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Abstract: The development of autonomous driving cars is a complex activity, which poses challenges
about ethics, safety, cybersecurity, and social acceptance. The latter, in particular, poses new problems
since passengers are used to manually driven vehicles; hence, they need to move their trust from a
person to a computer. To smooth the transition towards autonomous vehicles, a delicate calibration of
the driving functions should be performed, making the automation decision closest to the passengers’
expectations. The complexity of this calibration lies in the presence of a person in the loop: different
settings of a given algorithm should be evaluated by assessing the human reaction to the vehicle
decisions. With this work, we for an objective method to classify the people’s reaction to vehicle
decisions. By adopting machine learning techniques, it is possible to analyze the passengers’ emotions
while driving with alternative vehicle calibrations. Through the analysis of these emotions, it is
possible to obtain an objective metric about the comfort feeling of the passengers. As a result, we
developed a proof-of-concept implementation of a simple, yet effective, emotions recognition system.
It can be deployed either into real vehicles or simulators, during the driving functions calibration.

Keywords: artificial neural networks; automotive applications; autonomous vehicles; emotion
recognition; machine learning

1. Introduction

The development of Autonomous Vehicles (AVs) poses novel problems regarding ethics, safety,
cybersecurity, and social acceptance. It is expected that these vehicles will be safer with respect to the
human-driven ones and, thanks to the new connectivity capabilities in terms of both vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communications, more able to reduce the traffic inside cities.
It is a disruptive technology that puts on the table issues about safety, security, ethics, and social
acceptance. In particular, the latter is an important point to be taken into account, since, if the users do
not trust those vehicles, all these advantages will be lost.

We claim that an improvement in the trustiness on these vehicles can also improve their social
acceptance. Of course, acceptance is a complex and multi-faceted phenomenon [1]. Acceptance studies
are a novel field but, among authors, the idea that technological improvements can be assessed only
when considered as part of a social, economic, and usage-related context is widespread. Considering
that the development of the AVs is in the prototype stage, there are many activities aimed at improving
these vehicles. The first, of course, are those related to the development of the driving algorithms.
Such algorithms, other than the instruction sequences, need also a huge set of calibration parameters
that can be equivalent from the safety and vehicle stressing point of view, but that can have different
effects from the passengers’ perspective. As an example, the way in which an autonomous vehicle
decides to approach a road bend, either moving toward the center of the lane or towards the side of
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the road, can be perceived in different ways by people depending on the surrounding conditions, such
as weather or other traffic, and their emotional states.

Similarly, the AV may react to a fault according to many different strategies to preserve functional
safety [2]. This is possible thanks to the mitigation strategies added by the manufacturers to isolate the
effects of dangerous faults, making them safe. Unfortunately, it is not always possible to maintain the
same level of performance. In this case, we are in the presence of graceful degradation mitigation
techniques that guarantee the same safety level of the original functions but with less comfort.
On a prototype vehicle, it is possible to inject the fault we want to assess, engaging its failure effect
mitigation algorithm. At this point, thanks to the proposed emotions recognition system, it is possible
to evaluate the effect of the algorithm on the passengers’ feelings, obtaining an objective metric on
how the performance degradation can be acceptable by the users’ perspective.

The main contribution of this paper is the implementation of a proof-of-concept system to
improve calibrations of AVs driving algorithms. The idea is to provide objective classifications
of the passengers’ reactions to autonomous vehicle decisions, thus helping the driving functions
calibration on the basis of an analysis that is less sensitive to the subjectivity and variability of
post-drive responses to questionnaires. To achieve this result, we developed a system to recognize
the emotions that the passengers are feeling with different calibrations in an objective and automatic
manner. We adopted known techniques, such as emotions recognition through neural networks and
3D ambient reconstruction. To improve the emotions recognition accuracy, we chose and trained
state-of-the-art neural networks on databases available in the literature. These databases are often used
individually for training and test phases, but we thought that merging them would improve networks
generalization capabilities. We largely described the training results to allow readers to evaluate the
accuracy of the system. Moreover, we prepared an environment to perform the emotion detection,
able to work off-line or in real-time. The off-line environment is intended for post-processing videos,
recorded during driving sessions, for classifying human emotions, while providing to observers the
ability to manually validate the neural network results. Conversely, the real-time environment is
intended for use during test drive sessions, as it performs on-the-fly classification of human emotions.

The rest of the paper is organized as follows. Section 2 presents the state of the art on emotion
recognition through neural networks and the development of autonomous vehicles. Section 3 describes
the proposed approach. Section 4 describes the training results obtained with the chosen neural
networks. Section 5 describes the experimental results obtained with the proof-of-concept system.
Section 6 draws some conclusions.

