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Abstract: The convergence of fifth-generation (5G) communication and the Internet-of-Things (IoT)
has dramatically increased the diversity and complexity of the network. This change diversifies
the attacker’s attack vectors, increasing the impact and damage of cyber threats. Cyber threat
intelligence (CTI) technology is a proof-based security system which responds to these advanced
cyber threats proactively by analyzing and sharing security-related data. However, the performance
of CTI systems can be significantly compromised by creating and disseminating improper security
policies if an attacker intentionally injects malicious data into the system. In this paper, we propose
a blockchain-based CTI framework that improves confidence in the source and content of the data
and can quickly detect and eliminate inaccurate data for resistance to a Sybil attack. The proposed
framework collects CTI by a procedure validated through smart contracts and stores information
about the metainformation of data in a blockchain network. The proposed system ensures the validity
and reliability of CTI data by ensuring traceability to the data source and proposes a system model
that can efficiently operate and manage CTI data in compliance with the de facto standard. We present
the simulation results to prove the effectiveness and Sybil-resistance of the proposed framework in
terms of reliability and cost to attackers.

Keywords: cyber threat intelligence; blockchain; smart contract

1. Introduction

The rapid development of communication and data analysis technology has caused various
paradigm changes in the area of networks. The commercialization of fifth-generation (5G)
communication and the growth of the Internet-of-Things (IoT) have connected various devices to the
network, and edge and cloud computing technologies have enabled high-level services such as smart
cities and SCADA networks [1]. These changes have dramatically increased the size and diversity of
the entire network, creating a variety of added value along with large amounts of data collected from
various sources [2].

However, the increase in connectivity and diversity among devices constituting the network have
caused various problems in terms of information security [3]. The variety of networks has increased
the types and numbers of vulnerabilities, and this has resulted in the expansion of attackers’ attack
vectors [4]. Attackers can use advanced attack vectors to perform more intelligent and targeted attacks.
In particular, the incidence of threats, such as the advanced persistent threat (APT), which carry
out long-term attacks for specific purposes, is continuously increasing [5]. These advanced threats
continuously collect information about the specific targets over a long time and use targeted attack
techniques that exploit various vulnerabilities to maximize the ability to attack. This type of attack
is more difficult to detect on other nodes and takes much more time to determine if a breach has
occurred [6]. In addition, as a result of the diversity of the network, many new vulnerabilities can
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emerge, resulting in zero-day attacks using these unknown vulnerabilities. Zero-day [7] attacks are
usually severe because they can cause lasting damage until security patches become available. It is
also challenging to detect a zero-day attack because it uses unknown attack patterns [8].

Existing security and incident response systems, represented by firewalls, intrusion
detection/prevention systems (IDS/IPS), security information and event management (SIEM) systems,
are not sufficient to respond to unknown attack patterns. To cope with and predict the advanced threats
that use new attack vectors and patterns, large amounts of data are essential for in-depth analysis,
such as machine learning or deep learning. However, because the types, techniques, and victims of the
attacks are quite different, the types of observed data are very diverse. In particular, it is challenging
to collect a large amount of security-related data in a feasible form. Thus, there is a need to integrate
differentiated security systems and share threat-related information in a usable form to raise the level
of understanding of cyber threats and establish active and effective countermeasures. The cyber
threat intelligence (CTI) system is a threat analysis and information sharing system for improving
the understanding of cyber threats and proactively responding to them. CTI systems enhance the
understanding of cyber threats by reorganizing and analyzing threat-related data into a formalized
form. Additionally, the core of the CTI system is to maximize the threat response capability of each
node by sharing information. This approach enables profiling of attack types and patterns, attackers,
and attack groups, thereby predicting potential threats and responding proactively.

However, CTI systems also face the challenge of collecting the amount of data required to analyze
and share. To collect a large amount of data, not only an internal data collector but also open source
intelligence (OSINT) and various data-collection channels are additionally used. However, the data
collected from such sources may be inaccurate or malicious. Because the CTI system forms reputation
information for a specific network node, an attacker can perform a Sybil attack that spreads a large
number of malicious data to isolate a specific node and undermine the availability of the network.
Thus, resistance to Sybil attacks is a security requirement that must be considered in the operation of
the CTI system.

This study proposes a blockchain-based open CTI framework that can verify the validity of
data by giving traceability, integrity, and Sybil-resistance. The proposed framework consists of
contributors which collect and share threat-related data, consumers which consume such data, and
feeds that provide CTI data sharing services. The proposed framework allows data collection through
contributors to maximize the ability to collect threat-related data, while at the same time providing a
mechanism to prevent Sybil attacks from malicious contributors. An attacker may perform an attack
that damages reputation information of a specific node using malicious contributors and miners.
The proposed framework includes a mechanism to validate the data provided by contributors to
prevent the continuous distribution of data by malicious contributors. The data verification performed
by the CTI feed degrades the malicious contributor’s data dissemination capability by evaluating the
data contributor’s reliability. The framework also increases the mining costs of malicious miners by
undermining the ability of malicious contributors to lose their deposits. This mechanism allows the
CTI system to block the malicious data injection automatically.

