn) · · · · · · P(sn
∣∣∣sn)

. (16)

It satisfies the following properties,

0 < Di j < 1
n∑

i=1
Di j = 1. (17)

Assume that there exists a probability distributionπ = {πi, i ε S}, it satisfies the following condition,

π( j) =
∑
i∈S

π(i)Di j, (18)

where π is called the smooth distribution of U. Moreover, if π( j) is not related to i, it can be defined as

lim
n→∞

(Di j)
n = π( j). (19)

According to Equation (18), we can get

lim
n→∞

Dn =


π(1) π(2) . . . π( j) . . .
π(1) π(2) . . . π( j) . . .
. . . . . . . . . . . . . . .
π(1) π(2) . . . π( j) . . .
. . . . . . . . . . . . . . .


. (20)

Therefore, we have the following definition

Dc = lim
n→∞

Dn. (21)

By incorporating Equations (19) and (20), Dc will reach a smooth state, which indicates Dc is
convergent. According to Equation (20), Dc as a convergence matrix, is also called the convergence
feature. Moreover, the convergence matrix is symmetry and each column has the same value. Moreover,
we can select one row from the convergence matrix as the convergence feature.

3.2. Analysis of the Combination of Convergence Feature and Statistical Characteristics of Pulse Pairs

Information fusion is a technique, which combines the information from various sources with
diverse conceptual, vision, and time representations as an integral whole. Its goal is aimed at achieving
better performance, compared to the disparate source [48]. This technology has been applied to
logic-based fusion [49] and remote sensing [50]. For the type of information fusion, it can be roughly
classified into three types, including feature level, decision level, and score level. In our work, feature
fusion is applied to represent AMR speech. For the feature fusion, different features are combined as
an integral whole. The combined feature is used to train the classifier model.

In our scheme, the combined feature includes two parts. The first part is the SCPP feature [33].
It reflects the local feature of the AMR speech. The second part is the convergence feature proposed
in our work. It reflects the global feature of the AMR speech. the Markov transition matrix can be
extracted from the AMR-based speech streams. The convergence feature is a useful complement to the
SCPP feature. Thus, grounded in the above analysis, we combine the SCPP and convergence features
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as final AMR speech steganalysis features for classification and the combined feature can improve the
performance of AMR speech steganalysis.

3.3. XGBoost-Based Steganalysis Scheme

As for the proposed scheme, it adopts statistical features plus classifier. XGBoost is adapted as
the classifier, which is the one contribution in our scheme, compared to the existing study [31–33]
using SVM as the classifiers. The extracted steganalysis feature is based on AMR speech codec at
12.2 kbps. The steganalysis feature includes two parts. The first part is the SCPP feature, which
includes the short-term feature mentioned in Section 2.2 and the track-to-track feature mentioned in
Section 2.2. And the dimension of SCPP feature is 498. The second part is the convergence feature
proposed in our scheme, which is another contribution to our method. We can get the convergence
feature from the average Markov transition matrix used to characterize short-term feature and its
dimension is 36. Similarly, we also get another convergence feature from the average Markov transition
matrix employed to characterize the track-to-track feature and its dimension is 36. Therefore, the total
dimension of the convergence feature is 72 and the dimension of the combined feature is 570. Finally,
the steganalysis features vary dynamically with different AMR speech codecs.

The training phase is as follows. First, the SCPP feature [33] mentioned in Section 2.2 is extracted
from the AMR speech. Then, the convergence feature is extracted from the AMR speech (denoted as
CG), according to the above method mentioned in Section 2.1. Moreover, two features are merged into
an integrated feature (denoted as SCPP-CG). Finally, the integrated feature is sent to XGBoost to train
the classification model. The framework of our presented scheme is shown in Figure 1, which includes
the training phase and the testing phase.
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Figure 1. The proposed extreme gradient boosting (XGBoost)-based steganalysis scheme with a
combined feature.

4. Experimental Result and Analysis

This section is organized as follows. First, we introduce our experimental circumstances, dataset,
and metrics that are applied to evaluate our presented scheme. Then, to evaluate our method with the
state-of-the-art, the accuracies, false-positive rate (FPR), and false-negative rate (FNR) are applied to
evaluate the performance. Finally, we have an analysis of the experimental results.

4.1. Experimental Setup, Data, and Metrics

To compare our work to the state-of-the-art, libSVM was applied to achieve the SVM classification
model in the same condition. Specifically, the type of SVM is C-style. For all parameters of the SVM
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classification model based on the RBF kernel, they adopted the default settings. The scikit-learn python
libraries were implemented to achieve XGBoost-based classifiers. In our experiments, we only adjusted
the value of our parameters and other parameters were set with default parameters. To make the
XGBoost classification model more stable and have a better generalization ability, we set the learning
rate as 0.01. For the number of booted trees, we set it to 250. The subsample was set to 0.7, which
can prevent the classification model from overfitting. For the maximum-depth of each tree in this
experiment, it was set to 6, which can prevent the model from being complex. With regard to the other
parameter, the default values were adapted. For the value of all parameters, we used the Bayesian
optimization algorithm to obtain its optimal values.

As is known to all, in our research field, there is no public steganography/steganalysis dataset.
To assess the presented scheme objectively, we have to establish our dataset with two subsets.
Specifically, the cover speech dataset represents positive samples and the steganographic speech
dataset represents negative samples. To deal with this problem, we collected 8000 ten-second speech
samples from audio materials from the Internet. Those speech samples were made up of different
speakers. To evaluate our algorithm objectively, the 12.2 kbps mode in AMR codec was selected as the
cover and the cover speech dataset was composed of those speech samples. To verify our experiment
objectively, the length of the AMR-based speech sample was ten-seconds, according to the previous
study [33].