2. State of the Art

As humans, we are instinctively able to determine the emotions that our fellows are feeling.
It is well known that facial expressions are a fundamental part of this social ability. In the 1970s, the
American psychologist Paul Ekman scientifically studied this phenomenon. In 1972 [3], he published
the list of the six primal emotions shared among all human groups, independently from their culture:
anger, disgust, fear, happiness, sadness, and surprise. In the following years, he and other researchers
added to this list other emotions. For our purposes, and considering n the labels available in the chosen
facial expressions databases, we considered only eight basic emotions: the six proposed in 1972 plus
contempt and neutrality. For our automotive application, however, we were interested in recognizing
only five of them: fear, happiness, neutrality, sadness, and surprise. We chose to keep recognition of all
of them to make the obtained results interesting for a wider audience.

Ekman developed also the Facial Action Coding System (FACS) [4]. Facial expressions are performed
thanks to facial muscles; hence, they are, from the physical point of view, possible configurations of
those that are moved one by one or in groups. These groups of muscular movements are called Action
Units (AUs). Thus, it is possible to classify a facial expression resorting to a weighted evaluation of
those AUs. Thanks to these evaluations, it is possible to make the facial expressions determination
more objective. However, to make things even more complex, the same emotion can be shown with
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different groups of AUs, thus there is a huge intraclass variability. If the labeling of the considered
facial expression has been performed by analyzing the AUs, the picture is marked as FACS encoded.
Furthermore, facial expressions can be posed or spontaneous: while the latter are more common to see
in everyday life, the former are a more caricatural, exaggerated version of the same.

Various scientists worked on this topic in the years, hence, nowadays, many pictures of posed and
spontaneous facial expressions, organized in databases, are available in the literature. The databases
selected for this work are:

• The Extended Cohn–Kanade (CK+) database [5,6] contains 593 sequences from 123 subjects portrayed
in all eight emotional states considered in this document. Each sequence starts from a neutral
state and then gradually reaches the peak of the considered emotion. Overall, 327 of the 593
sequences are FACS coded.

• The Facial Expression Recognition 2013 (FER2013) Database [7] is composed of 35,887 pictures of
48× 48 pixels retrieved from the Internet. Since the original labeling method has demonstrated
itself erroneous in some cases, a newer set of annotations named FER+ [8] was released in 2016.
It contains labels for 35,488 images since the remaining 399 do not represent human faces, and it
also adds the contempt emotion.

• The Japanese Female Facial Expression (JAFFE) database [9] contains 213 grayscale photos of posed
facial expressions performed by 10 Japanese women. Each image has been rated on six emotional
adjectives by 60 Japanese subjects.

• The Multimedia Understanding Group (MUG) database [10] contains photos of 86 models posing
six emotional states: anger, disgust, fear, happiness, sadness, and surprise. The images of this
database are taken inside a photographic studio, thus in controlled illumination conditions.

• The Radboud Faces Database (RaFD) [11] is a collection of photos of 67 models, posing all
eight emotional states considered in this paper. Each picture was taken from five different
angles simultaneously.

• The Static Facial Expression in the Wild (SFEW 2.0) database [12] is composed of frames extracted
from different movies depicting people having seven different emotional states: anger, disgust,
fear, happiness, neutrality, sadness, and surprise. For our purposes, we decided to use only the
1694 labeled aligned images.

• The FACES database [13] is a collection of 2052 images taken from 171 actors. They acted two times
the following six facial expressions: anger, disgust, fear, happiness, neutrality, and sadness. The
actors are further divided into three different age classes.

To the best of our knowledge, in the literature results obtained by merging various facial
expressions databases to train a neural network are not available. We thought that this merging
operation could be very useful to augment the image variability in terms of the number of portrayed
people, light conditions, backgrounds in which the photos were taken, etc. We called these database
ensembles and we developed an open-source tool to simplify their creation, as described in Section 3.1.

The Society of Automotive Engineers (SAE) defined six levels [14] of driving automation, starting
from 0 when the driving is completely in charge of the driver, up to level 5, where the vehicle drives
by itself in any condition. Various authors studied the interactions between these automations and
humans, focusing especially on how the Advanced Driver Assistance Systems (ADAS) integrated into
the car should interact with the driver [15] and about the adaptation of the digital cockpit to different
driving situations [16]. Other devices installed inside cars are driver fatigue and drowsiness sensors.
They work thanks to a sensor for detecting the steering wheel angle, electrocardiogram performed on
the steering wheel surface [17], and cameras that, thanks to a computer vision algorithm, can detect
the frequency at which the driver blinks [18].

While these applications are applied during the driving, we are interested in the algorithm
calibration phase, before the vehicle is shipped, especially for the trajectory planning (examples of
the involved coefficients can be found in [19]). This can help carmakers to choose algorithms and
respective calibrations that best suite their customer expectations. To the best of our knowledge,
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no author has yet proposed the use of emotion recognition through computer vision to calibrate
autonomous driving algorithms.