This paper proposes a blockchain-based open CTI framework for collecting reliable data from
various channels and proposes a design method to implement the framework. Section 2 introduces the
related works and security considerations of the CTI system, and Section 3 describes the system model.
Section 4 illustrates the proposed framework in detail for each layer, and we propose the detailed
implementations of our proposal in Section 5. In Section 6, the simulation results of the proposed
framework are presented in terms of the proposed security considerations, and Section 7 concludes
this research.

2. Related Work

In this section, we discuss the background, related research, and security considerations related
to CTI technology.
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2.1. Background

In this section, we describe the basic concepts and principles of CTI and the characteristics of
Sybil attacks that target CTI systems.

2.1.1. CTI System

The CTI system is an evidence-based intelligence threat detection and prevention system [9].
The final goal of CTI is to have the capability of a preemptive response to cyber threats, such as the
advanced persistent threat (APT) and zero-day attacks, and to profile the attackers and groups of
attackers. The CTI system collects threat-related data from various channels, analyzes, and shares
the information with other systems. The CTI system analyzes network logs, system logs, firewall
logs, traffic, reputation information of network resources, and information collected from a security
information and event management (SIEM). The CTI system extracts information such as attack
patterns, identifiers, malware, attackers, and tactic-technique-procedures (TTP) from various types of
data, and expresses them as entities to analyze the association between them. Structured threat
information expression (STIX) [10] is the most commonly used CTI data expression language,
and TAXII is the data communication protocol for exchanging data expressed as STIX. The analyzed CTI
data is expressed in the STIX language and then interchanged through the TAXII protocol [10]. Fast and
efficient sharing of data is essential to mitigate cyber threats proactively. If the malicious behavior of the
attacker is observed, the CTI system generates information associated with cyberthreats by combining
collected and preidentified information. This information includes the type and procedure of attack
and the course of action. By sharing this information with other nodes participating in the CTI system,
the information on the cyber threat can be spread quickly to other nodes. Each node establishes and
updates its security policy using this information. The CTI system also performs profiling of attackers
and groups of attackers to thwart zero-day attacks. By stereotyping the behavior patterns of attackers
and malware, the system can predict future patterns of attacks and quickly establish countermeasures
against them. Figure 1 shows the system model of the traditional CTI system.

Figure 1. The system model of traditional cyber threat intelligence system.

2.1.2. Reputation Information

Reputation is one of the representative methods to perform practical functions using CTI.
Reputation information allows you to determine the malicious behavior of a network node based on a
unique identifier (such as IP, domain, hash). Nodes that detect malicious attacks or threats generate
reputation information about the source of the attack and share it with other nodes. CTI system using
reputation information can easily convert the received reputation information into a Snort rule or Yara
rule to form a practical security rule [11]. Reputation information is, therefore, one of the most feasible
and efficient applications of the CTI system.

2.1.3. Sybil Attack on CTI System

A security policy, which is generated based on reputation information in the CTI system, performs
the security function by blocking the resource on the network. If incorrect data are input to the CTI
system, the system generates false reputation information, which allows innocent nodes to be blocked
from the network. Using this, an attacker can perform a series of Sybil attacks that produce malicious
CTI data to manipulate the data so that the CTI system generates false reputation information.
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As the first step in a Sybil attack, an attacker can inject malicious data through a naive
data-collection point. For example, ThreatCrowd.org [12], one of the well-known OSINT CTI services,
uses voting results as one of the indicators of reputation information for a particular domain. If CTI
service users detect malicious activity in a particular domain, they can vote to notify the CTI service
that the domain is malicious. Some CTI services, including ThreatCrowd.org, have no restrictions on
who can vote, and an attacker can exploit these vulnerabilities to compromise the domain’s reputation,
as shown in Figure 2. The left screen of Figure 2 shows the query result of the reputation on the
’seoultech.ac.kr’ domain. An attacker can contribute malicious data to compromise the reputation of
target domain by impersonating multiple nodes or users. The right screen of Figure 2 shows the results
of an experimental attack that lowered the reputation of the ’seoultech.ac.kr’ domain after spoofing
the IP using the tor browser.

Figure 2. Change in a reputation of the ’seoultech.ac.kr’ domain before (left) and after (right) a Sybil
attack in the OSINT CTI service (threatcrowd.org [12]). The right screen shows that an attacker has
created a bad reputation (underlined in red) for that domain through a Sybil attack.

OSINT CTI services cross-reference each other’s data to collect data effectively. For example,
data from ThreatCrowd.org is also used by other CTI services, such as ThreatMiner.org [13], and other
OSINT data-collection and analysis tools, such as Maltego [14]. This approach to efficiently collect
massive amounts of data can be an effective means to spread a malicious reputation. An attacker can
use these data propagation paths in a Sybil attack by using a variety of data contribution paths and
using a proper cost to impersonate a valid user.

2.2. State of the Art

CTI systems formalize and classify cyber threat patterns to increase the understanding of cyber
threats. In [15], the types of CTI data in terms of data sharing are categorized. The CTI system can
use the kill-chain model [16] as a threat response technique that formalizes cyber threat stages and
uses optimal countermeasures for each attack phase. In [17–19], the types of CTI data based on the
kill-chain model are classified. Furthermore, to identify cyber threats from the data, [20] proposed a
threat analysis method based on the data. In [9], they propose a classification model of technologies
for CTI data exchange.