To construct a steganographic speech dataset, randomly generated bitstreams were embedded
into each sample in the cover speech dataset by using the steganography methods [20,21]. Then,
we defined the embedding rate, which indicates the proportion of the number of embedding bits
to the whole capacity of the cover sample. Moreover, for each sample in the cover speech dataset,
we conducted four steganography methods [20,21] to it with the embedding rate ranging from 10%
to 100% at a step of 10%. Finally, the steganographic speech dataset was composed of the generated
speech samples.

In this work, we present two methods to verify the rationality of our ideas and compare them
with the state-of-the-art method [33]. The state-of-the-art method (denoted as SCPP+SVM) adopts
SCPP as the steganalysis feature and SVM as the classifier. Moreover, the first method adopts SCPP as
the steganalysis feature and XGBoost as the classifier (denoted as SCPP + XGBoost). It was applied
to verify the idea that XGBoost can avoid overfitting when the dimension of the steganalysis feature
is high, compared to the state-of-the-art method. The second method is our final proposed method
(denoted as the proposed method), which adopts both the SCPP feature and the convergence feature
as the steganalysis feature and XGBoost as the classifier. The second method can verify that the
convergence feature is a useful complement to the SCPP feature, compared to the first method.

Furthermore, we randomly chose 4000 samples from the steganographic segments dataset and
4000 samples from the cover speech dataset. Those 8000 samples were composed of the training
set. Then, the remainder 4000 samples in cover samples and the remainder 4000 samples in the
steganographic segment samples make up the testing set.

To evaluate our proposed method with an objective standard, accuracy (ACC), FPR, and false
FNR were adopted as evaluation standards, which are adopted by previous studies [32,33] and many
machine learning algorithms. The accuracy is the proportion of the number of samples that are classified
correctly to the amount of all samples. FPR is the proportion of false-positive samples to negative
samples. FNR is the proportion of false-negative samples to all positive samples. Moreover, the receiver
operating characteristic curve (ROC) is applied to evaluate the stability of our presented scheme.

4.2. Comparison of the Presented Scheme and Existing Ones

In this experiment, to evaluate our present scheme, the length of the AMR-based speech sample is
set to ten-seconds according to the preceding study [33]. Then, we further made comparisons to the
previous methods (i.e., SCPP [33] with SVM and Fast-SPP [32]) by conducting a series of experiments
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with embedding rates ranging from 10% to 100% at the step of 10%. In this research, we do not consider
Fast-SPP, since SCPP was proven to be better.

The experimental results are shown in Figures 2–5, which respectively correspond to four
different steganography methods at different embedding rates. From these figures, there come several
conclusions as follow. First, with the embedding rate increasing, the accuracies of all three steganalysis
schemes are increasing. Second, the proposed method outperforms SCPP based on SVM [33] and SCPP
based on XGBoost, not only on the accuracy but also on the FPR and FNR. Third, the SCPP based on
the XGBoost scheme presents some merits of verification advantages compared to the SCPP based
on the SVM scheme. Lastly, when the embedding rate is larger than 40%, the accuracies of the three
steganalysis methods are almost the same.
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Figure 5. Experimental results for detecting Miao’s method (η = 4).

For the above results, we can explain it from several aspects. First, the proposed method based
on the combined feature can better characterize the feature of AMR-based speech. The combined
feature characterizes the dynamic feature and stable feature of AMR-based speech. Second, XGBoost
is applied to classification, which boasts advantages in preventing the classification model from
overfitting and having good generalization ability. Moreover, XGBoost can mine the potential
information from the combined feature, according to its property, which can provide some more useful
information for the classification, compared to SVM. Finally, for the embedding rate smaller than 40%,
the embedding capacity of ten-second speech samples is hard to be classified while our presented
scheme outperforms the SCPP based on the SVM scheme [33]. When the embedding rate is greater
than 40%, the steganography samples can be easily distinguished, due to larger embedding capacities.

To make our proposed scheme more convincing, the receiver operating characteristic (ROC) curve
is applied to verify the performance of our method, by comparing it with the state-of-the-art methods.
Without a loss of generality, we select several embedding rates of 30%, 60%, and 100% for all four
steganographic methods, according to the preceding study [33]. The results are shown in Figures 6–9.
We can conclude that the performance of our presented scheme is better than the existing steganalysis
scheme for the existing steganographic methods.
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5. Conclusions

In our modern world, voices over the network are becoming more increasingly popular and
widespread. As a result, some relevant steganographic techniques have been successfully developed.
However, those steganography techniques may be a tool for criminals to commit crimes. Under such
circumstances, it is worth studying the countermeasure, steganalysis of AMR-based speech. According
to previous research on steganalysis, the feature extracted from AMR-based speech is almost from the
Markov transition matrix, which cannot characterize all the features of AMR-based speech. For that
matter, we are motivated by the nature of the Markov transition matrix and propose the convergence
feature of AMR-based speech streams. Then we combine the convergence feature with the SCPP feature
as the final feature for the detection with XGBoost applied to the final classification. The experimental
results indicate that our proposed scheme can provide better performance for detecting the existing
steganographic methods in AMR-based speech streams. In the future, we will focus on how to
combine the different features more effectively and select a better classification model for the combined
feature. Moreover, we will improve the proposed method by data preparation techniques, such as
clustering [51–53], normalization, and data cleaning.
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