3. Proposed Approach

As described in the previous section, it is possible to determine people’s emotions by their facial
expressions. It is not possible to write “by hand” a software function to analyze the pictures of the
passengers’ faces and determine their emotions with a good performance so we adopted a machine
learning approach. We expect that, thanks to a properly trained neural network, it will be possible to
solve this challenge. From the operative point of view, we decided to divide the development of the
proof-of-concept calibration system into three different phases:

1. We developed a tool, called Facial Expressions Databases Classifier (FEDC) [20], able to perform
different operations on the selected databases images in order to prepare them for the training of
the neural networks. FEDC can also be used to make the supported databases homogeneous so
that they can be merged. We called these derived datasets database ensembles (DE).

2. We chose the most suitable neural networks available from the literature, and trained them with
single databases as well as with some database ensembles to compare them by means of objective
metrics that we define below.

3. We create 3D graphics reconstructed scenarios depicting some driving situations with different
calibrations of the autonomous driving algorithm. By showing them to testers, and analyzing
their facial expressions during the representations, we determined what calibrations are preferred
by passengers.

3.1. Facial Expressions Databases Classifier

It provides an easy to use Graphical User Interface (GUI) that allows the operator to select the
database he/she wants to classify, the output directory, and some post-processing options he/she
wants to apply to the images, displaying the current operation with a progress bar and an informative
label. More technically, the tool takes the images from the database file provided by the databases’
editors, creates a number of folders equal to the number of emotions present in the chosen database,
and moves the images. After that, the selected post-processing operations can be applied, in the
relative folder, using the cataloging system adopted by databases’ editors. This tool has been released
as open source under the MIT license on GitHub [20] and it is constantly updated.

3.1.1. Partitioning of the Dataset

To properly train a neural network, it is a good practice to divide the databases into three
smaller datasets:

• The training dataset is used to effectively train the network.
• The validation dataset is used to evaluate the neural network performances during the training.
• The test dataset is used to test the capability of the neural network to generalize by using different

samples from the ones involved in the training.

If the subdivision option is enabled, FEDC creates the train, test, and optionally the validation
folder, each one containing a subfolder containing the related images of every emotion of the selected
database. The user can choose how to subdivide the database images for the datasets as a percentage,
making using of two sliders in the case that the validation subdivision is disabled, or three.

3.1.2. Performance Enhancement Features

The most recent version of FEDC (4.0.3) can also perform the following operations on the images:

• change image format;
• conversion in grayscale color space;
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• crop the images to face only;
• histogram equalization (normal or CLAHE);
• scaling of horizontal and vertical resolutions; and
• transformation of rectangular images into square ones.

3.2. Choice of the Neural Networks

To obtain effective results, we searched for the best neural networks made specifically for facial
expression recognition. Our choice fell on the following two state-of-the-art networks, designed with
different approaches. Ferreira [21] published in 2018 a deep network that is relatively complex and has
a default image size of 120x120 pixels. Miao [22] published in 2019 a shallow neural network that is
much simpler and has a default image resolution of 48x48 pixels. Both, in their default configuration,
have about 9 million parameters, but, by setting a resolution of images of 48× 48 pixels for the network
in [21], it is possible to reduce its parameters to about 2 million. This reduction allows performing
emotion recognition on single board computers, opening the door to a reduction of the cost of these
tests. In this way, it is possible to run the tests in real-time on autonomous vehicle prototypes. This is
important since running the tests without storing face images allows increasing the number of testers.

3.3. Calibration Benchmark Applications

After we obtained some suitable neural networks, we used them to assess the effects of different
calibrations on the passengers’ feelings considering different situations within common scenarios.
To perform emotion recognition, we developed a utility software, called Emotions Detector, using
Java and the OpenCV, DeepLearning4J (DL4J) [23], and Apache Maven libraries. It can acquire both
images from a webcam or frames of a prerecorded video, crop them to the face only, apply the
post-processing algorithms needed by the neural network, and run the network on them. At the
end of the process, the images themselves and their emotions probability distributions are saved
automatically to obtain a test report. We defined:

• Calibration: A set of parameters that determine the behavior, in terms of trajectory (acceleration
ramps, lateral distances from obstacles, and preferred lateral accelerations) and, in general,
all the numerical parameter (not considered in this paper) needed to properly develop an AV
driving algorithm.

• Sscenario: The environment (real or virtual) in which the vehicle’s behavior is shown with different
calibrations and traffic conditions.

• Situation: A combination composed of a calibration, a scenario, and a traffic conditions set, to be
shown to testers.

The situations can be represented both in simulators and real vehicles. Of course, the use of a real
vehicle can give better results, but ensuring the repeatability of the tests requires the use of a closed
track and other vehicles for the traffic, making the tests extremely expensive.