The issue of how to represent threat-related data is an essential issue for CTI’s practical
use. Indicators of compromise (IoC) is the main index for CTI systems to represent cyber threats.
Any information that can identify the target on the network and system, such as the hash value of the
malware, the file name, the IP address used to distribute the malware, the domain name, and the URL,
can be used as an indicator of IoC. STIX [10] is a threat-related data representation language and is
currently used as a de facto standard. In [21], they propose an extension of the language model to
improve STIX’s ability to express threat data. In [22], they analyzed the data exchange format using
ontology to enhance the capabilities of cyber threat information sharing standard technology.
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Data-collection methods and collection channels are also important factors in operating a CTI
system. In [23–27], they studied how to collect, refine, and operate CTI data from the Darknet and
hacker forums. In [28,29], they propose a methodology for collecting CTI data from public source
information and sharing them. Since the data collected from these sources exist in natural language
or a similar form, not in a standardized form, a method of extracting the context of information from
this type of data is required. In [29–33], they propose methods to collect and analyze CTI data using
natural language processing and semantic analysis techniques.

When the data is collected from various data channels, the validity and reliability of the data
must be considered. In our previous study [34], we proposed a model for determining the reliability of
data collected from open source intelligence (OSINT). In [35], they show that CTI data analysis using
machine learning technology may be vulnerable to data poisoning attacks. CTI systems also use a
data-sharing framework for efficient operation. In [36–39], they propose a cyber threat information
sharing framework, and [40,41] propose a CTI sharing framework through the blockchain.

2.3. Security Consideration

This subsection describes essential security considerations to design a CTI framework: traceability,
Sybil-resistance, and privacy.

2.3.1. Traceability

Traceability, as an essential element to verify the context and validity of the data, means the tracing
of data from generation to the analysis process and applications [34]. For the traceability of CTI data,
metainformation of data-collection channels, environmental characteristics, and threat information
should be configured together with enough strength of integrity fo the data. Metainformation
about a collection channel could be a quantitative scale indicating the reliability of the channel.
This composition prevents an attacker from continuously disseminating malicious data and allows
tracking of data to detect abnormal behavior. In addition, it is possible to determine the importance
of the information through the environmental characteristics of the data-collection channel, thereby
determining the priority of the data processing process. For example, the context and importance
of observed data about malware between the terminal node and the central server are significantly
different. Therefore, CTI information should provide the context for cyber threats, including the
environmental characteristics of the data channel.

2.3.2. Sybil-Resistance

Sybil attacks are attacks where an attacker configures multiple nodes for a specific purpose,
disguising the attacker’s action from actions of the crowd. This attack, which can occur in networks
such as social network services (SNS) or blockchains, can be fatal in an environment where the identity
and owner of terminal nodes are not identifiable. In particular, networks that use a reputation for
specific nodes are more vulnerable to Sybil attacks. An attacker can cause the node to be blocked from
the network by disseminating the target node as dangerous. If the attacker’s capabilities are sufficient
during the CTI data sharing process, the node can be completely excluded from the network, which
could compromise the availability of the entire network. Thus, the CTI system requires a fundamental
defense mechanism against Sybil attacks.

2.3.3. Privacy

The biggest problem of operating a CTI system is the privacy issue [42]. The CTI system aims to
increase the understanding of cyber threats by sharing information about the threat and IoC with other
nodes. When the identification of a specific object is exposed during this information sharing process,
the actions involved in information sharing may cause a deterioration of the source’s reputation.
Therefore, there is a need to apply deidentification techniques in the process of sharing data. However,
deidentification means the partial loss of data, and this could reduce the usefulness of the information.
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If the quality of information is decreased in the course of preserving privacy, the performance of the
CTI system deceases. Thus, CTI systems must be able to meet the trade-off between privacy and the
usefulness of the information in the process of data sharing.

3. System Model

In this section, we describe the system model of blockchain-based CTI data-collection and sharing
framework. The proposed framework consists of nodes and entities with multiple roles. Table 1
describes the notations used in the proposed framework.

Table 1. Descriptions for notations used in the proposed framework.

Notation Description

F = {F1, . . . , Fi, . . . , Fn} Set of CTI Feeds, i = 1, . . . , n
c = {c1, . . . , cj, . . . , cm} Set of contributors, j = 1, . . . , m
s = {s1, . . . , sk, . . . , sl} Set of consumers, k = 1, . . . , l
βcj Reliability value of contributor cj
αcj Observed threat-related data from contributor cj
εcj Deposit cost cj’s data contribution
πFi (αcj , βcj , εcj ) Evaluation function of Fi on reported data from cj
q Network resource such as IP, domain, hash value of malware
θ(q, p) CTI data query using specific resource q and cost p
λ(q) Result on CTI data query for resource q
ψFi Consumer subscription list of CTI feed Fi
Ek(d), Dk(d) encrypted and decrypted data d using key k
Sk(d), Vk(d) digital signing and verification using key k and data d
Prci , Puci Private key and Public key of ci

3.1. Blockchain-Based Cyber Threat Intelligence System Model

As shown in Figure 3, the blockchain-based CTI system is composed of five main entities and
their interactions: feeds, contributor, consumer, miner, and blockchain network.

Figure 3. System model of blockchain-based cyber threat intelligence system.
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Feeds: defined as F = {F1, . . . , Fi, . . . , Fn}. Feeds collect security-related data from users and their
data-collection channels, reconstruct it into an actionable CTI information. Each CTI feed defines an
evaluation and reward method πFi for the observed data to evaluate and encourage users’ contributions.
In addition, CTI feeds have a user list ψFi to propagate the analyzed CTI data when a critical threat
is reported.

Contributor: defined as c = {c1, . . . , cj, . . . , cm}. A contributor is a user who participates in the
CTI system and shares the threat-related data observed from their internal systems, such as firewall or
IDS, with the CTI system. Contributors transmit the observed threat-related log data αcj through the
smart contract to the blockchain network of the CTI system and pay a deposit εcj . The data reported
by the contributor is evaluated by the function πFi of each CTI feed Fi, and if the data is determined to
be useful to the feed, the feed rewards the contributor. Each contributor has an individual reliability
value βcj , which is adjusted by the reward provided by the CTI feeds.

Consumer: defined as s = {s1, . . . , sk, . . . , sl}. A consumer is a user who participates in the CTI
system and is the primary entity that consumes CTI data. Consumers can query specific CTI data q to
blockchain networks by consuming cost psk , and each feed provides CTI data λ(q) corresponding to
consumer’s requests and obtains psk . Also, by registering themselves in the CTI feed’s user list ψFi ,
consumers are periodically provided with information related to cyber threats when the CTI Feed
detects a critical threat.

Blockchain Network: A blockchain network performs the core functions of delivering and storing
data in the CTI system. Smart contracts implemented on the blockchain allow users to communicate
and share data through reliable procedures. CTI feeds can also operate CTI data through a set of
procedures implemented as smart contracts. Blockchain-based CTI frameworks can provide a high
level of integrity and traceability for data, thus facilitating the assessment of the validity of the data.
CTI systems must encrypt the data for privacy while storing them in a block.

Miner: Using a consensus mechanism of the blockchain network, miners store the data request,
contribution, and reward transactions in the block. In blockchain-based CTI framework, cryptocurrencies
mined by miners are used as a means to use the CTI system, and all users can play both roles as a
contributor and as a miner simultaneously. Users spend the cryptocurrency as a cost for requesting CTI
data, or they get the cryptocurrency as a reward for data contribution. Each cost on data request and
reward on data contribution has a different amount based on the importance of data.

3.2. Threat Model

In this section, we describe the threat models of existing Sybil attacks on the CTI system and the
threat models that can arise in the operation of blockchain-based CTI systems.

Malicious Contributor: Attackers can attack CTI systems through malicious contributors by
reporting false data. An attacker can pay a high deposit so that the malicious data reported by the
attacker are stored first in the block. In addition, by reporting a large number of redundant data,
the attacker can increase the probability of malicious data stored in the block. By creating a relation
between the target node and malware or malicious behavior, the attacker can reduce the reputation of
the target node. When this malicious information is input to the CTI system, a security policy may be
generated to block access to the target node. In this case, the attacker aims to inject as much malicious
data α as possible into the system at the least cost e. At this point, the attacker acts to maintain a high
level of reliability β to increase the probability of malicious data being injected into the system.

Malicious Miners: An attacker can act as both a malicious contributor and a malicious attacker
to efficiently inject malicious data into the CTI system. The attacker aims to inject as much malicious
data α as possible into the system. At the same time, since continuous malicious data injection requires
the deposit ε, the attacker aims to recover as much deposit e as possible in the mining process.

The proposed framework should be able to block such malicious user behavior systematically.
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4. BLOCIS: Blockchain-Based Open Cyber Threat Intelligence System

The traceability of the data and the validity of the data and its contributors must be
covered to build a reliable open CTI system. We used blockchain to meet these two security
considerations. The basic structure and function of the blockchain ensure the traceability of CTI
data. Additionally, validity assessments of data and data contributors can be carried out through
the smart contract on the blockchain, and the results can also be shared transparently through the
smart contract. Furthermore, we covered the privacy issues that may arise when sharing data on
the blockchain. In this section, we illustrate the proposed BLOCIS (blockchain-based open cyber threat
intelligence system) framework.

4.1. Architecture of BLOCIS

The proposed BLOCIS is a blockchain-based open cyber threat intelligence sharing framework
that is resistant to Sybil attacks. BLOCIS classifies the layers according to the environment in which
the actual data are collected and operated for data-interchangeability. This section describes each layer
of the BLOCIS framework. Figure 4 shows the architecture of proposed framework. On the basis of
the system model mentioned in Chapter 3, BLOCIS consists of three layers: the user layer, blockchain
network layer, and feed layer.

Figure 4. Architecture of the blockchain-based open cyber threat intelligence system (BLOCIS).

User Layer: At the user level, contributors and consumers act as actual users. BLOCIS is an
open CTI system that collects data from multiple data sources, including the user’s environment.
Users can have internal security systems such as firewalls, IDS, IPS, honeypots, and get benefits from
sharing the threat-related data observed with the BLOCIS framework. Contributors also need to
convert threat-related data that they collected and observe into standard specifications such as STIX.
To end this, the client needs a data parser that can collect and preprocess the data appropriate for the
user’s environment. The users can build this parser as an extension of the security system of their
environment. Consumers request specific threat-related data and periodically receive CTI reports from
feeds through the blockchain network.