4. Neural Networks Training

We decided to focus on neural networks training since the evaluation of their accuracies is
fundamental to achieve an objective emotions detection. Section 4.1 describes the training set-up.
Section 4.2 describes the metrics to assess the performances of the networks, and ways to improve them
performing operation such as cross validation, data augmentation, and normalization. Section 4.3.1
describes the results obtained training the network [21] on the CK+ database. Section 4.3.2 describes
the results obtained from the networks trained on the FER2013 database. Section 4.3.3 describes the
results obtained training the networks on the database ensembles. For the reader convenience, these
results are summarized in Section 4.4.

For the training of the aforementioned neural networks (see Section 3.2), we chose the following
databases in order to be able to compare the results of our implementations with those obtained by
neural networks’ authors:
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• CK+, which was used only for the network in [21] because it was not used by the authors of [22];
and

• FER2013.

We also prepared the following two database ensembles recurring to FEDC:

• Ensemble 1, composed of all the labeled images from all the databases supported by FEDC; and
• Ensemble 2, composed of all the posed facial expressions images from the databases CK+, FACES,

JAFFE, MUG, and RaFD.

We performed training in 23 different configurations. Table 1 indicates the number of pictures for
each emotion that can be found in the chosen databases.

Table 1. Picture available for each emotion in the chosen databases.

Emotion Ensemble 1 Ensemble 2 CK+ FER2013

Anger 4328 981 45
4953

3111 a

Contempt 788 572 18
0

216 a

Disgust 1340 1022 59
547

248 a

Fear 1887 950 25
5121
819 a

Happiness 10,676 1089 69
8989

9355 a

Neutrality 14,196 1070 123
6198

12,906 a

Sadness 5524 953 28
6077

4371 a

Surprise 5254 656 83
4002

4462 a

a FER+ annotations.

4.1. Training Environment Set-Up

We chose to use Keras [24] as a high-level abstraction API because it is simple to use and, for
some years now, it has been one of the most widely used solutions for neural networks training. It can
abstract three different frameworks for machine learning: TensorFlow [25], Microsoft Cognitive Toolkit
(CNTK) [26], and Theano [27]. All three proposed solutions adopt an open source-like license. For our
purposes, we chose to use TensorFlow. Other utility libraries adopted to speed-up the code writing
and to improve the presentation of the experimental results are:

• Matplotlib [28], a 2D plotting library for Python;
• NumPy [29], a package for scientific computing for Python;
• Open Source Computer Vision Library (OpenCV) [30], a computer vision and machine learning

software library for C++, Java, MATLAB, and Python;
• Pandas [31], which provides high-performance, easy-to-use data structures and data analysis tools

for Python; and
• Scikit-learn [32], a library for data mining and data analysis.

4.2. Performance Assessment Metrics

An (artificial) neural network is a mathematical system. The name “neural networks” comes
from the conceptual similarity to the biological neural system. From the mathematical point of
view, a “neuron” is a mathematical function with a certain number q of inputs, u1, u2, ..., uq and one
output, y. Those inputs are linearly combined to determine the activation signal s, with the equation
s = Θ0 + Θ1u1 + ... + Θquq. Θ0 is usually called the bias parameter. After the sum node, a non-linear
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function is applied to s, obtaining the output signal y = σ(s). σ(s) is commonly called activation
function. Popular activation functions are historically the sigmoidal function and, nowadays, the ELU,
ReLU, and LeakyReLU functions.

Various layers of this kind compose a neural network. In the literature, it is possible to find
various neural networks designed for various purposes.

4.2.1. Underfitting and Overfitting

The primary objective of a neural network is to create a model that is able to generalize. This
implies that a good model can work in the same way with both already seen and new unseen data.
There are two different ways in which the system is unable to achieve this ideal behavior:

• If a model has not learned sufficient characteristics from the input data, it will not be able to
generalize towards new data, therefore it will underfit.

• Conversely, if it has learned too many features from the training samples, it will limit its ability to
generalize towards new data: in this case, the model will overfit.

Not all the network parameters are chosen during the training. Some of them have to be set before
the training or are determined by the neural network structures. The former are called hyperparameters.
Before describing the experimental results, it is better to define some terms:

• Learning rate defines the update “speed” of the parameters during the training. If it is lower with
respect to the ideal one, the learning is slowed down but become smoother; on the contrary, if its
value is too high, the network can diverge or underfit.

• Sample is an element of a database. In our case, it is a picture of a human face with a facial
expression properly labeled with the represented emotion.

• Batch is a set of N samples processed independently and in parallel. During the training process,
a batch corresponds to a single update of the network parameters.

• Epoch is usually a passage on the entire dataset and corresponds to a single phase of the training.

For each experiment, we computed these metrics:

• Accuracy is defined as

α =
Pr

P
(1)

where Pr is the number of correct predictions and P is the number of total predictions. For this
metric, the higher is the better.