Blockchain Network Layer: The BLOCIS framework uses blockchain technology for efficient
management and sharing of CTI data. The blockchain network layer is composed of blockchain
storage nodes and miner nodes. When observation data are reported from the user layer or when
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a user requests specific CTI information, the information is transmitted to the blockchain network.
Miner nodes obtain a reward by checking the user’s requests and get the deposit by processing them.
All processes for querying user requests, and reporting and receiving data from feeds are conducted
through smart contracts. The blockchain network ensures the integrity and traceability of the data
running in the CTI system by recording data reported from users, information about each contributor,
data-collection procedures, and the history between users and feeds.

Feed Layer: In the feed layer, various feeds provide CTI services. These are individual web or
application services that provide CTI information to consumers included in their user list. Each feed
serves a different purpose and does not need to utilize all of the CTI data reported from the various
channels. Each feed has its data evaluation function, which selectively collects data reported to the
blockchain network. The feed also determines the validity of the collected data to adjust reputation of
the contributors. The feed generates an alert about the data contributor if the data obtained from the
blockchain network are determined as being malicious. This alert information lowers the reputation of
the contributor. By doing this, the user’s expected result on an evaluation function of feeds decreases,
and this makes a malicious user’s data contribution more difficult.

4.2. CTI Data Contribution and Sharing Process

In this section, we describe the CTI data sharing process of the proposed BLOCIS framework.
Inspired by [40], we use a cryptocurrency as a token to represent the reliability and solvency of users.
The data sharing process of BLOCIS consists of the five steps for CTI data sharing and propagation.

Step 1: In the first step, users such as contributors or consumers register their account and address
to the blockchain network. The blockchain network gives them tokens for the solvency of CTI data
requests and reporting. The blockchain network adjusts the initial reliability of each contributor and
transmits an encryption key to be used in the data contribution and sharing processes to the users.

Step 2: The user (contributor) converts observed data into STIX-based CTI data and transmits
it to the blockchain network. The contributor sets target feeds to provide their data and executes a
smart contract to contribute data to that feed. This smart contract receives information about data
contributors, target feeds, CTI data, and deposits as input.

Step 3: The smart contract first performs data validation using reported data. Validation is a
prefiltering operation to detect unstructured data or noise data and perform verification of the data
format and integrity. If the reported data are valid, the smart contract performs the following steps.
If the entered data are not valid, the smart contract adjusts the reliability of the contributor who
contributed the abnormal data using the penalty term p.

Step 4: The smart contract executes the data evaluation function of the target CTI feeds on valid
input. This function evaluates the validity and importance of the reported CTI data according to the
feed’s internal policies and determines whether to accept the data based on the results of the evaluation.
If the results of the evaluation function are higher than the feed’s criteria, the feed stores the reported
CTI data in an internal database, and gives rewards to the contributor by offering cryptocurrency
and increasing the contributor’s reliability. If the result of the evaluation function is lower than
the evaluation criteria, the smart contract ignores the data and adjusts the contributor’s reliability
according to a predetermined policy.

Step 5: After the evaluation of feeds, each feed analyzes new data with their internal strategies,
policies, and database to find a substantial threat that the data represents. If a critical threat is expected
through the accumulation of CTI data, the feed broadcasts the report on the expected threat to the users
which are in the feed’s list. The broadcast process is delivered directly to the user through a separate
and reliable communication channel, and log information about the broadcasted data is encrypted and
stored on the blockchain.



Electronics 2020, 9, 521 10 of 20

5. Implementation of BLOCIS

In this section, we illustrate the detailed scheme and procedures of BLOCIS using the pseudocode
of the algorithm and smart contracts.

5.1. Environments

For the implementation of the proposed BLOSIS framework, we used the Ethereum
framework [43]. The functions of BLOCIS are implemented using Solidity language [44]. We used
the Ganache framework for the blockchain environment and the Truffle framework as an integrated
development environment to write and compile the smart contracts. In addition, we used Metamask
as a wallet interface for the user.

5.2. Smart Contract for CTI Data Sharing

In this subsection, we illustrate the detailed content of the smart contract that composes the
proposed framework. The smart contracts are designed based on the interactions between each node in
the framework. To implement the interactions, we devised three smart contracts: the user management
contract (UMC), the data report contract (DRC), and the alert contract (AC).

5.2.1. User Management Contract (UMC)

As the open network, the BLOCIS includes various types of client users, and each user is classified
into two roles: consumer or contributor. To manage and adjust the action and behavior of users,
each user should enroll their identity to the blockchain network, where the address of the user is
the only way to identify them. This address helps the user to keep their privacy. Each user enrolls
their address into the blockchain network, and into the broadcast list of CTI feeds. The broadcast
list is used to disseminate the alerts when the critical threat is observed. Furthermore, when a
contributor gets into the blockchain network, the proposed framework gives them the initial reliability.
This reliability is used as a reward for data contribution. Algorithm 1 shows the procedure of UMC.
Algorithm 1 conducts initialization of user reliability and key exchange between users and feeds
using a key-exchange scheme based on a public-key cryptographic scheme such as RSAES-OAEP [45].
Each user and feed have their public and private key pair, and these are used to verify each other and
to share a secret key for encrypted data sharing.