• Loss represents how bad the model prediction is with respect to a single sample. For this metric,
the lower is the better. In the literature, there are l many different methods to compute this
parameter, such as binary cross-entropy, categorical cross-entropy, mean absolute deviation, mean
absolute error, mean squared error, Poisson, squared hinge, and so on. For our purposes, we
chose to compute this metric as a categorical cross-entropy, defined as:

L(y, ŷ) = ΣM
j=0ΣN

i=0(yij · log(ŷij)) (2)

This loss function must be used for single label categorization, i.e. when only one category
is applicable for each data point. It is perfectly suited to our cases, since we formulated the
hypothesis that each image (sample) can represent only one of the considered emotions (category).

In particular, the curve composed by the various losses computed in each epoch, called loss curve
in the literature, is important to determine if the model underfits or overfits. If the training dataset
loss curve is much greater than the one of the validation dataset, we are in underfitting conditions.
If the loss curves are near, we probably obtained a good model. Finally, if the loss curve of the
training dataset is instead much lower than that of the validation dataset, it indicates the presence
of overfitting [33].
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• Confusion matrix: Considering that the classification system has been trained to distinguish
between eight different emotions, the confusion matrix summarizes the result of the testing of the
neural network. It is a particular contingency table in which emotions are listed on both sides.
In the top row, there are the labels of the pictures (ground truths), while in the left column there
are the predicted categories (emotions).

4.2.2. Cross Validation

To reduce overfitting, it is possible to adopt the cross-validation technique. It consists in
partitioning the dataset into multiple subsets, some of which are used for training and the remaining
for validation/testing purposes. In the literature are described various kinds of techniques, such as
Leave-One-Out Cross-Validation (LOOCV), k-Fold, Stratified, and Time-Series. Stratified is used when
we are dealing with binary classification problems, while Time-Series is used when the dataset is
composed of observation made at different times; hence, these two are not suitable for our purposes.
For this work, LOOCV or k-Fold can be chosen. We chose the latter, putting k = 9. In the k-Fold,
the dataset is split into k folds (subsets) of approximately the same size: k − 1 folds are used for
training, while the remaining one is used for validation or test. Using the FEDC database subdivision
function, we divided the database into two subsets: one containing 90% of the images, which was
used for training and validation, while the remaining 10% was used to perform the test. Before the
training, we further split the first subset into nine smaller subsets: eight of them were used for training,
while the remaining one was used for validation. Changing the validation subset after each training,
it was possible to perform nine different training of the neural network, in order to pick the one that
performed better.

4.2.3. Data Augmentation

Data augmentation is adopted when a low number of samples is available. The idea is to modify
them in different ways in order to artificially increase their number. For example, in the case of images,
augmented ones can be obtained by rotating, reflecting, applying translations, and so on. In this way,
it is possible to improve the generalization capability of the network without modifying the model.
For our purposes, we applied different transformations on the images. In all the training, we applied
these data augmentations:

• brightness range from 50% to 100%;
• random horizontal flip enabled;
• rotation interval between ±2.5 deg;
• shear range of ±2.5%;
• width and height shift range of 2.5%; and
• zoom transformation interval between ±2.5%.

4.2.4. Normalization

To improve the training process, we applied, alternately, two different normalizations to the
grayscale space of the images: [0,1] and z-score normalization. The [0,1] normalization is a particular
case of the scaling to range normalization, defined generally by the formula:

x′ =
x− xmin

xmax − xmin
(3)

in which xmin is set to 0 and xmax is set to 1. The z-score normalization, sometimes called standardization,
is used to obtain a distribution with mean µ = 0 and standard deviation σ = 1. The applied formula is:

xz =
x− µ

σ
(4)
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in which x represent the 8-bit brightness value of the images, xmin and xmax are, respectively, the
minimum and the maximum brightness within the images, µ is the arithmetic average of the brightness
of all the pixels of the images, and σ its standard deviation.

4.3. Training Results

We implemented the networks within the Keras environment, as described elsewhere. The code
to train the network can be found at [34]. For the network in [22], we did not encounter any problems,
while, for the network in [21], we faced an ambiguity in the “e-block” layer because, in the paper,
it is not clearly described how to implement the relative “crop and resize” operation. We decided
to implement it as a single convolutional layer, in which the kernel size is defined according to the
resolution of the input images. For 120 × 120 pixels images, which is the default input size for the
network, the kernel size is 106 × 106, while,for 48 × 48 pixels images, which is the size of the picture
of the FER2013 database, the kernel size is 43 × 43. In both cases, we have set the number of output
filter to 64, in order to make the next multiplication operation possible. We trained the networks with
these datasets:

• CK+ database [5,6] (only for the network in [21] );
• FER2013 [7];
• Ensemble 1; and
• Ensemble 2.

For each training, we used the “EarlyStopping” callback to stop the training if, after 18 consecutive
epochs, there was no improvement in the loss curve computed on the validation dataset. In some
trainings, we also set the “ReduceLROnPlateau” callback to multiply the learning rate by 0.99 or 0.95
in every epoch.

To avoid being excessively long and boring, we only report the most interesting cases. The other
cases can be found in [35]. The cases we selected are in bold in Table 3: for each of them, we report its
accuracy graph, its loss graph, and its confusion matrix.

As hyperparameters, we set:

• batch size: 100 (except for the network in [21] trained on the CK+ database, where it was set
as 50);

• maximum number of epochs: 1000; and
• learning rate: 0.001.

4.3.1. CK+ Database

The first training of the network in [21] was performed on the CK+ database, resized to a resolution
of 120 × 120 pixels. With the previously said division, it was split in this way: 364 images were used
for training, 46 images were used for validation, and 40 images were used for testing.

The obtained results are shown in Figures 1–3.
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Figure 1. Accuracy graph of the network in [21], trained with the CK+ database using the data
augmentation and the z-score normalization. Figure from [35].

Figure 2. Loss graph of the network in [21], trained with the CK+ database using the data augmentation
and the z-score normalization. Figure from [35].
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Figure 3. Normalized confusion matrix of the network in [21], trained with the CK+ database using
the data augmentation and the z-score normalization. Figure from [35].

The results obtained are in line with the one presented in [21], thus our implementation seems to
work properly.

4.3.2. FER2013 Database

The FER2013 [7] database has a huge number of pictures, but the resolution of the images is only
48x48 pixels. Instead of performing an upscaling of these pictures, we decided to modify the network
in [21] to work, as described previously, with these low-resolution images.

We used the same settings and hyperparameters adopted from the CK+ database, increasing only
the batch size to 100. We therefore obtained 28,712 images for training, 3590 for validation, and 3585
for testing.

With this database, we obtained accuracies around 60%: a not impressive result, surely improvable
but also undermined from the sometimes dubious labels and to the presence, in the database, of some
images that do not represent human faces. Thus, we decided to use the FER+ [8] annotations, which
allowed us to remove erroneous images and to improve ground truth.

The best results in terms of test accuracy on this database were obtained from the network in [21],
and are shown in Figures 4–6.
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Figure 4. Accuracy graph of the network in [21], trained with the FER2013 database with the FER+
annotations using the data augmentation and the z-score normalization. Figure from [35].

Figure 5. Loss graph of the network in [21], trained with the FER2013 database with the FER+
annotations using the data augmentation and the z-score normalization. Figure from [35].
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Figure 6. Normalized confusion matrix of the network in [21], trained with the FER2013 database with
the FER+ annotations using the data augmentation and the z-score normalization. Figure from [35].

As shown by the confusion matrix (see Figure 6), the trained network is quite good at detecting
happiness, neutrality, and surprise, while it is weak at detecting fear and sadness. We also have poor
performance in the recognition of contempt and disgust, but these emotions are not important for our
purposes. Since FER2013 is known to be a not well-balanced database, and considering that also the
network in [22], trained with the same settings and on the same databases, presents a similar confusion
matrix (see Figure 7), our hypothesis is that the FER2013 database does not provide sufficient examples
for contempt, disgust, and, more important for our application, fear and sadness classes.

Figure 7. Normalized confusion matrix of the network in [22], trained with the FER2013 database with
the FER+ annotations using the data augmentation and the z-score normalization. Figure from [35].
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4.3.3. Database Ensembles

We decided to train again the neural networks using two different database ensembles: one
containing the images, posed and spontaneous, of all the databases supported by FEDC and one
containing only the posed ones. These were obtained using FEDC, applying a conversion to the
grayscale color space and a face detection algorithm in order to crop the images on human faces.
Both were created downscaling all the images to 48 × 48 pixels, in order to adapt them to those of
the FER2013 database and to be able to compare the results of the two databases placed under the
same conditions. For the FER2013 database, we chose to also use the FER+ annotations, because the
improvement in accuracy due to their use is relevant.

The Ensemble 1 database is composed of all the available images from the database supported,
for now, by FEDC. Making use of the same subdivision procedure used in the previous examples, we
obtained 35,212 images for training, 4402 for validation, and 4379 for testing. Results are shown in
Figures 8–10.

The obtained results are better, in terms of classification errors, than those obtained using the
databases individually, especially for the contempt and disgust classes, which had accuracies similar
to random ones.

The Ensemble 2 database is a subset of Ensemble 1 composed only of posed images. Thanks to
the FEDC subdivision procedure, we obtained 5847 images for training, 731 for validation, and 715
for testing.

Figure 8. Accuracy graph of the network in [21], trained with the Ensemble 1 database using the data
augmentation and the z-score normalization. Figure from [35].
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Figure 9. Loss graph of the network in [21], trained with the Ensemble 1 using the data augmentation
and the z-score normalization. Figure from [35].