Algorithm 1: Pseudocode of User Management Contract (UMC)
Data: addrci : address of user(consumer or customer) ci
Result: Initializing user information

1 βci ← i
2 for Fi that user choose do
3 set k ; // generating secret key
4 KEM← EPuFi

(k)||SPrci
(k) ; // generating key-exchange message

5 ci send KEM to Fi
6 calculate VPuci

(SPrci
(k)) ; // verifying signature

7 if valid signing flag then
8 k← DPrFi

(EPuFi
(k)) ; // decrypting secret key

9 ψFi ← (addrci , k)
10 else
11 return false
12 end
13 end
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5.2.2. Data Report Contract (DRC)

CTI data collected from the end node (user) is encrypted using a preshared secret key k, and then
reported through a smart contract. However, in the open data-collection channel, the validity of data
is one of the significant issues. To evaluate the validity of reported threat-related data, each feed Fi
assesses the validity of reported data using their evaluation function πFi based on their internal policy.

If the result of the evaluation function exceeds the threshold defined by each feed, the feed sends
the transaction that includes reward on the contribution of the user. The reward on the contribution
adjusts the reliability of the contributor and gives the token as an incentive. If the result of the
evaluation function is lower than the threshold, the feed ignores the contributions and adjusts the
reliability of the contributor with a penalty term p. This penalty term mitigates the impact and damage
from invalid or malicious contributions and can be adjusted considering the network circumstances,
such as number of reported data, users, and contributors. Algorithm 2 shows the data reporting
process and rewards for the user.

In the process of contributing data, the size of the deposit is usually set smaller than the amount
of compensation for the contribution. As a result, users can accumulate their assets (currency) through
continuous data contributions. This accumulated asset represents the user’s activity. An enormous
asset means that the user has contributed a lot of high-quality data, which can be another indicator of
the reliability of the user.

Futhermore, the user’s deposit is entered as a parameter in the data evaluation function πF of
each CTI feed. This parameter can make the user adjust the amount of deposit to adjust the πF output.
By spending high deposits in data DRC, users can increase the probability of successful reporting
and the priority of the contribution. In other words, users can use their assets as their ability to
contribute data.

CTI feeds generally have dedicated purposes, some of which may require critical, sensitive,
and urgent data. CTI feeds that only need reliable data can filter out users who contribute the CTI
data by setting a high minimum deposit amount. In addition, by intentionally setting high deposits
and low compensation (even less than deposits), only voluntary data contributions can be allowed.
This operation strategy of the CTI feed can improve the reliability of the reported data, and users can
use the reliable CTI feed by consuming assets.
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Algorithm 2: Pseudocode of Data Report Contract (DRC)
Data: k: preshared secret key between user and CTI feed

Ek(αci ): encrypted CTI data of STIX format collected by ci
βci : reliability of contributor ci
εci : deposit cost of ci to report data αci
ε̄: mean of total deposit costs
τj: threshold of evaluation function πFj

f : weight value for change ratio of reliability
p: weight value for penalty of invalid data

Result: βci : updated reliability of user ci
ρ: reward of feed Fj on the data contribution αci

1 for each feed Fj in F do
2 tmp← Dk(Ek(αci )) ; // decrypting user data
3 if αci is valid ; // data format validation
4 then
5 σ← πFj(tmp, βci , εci )

6 if σ > τπFj
then

7 ϕ← 1
(1−τj)2 × (σ− τj)

2

8 else
9 ϕ← −1

τ2
j
× (σ− τj)

2

10 end
11 n(ε)← εci /ε̄ ; // normalizing deposit
12 if n(ε) > 0 then
13 βci ← max(min(βci + n(ε)× f , 1), 0)
14 ρ← max(0, ε× (n(ε) + ε̄))
15 else
16 βci ← max(min(βci + n(ε)× f × p, 1), 0)
17 ρ← 0
18 end
19 else
20 βci ← p× βci
21 ρ← 0
22 end
23 end
24 return (βci , ρ)

5.2.3. Alert Contract (AC)

The alert contract disseminates the threat-related alerts to the consumers. CTI feeds in the BLOCIS
framework continuously analyze reported data to make profiles on the cyber threat. Each feed has
its analysis mechanism for a specific purpose. If a feed Fi deduces a cyber threat from the result of
data analysis, it alerts the information to the users in their broadcast list ψFi . Metadata about these
alerts are encrypted with the secret key and stored in the blockchain networks, and the full contents of
encrypted CTI information are transmitted to the users of the user layer through the blockchain or
other data links (Algorithm 3). Figure 4 shows the detailed procedures of alert contracts.
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Algorithm 3: Pseudocode of Alert Contract (AC)
Data: α: Reported threat-related data

ψFi : User list for alert broadcast
Ek(αci ): encrypted CTI data of STIX format collected by ci

Result: l: meta-information of alerts
λ: Analyzed CTI information related with cyber threats
q: list of IoC resources

1 deduce (λ, q) from α ; // CTI and IoC deduction from data
2 set l ; // generating meta-information of alert
3 send l to BLOCIS network
4 for cj in ψFi do
5 send Ek(l, λ, q) to cj
6 end
7 return Ek(l, λ, q)

6. Experiment and Result

This section explains the experiment and simulation results that we performed to prove the
efficiency of the proposed framework. The primary purpose of the proposed framework is to have the
ability to resist the threat model of Sybil attacks mentioned in Section 3.2 Therefore, in this experiment,
we evaluated how the attacker’s attack ability in the CTI system could be compromised.

To evaluate the attacker’s ability to attack, we first defined the attacker’s ability to attack.
The attacker’s ability to attack Sybil is related to the amount of cryptocurrency the attacker has
and the attacker’s reliability value. Since the amount of cryptocurrency possessed by an attacker can
be used to increase the probability of malicious contribution, it represents the risk of a Sybil attack from
a short-term perspective. The attacker’s reliability is related not only to the probability of malicious
contribution but also to a long-term attack. If an attacker can maintain a high degree of reliability while
simultaneously conducting a malicious contribution within the CTI system, the attacker can continue
to contribute malicious data, thereby compromising the reliability of the entire CTI system. Therefore,
in this experiment, we considered the attacker’s ability to attack Sybil as the amount of cryptocurrency
possessed by the attacker and the reliability of the attacker’s node.

This experiment shows how the proposed framework can reduce the attacker’s attack ability
through smart contracts implemented on the blockchain network.

6.1. Normal and Malicious Contributor

In the experiment, we simulated two types of contributors: a normal contributor and malicious
contributor. A CTI system that uses open sources as the data-collection channel has the risk of
noise data. Noise data are defined as useless or unusable data or data intentionally modified by an
attacker [34]. This definition of noise data means that the malicious contribution through noise data
could be conducted not only by the attacker, but also occasionally by the normal user. Furthermore,
determining whether a threat-related data are malicious (i.e., fabricated by an attacker) is different for
different CTI systems’ operational algorithms and policies. Evaluating the accuracy of data requires
additional postanalysis of data, such as cross-validation. Thus, we simulated the behaviors of normal
and malicious contributors using the possibility of the noise-data contribution. To simulate the
possibility of the noise data, we used the normal distribution. Each contributor in the experiments
has a mean and standard deviation for the possibility of noise-data contribution. In addition, in our
experiment, we supposed that the malicious contributor is not naive. Thus, the malicious contributor
imitates the behavior of the normal contributors. We set up a malicious contribution cycle t for
each attacker, and the attacker attempts the malicious contribution after t normal contribution cycles.
These periodic Sybil attacks retain the reputation of malicious contributors during their attacks. In the
experiment, we set various malicious contributors with different Sybil attack cycles.
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6.2. Reliability of Malicious Contributor

Each contributor has a capacity of δ = (m, s.d.) on noise data. m is the mean, and s.d. is the
standard deviation of possibility for noise-data contribution. To show the trends of reliability for each
contributor, we simulated three contributors with different possibilities of noise-data contribution:
normal contributor n : δn = (m = 0.8, s.d. = 0.1), malicious contributor m1 : δm1 = (m = 0.8, s.d. = 0.1)
with tm1 = 10, and recklessly malicious contributor m2 : δm2 = (m = 0.4, s.d. = 0.1) with tm2 = 2.
Figure 5 shows the trends in the reliability of each contributor. The malicious contributor m1 has the
same capacity as the normal contributor and performs the Sybil attack with noise data every tm1 = 10
normal contributions. The recklessly malicious contributor m2 is set with much lower capacity and
short Sybil cycle tm2 = 2 to emphasize the availability of the attacker by comparing m1.

Figure 5. Reliability and property (cryptocurrencies) trends on each contributor and attacker (solid
lines show the reliability and dashed lines shows the property.)

As illustrated in Sections 4 and 5, each contribution is validated by the CTI feed F. If the result
of the validation function is lower than the threshold, that means a contribution is determined as
noise data, the contributor of that data does not get the rewards and loses the deposit. In addition,
the reliability of each contributor affects the result of the validation function. Thus, the reliability of
contributors is related to the availability of contributors. In the experiment shown in the Figure 5,
the threshold of validation function was set to τF = 0.7. Each solid line shows the reliability value of
each contributor, and each dashed line shows the cryptocurrencies each contributor has.

The contributions from normal contributors are determined as valid data by the CTI feed F.
This probability increases the reliability of normal contributors by the iterations. Thus, with each
iteration, the reliability of the normal contributors (solid blue line) increases continuously and
converges to βn = 1. However, the reliability of the malicious contributor (solid red line) and
the recklessly malicious contributor (solid black line) converged to the βm1,2 = 0 after iterations.
Even though the attacker imitates the behaviors of normal contributors through valid contributions,
the attacker cannot retain their reputation since the loss from the penalty of malicious contributions
lowers their reputation more significantly compared to the gains through the rewards. Thus, the results
show that the proposed framework can effectively and promptly screen the malicious contributions of
the Sybil attack.
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6.3. Cost of Malicious Contribution

Increasing the cost of the Sybil attack gives the Sybil-resistance to the system. In the proposed
framework, each contribution consumes default cost (deposit). To maintain the ability for contribution,
each contributor needs to get the rewards from the CTI feeds. However, the reliability of contributors
affects the result of the validation function, and this mechanism makes the attacker lose their ability
for contribution by preventing them from gaining the rewards for their malicious contributions.
In Figure 5, the amount of cryptocurrencies of the normal contributor (dashed blue line) has
continuously increased since the normal contributor gets the rewards through their valid behavior.
However, the cryptocurrencies of the recklessly malicious contributor (dashed black line) have
dramatically decreased since the low reliability of that node means them continuously losing the
deposit . Even though the malicious contributor imitates the behavior of a normal contributor,
they could not earn a meaningful amount of cryptocurrencies or even lose it. In the experiment
shown in the Figure 5, the malicious contributor, which has the Sybil cycle tm1 = 10, has lost all their
cryptocurrencies after 170 iterations.