Figure 10. Normalized confusion matrix of the network in [21], trained with the Ensemble 1 database
using the data augmentation and the z-score normalization. Figure from [35].
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4.4. Summary of Training Results

For reader convenience, we summarized the obtained results into two tables. Table 2 contains the
numbers of photos for training, validation, and test datasets, while Table 3 contains the best training
accuracies obtained per-database and neural network. The test accuracies of the cases shown in detail
in the paper are in bold. In general, the network in [21] requires more time for training, but has slightly
better performance and, with the same image size, requires fewer parameters than the one in [22].
Thus, if we had to choose a network, we would certainly pick the first one. Before continuing, it is
important to make an observation: even if the test accuracies of the trainings made with the Ensemble 2
database are better with respect to the ones obtained with Ensemble 1, we expect better result on the
field from the networks trained with the latter. This is because the spontaneous expressions are those
that we can observe most commonly in everyday life, while those posed are more caricatural and
deliberately exaggerated: this makes the interclass difference greater, but, at the same time, a network
that is trained with these images will inevitably experience a bias between the images on which it is
trained and those in which a prediction will actually be requested.

Table 2. Subdivision of the databases.

Ensemble 1 Ensemble 2 CK+ FER2013

Train 35212 5847 364 28712
Validation 4402 731 46 3590

Test 4379 715 40 3585

Table 3. Test accuracies summary table (best values).

Ensemble 1 Ensemble 2 CK+ FER2013

[21]
74.79 %

78.85 b %
80.38 c %

94.69 %
97.20 b %
97.34 c %

82.50 %
92.50 b %
92.50 c %

56.57 %
61.40 b %
62.46 c %

78.36 a,c %

[22]
71.39 %

76.91 b %
78.47 c %

92.59 %
94.83 b %
96.78 c %

N.A.

54.03 %
61.67 b %
62.71 c %

76.67 a,c %

a FER+ annotations. b [0,1] normalization. c z-score normalization.

5. Experimental Results

5.1. Situations Preparation

We proposed five different calibrations of the autonomous driving algorithm in two different
scenarios. By combining those calibrations and scenarios, we prepared 11 benchmark situations. The first
six of them (identified in the following as Cn) involve as scenario a curve to the right in a suburban
environment. The car can face it with three different calibrations, hence following three different
trajectories: strictly keeping the right side (situations C1 and C4), keeping the center (situations C2 and
C5) of the lane, or widening at the entrance of the curve to decrease the lateral accelerations (situations
C3 and C6). Since in all these cases the vehicle remains within its lane, all these behaviors are allowed
by the majority of road regulations.

The other five, instead (identified in the following as Tn), have as scenario a right turn inside an
urban environment. In the road just taken, there is an obstacle that obstructs the rightmost lane. The
road has two lanes for each direction of travel. With the first calibration (situations T1, T2, and T3), the
car tries to stay at the right with a lot of decision, therefore it suddenly discards the obstacle. With the
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second calibration (situations T4 and T5), instead, the car decides to widen the turn in advance and to
move to the right lane only after it passed the obstacle.

5.2. Criteria for Emotion Analysis

As described in Section 3.3, for each of the considered situations, we prepared a 3D representation.
The most relevant emotion, when different from neutrality or sadness, was taken into consideration.
We considered fear and surprise as negative emotions, while happiness as positive ones. Sadness and
neutrality have been considered as middle values since the network appears to little appreciate the
differences between these moods. In any case, if there was no other emotion than neutrality or sadness,
the one with a greater number of sadness outcomes was considered worse with respect to ones that
score more neutrality outcomes. Since the neural networks can recognize also anger, contempt, and
disgust, we considered those outcomes as experiment failures because these moods are not the ones we
expected to obtain in our tests.

5.3. Experimental Campaign

We asked eight people, six males and two females, average ages 25 years, interval 23–31 years, to
watch the situations, starting from a black screen and without describing what they would see to not
interfere with their moods. We detected their emotions every 2 s.

We represented the situations in the order: T2-T4-T3-T1-T5-C1-C5-C2-C6-C3-C4. We chose to not
mix the urban (T) and suburban (C) scenarios to not break the environments immersion. In the urban
scenario, we placed the situations that we expected to provoke greater emotional reactions in the middle
of the representation, while, in the suburban one, we started from the softer one moving to the most
critical at the end.

For the tests, we used a flat projection screen to be able to choose the point of view, avoiding, in
this way, that the tester could not be able to see the critical moments represented. The use of a virtual
reality set could improve the environment immersion, but, since we were using an emotion recognition
technique that requires to see the entire face, the use of a device of this kind is not possible.