In our experiment, we supposed that the attacker imitates the behavior of a normal contributor.
To disguise themselves as a normal user, the attackers need to contribute valid data. These valid
contributions are used as a cost to perform the Sybil attack, maintaining the reliability of the attacker
for continuous attack. Thus, we performed simulations to show the impact of the attacker’s cost
at the point of the Sybil cycle t. Figures 6–9 show the property of each contributor. In these
experiments, we simulated one normal contributor and four malicious contributors by their Sybil cycle.
Every contributor has the same capacity for normal contribution δ = (m = 0.8, s.d. = 0.1), and each
malicious contributor reports invalid data δ = (m = 0.2, s.d. = 0.2) after every t normal contributions.

Figure 6. Changes of cryptocurrencies held by each contributor and attacker (p = 4).
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Figure 7. Changes of cryptocurrencies held by each contributor and attacker (p = 8).

Figure 8. Changes of cryptocurrencies held by each contributor and attacker (p = 16).

Figure 9. Changes of cryptocurrencies held by each contributor and attacker (p = 32).
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The result of the CTI feed’s validation function gives the penalty p to the updates of the
contributor’s reliability. The high weight of the penalty term accelerates the decrease in reliability
caused by invalid contributions. In the figures, we show the impacts of the attacker’s cost (Sybil
cycle t) and the penalty term p. In Figure 6, when the penalty weights are much lower than the
attacker’s Sybil cycles (i.e., p = 4), the system cannot screen the tricky contributors with high Sybil
cycles such as t = 40 or t = 80. Their reliabilities became similar to the reliability of the normal
contributors. However, when the penalty weights are adjusted corresponding with the attacker’s cost
(i.e., p = 8, 16), in Figures 7 and 8, malicious contributors and their Sybil cycles are revealed. When
the penalty weight is enough (p = 32), in Figure 9, the availability of an attacker converges quickly to
0. Each CTI feed could adjust the penalty term concerning the circumstances of the whole network.
These results show that by evaluating the data reported from users through the blockchain network
and sharing the evaluation results, it is possible to effectively block attackers who attempt to perform
Sybil attacks. In the proposed CTI framework, attackers quickly lose cryptocurrency assets in the
process of conducting Sybil attacks. This loss leads to an attacker losing the ability to contribute the
malicious data. Additionally, even if an attacker is disguised as a normal user to perform a long-term
Sybil attack, the attacker shows that he must perform a considerable number of normal contributions
to achieve the average reliability level of the normal users. This dramatically reduces the effectiveness
of long-term Sybil attacks. Thus, the results of this experiment show that it can effectively mitigate two
Sybil threats to the CTI system.

7. Conclusions

CTI technology gives an effective and proactive method to mitigate intelligent and advanced
cyber threats. Through data analysis and profiling of cyber threats, the CTI system enhances
the comprehension of them and provides actionable countermeasures. For this purpose, the CTI
system requires various forms and types of data and a massive dataset. Many CTI feeds,
which provide CTI services, use open-source intelligence as a data-collection channel to cover the
dataset. However, the major problem of this approach is the reliability of the data. Because this
data-collection approach permits unconstrained reporting, an attacker can inject maliciously generated
or modified data into the system through a Sybil attack to compromise the reputation of specific nodes.
Security policies generated by malicious data can misjudge the reputation of network nodes, and this
can seriously deteriorate the availability of the entire network.

The BLOCIS framework introduced in this paper is a way to give Sybil-resistance to the CTI
system through blockchain-based smart contracts. In our framework, we defined a three-layered
architecture for the blockchain-based CTI system. The proposed framework collects the CTI data from
various sources and evaluates the validity of data and contributors. This approach can effectively
distinguish malicious contributors in numerous data-collection methods . Evaluating all the data
and assessing the contributor’s reliability can isolate the nodes that continuously report invalid or
malicious data. In this paper, we suggest a detailed way to operate and implement the proposed
framework in the form of smart contracts and explain the evaluation model for the reliability of
contributors. Furthermore, to prove the effectiveness and performance of the proposed framework,
we performed simulations in terms of the attacker’s reliability and their cost to operate the Sybil
attack. In the simulation results, we show that our proposed framework can effectively distinguish the
malicious contributor without harmful effects on other normal contributors.

In this research, we evaluated the validity of the data with probability. Evaluating and analyzing
the meaning and impact of CTI data is a very domain-specific problem. In future research, we will
discuss a way to analyze CTI data considering the risk of Sybil attacks in order to expand the domain
of the proposed framework.
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