5.4. Results Discussion

The experimental results in Table 4 show that situations T2 and C6 are the most stressful from the
passengers’ points of view. In the urban scenario, there are some positive reactions to the situation T3,
probably due to the capability of the vehicle to make the safest decision by keeping in the right lane
and stopping in front of the obstacle. In addition, the situation T4, which is the one that minimizes
the lateral movement of the car, is appreciated. With traffic, the calibrations shown in the situations T1
and T5 appears to be equivalent. Regarding the curve scenario, the calibration shown in C3 and C6 is
preferred when there is no traffic from the other direction (situation C3). Oppositely, for the one where
the car stays at the right side of its lane (C1 and C4), it is preferred the situation C4 in which there is
traffic in the other direction. The calibration shown in C2 and C5 are not appreciated: in our opinion,
this is due to the unnatural path that follows the centerline of the lane.

These preliminary results agree with the experiences reported by the testers when they were
interviewed after the tests. In particular, asking about the situations C3 and C6, it emerged that the
C3 one, in which the curve is traveled keeping the left side of the lane, is more appreciated without
traffic in the opposite direction. Instead, following the same trajectory with traffic, as in the situation
C6, causes inconveniences to the passengers.
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Table 4. Emotional effects of the benchmark tests. In the columns are indicated the number of people
that reacted to the considered situation with the emotion on the left. Data obtained by the network
in [21], trained with the Ensemble 1 database using the data augmentation and the z-score normalization.

T1 T2 T3 T4 T5 C1 C2 C3 C4 C5 C6

Fear 0 0 0 0 0 0 0 0 0 0 0
Sadness 5 7 2 3 4 1 4 3 4 4 5
Surprise 0 0 1 1 0 0 0 0 0 0 0

Happiness 0 0 2 2 0 3 0 1 3 1 0
Neutrality 3 1 3 2 4 4 4 4 1 3 3

Experiment failure 0 0 0 0 0 0 0 0 0 0 0

T1: The vehicle takes the right-turn curve in a step way, staying at as possible at the right of the street. The
car discards the obstacle when it is really close to keep the right rigorously, then re-enters the rightmost lane
immediately after it. No other traffic. T2: Same situation as in T1, but with incoming traffic from the opposite
direction. T3: Same situation as in T1, but traffic from the same direction of the passenger’s vehicle supersede it,
preventing the algorithm to move around the obstacle. The vehicle stops in front of it, then starts again moving
around the obstacle. T4: The vehicles take the right-turn curve entering in the left lane, super-seed the obstacle
then move to the right lane. T5: Same situation as T4, but with incoming traffic from the opposite direction. C1:
The vehicle runs through the curve keeping strictly along the right edge of the road. No other vehicle comes
from the other direction of travel. C2: The vehicle travels the curve keeping in the center of its lane. No other
vehicle comes from the other direction of travel. C3: The vehicle travels the curve widening to the left at the
entrance, then closing it to the right, to reduce lateral accelerations. C4: Same situation as in C1, but with traffic
from the opposite direction. C5: Same situation as in C2, but with traffic from the opposite direction. C6: Same
situation as in C3, but with traffic from the opposite direction.

6. Conclusions

This paper proposes a proof-of-concept way to smooth the transition towards autonomous
vehicles. To improve the passengers’ trustiness on these vehicles, a delicate calibration of the driving
functions should be performed, making the AV decisions closest to the ones expected by the passengers.
We adopted machine learning techniques to recognize passengers’ emotions, making it possible
to obtain an objective comparison between various driving algorithm calibrations. To achieve this
result, we chose two state-of-the-art neural networks, implemented, trained, and tested in different
conditions. We developed two software tools, called Facial Expressions Databases Classifier and
Emotions Detector. The first, designed to generate large facial expressions pictures databases by
merging and processing images from various databases, has been released under the MIT open-source
license on GitHub [20]. The second has been developed for internal use to analyze the testers’ emotions
during the situations representations. The proposed methodology has demonstrated itself able to help
designers to choose between different calibrations of the trajectory planner when applied considering
two different conditions.

As future work, we would like to improve our results by using an improved car simulator, with
motion capabilities and a curved screen, to improve the immersion in the simulated environment, and
by increasing the number of testers to obtain analysis with statistically-relevant results.
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Abbreviations

The following abbreviations are used in this manuscript:

AV Autonomous Vehicles
ADAS Advanced Driver Assistance Systems
V2V Vehicle-to-vehicle
V2I Vehicle-to-infrastructure
FACS Facial Action Coding System
AU Action Units
FER2013 Facial Expression Recognition database
JAFFE Japanese Female Facial Expression database
MUG Multimedia Understanding Group database
RaFD Radboud Faces Database
SFEW 2.0 Static Facial Expression in the Wild database
ECU Electronic Control Unit
FEDC Facial Expression Databases Classifier
DE Database Ensembles
GUI Graphical User Interface
LOOCV Leave-One-Out Cross-Validation
SAE Society of Automotive Engineers
ZCA Zero-phase Component Analysis
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