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Abstract: In this paper, we introduce the three-dimensional Maximum Range-Sum (3D MaxRS)
problem and the Maximum Spatiotemporal Range-Sum Change (MaxStRSC) problem. The 3D MaxRS
problem tries to find the 3D range where the sum of weights across all objects inside is maximized,
and the MaxStRSC problem tries to find the spatiotemporal range where the sum of weights across
all objects inside is maximally increased. The goal of this paper is to provide efficient methods for
data analysts to find interesting spatiotemporal regions in a large historical spatiotemporal dataset by
addressing two problems. We provide a mathematical explanation for each problem and propose
several algorithms for them. Existing methods tried to find the optimal region over two-dimensional
datasets or to monitor a burst region over two-dimensional data streams. The majority of them cannot
directly solve our problems. Although some existing methods can be used or modified to solve the
3D MaxRS problems, they have limited scalability. In addition, none of them can be used to solve
the MaxStRS-RC problem (a type of MaxStRSC problem). Finally, we study the performance of the
proposed algorithms experimentally. The experimental results show that the proposed algorithms
are scalable and much more efficient than existing methods.
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1. Introduction

Technological advances in mobile devices, location tracking, and wireless communication lead to
the emergence of new types of services, such as location-based social networking services. Nowadays,
a vast amount of user-generated spatiotemporal data has been collected from these services. Analyzing
these spatiotemporal data often provides insights into understanding customers’ behaviors in the
real world. For example, suppose that data analysts work for a coffeehouse chain that has over
2000 retail stores across the globe. In addition, suppose that they obtain a large historical dataset by
having collected geo-tagged posts that mentioned their coffeehouse from several Location-Based Social
Network Services (LBSNSs) to analyze customer satisfaction. Each collected object o is represented by
a tuple of the form < x, y, t, w >, where (x, y, t) is the spatiotemporal point at which o is posted, and w
is the weight of o.

In this scenario, the following queries may help develop a marketing strategy.

• Query 1. “find the (1 km × 1 km × 1 h) spatiotemporal range which maximizes the number of
objects inside."
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• Query 2. “find the (1 km × 1 km × 1 h) spatiotemporal range where the number of objects inside
is maximally increased within one hour.

Figure 1 describes query examples on an example dataset. We draw only four representative
ranges (i.e., A, B, C, and D), but note that there are an infinite number of (1 km × 1 km × 1 h) ranges
in the entire space. The result of query 1 is B because no other spatiotemporal ranges contain more
than five objects. However, the result of query 2 is not B but C. Let us draw the ‘previous’ range below
each range, as shown in Figure 1. For example, we draw Aprev below A so that Aprev is adjacent to
A. Observe that the number of objects inside A is increased by one compared to that inside Aprev.
As shown in Figure 1b, C is the region where the number of posts inside is maximally increased.

Figure 1. An example dataset and query examples.

It is helpful for data analysts to use these queries to understand customers’ behavior. In addition,
they can provide more valuable insights into customers’ satisfaction with a slight modification. For
example, suppose that we set the weight of each geo-tagged post by quantifying the emotional state of
the poster (e.g., +1 for positive and −1 for negative) using existing sentiment analysis methods. Then,
data analysts can carry out case-studies for marketing research by using the following queries:

• Query 3. “find the (1 km × 1 km × 1 h) spatiotemporal range which maximizes the number of all
positive geo-tagged posts inside.”

• Query 4. “find the (1 km × 1 km × 1 h) spatiotemporal range where the number of negative
geo-tagged posts inside is maximally increased within one hour.”

If we plan to host an event for marketing in a restricted area and time, these queries may be useful
to prepare this event. The goal of this paper is to provide efficient methods for data analysts to find
such interesting spatiotemporal regions in a large historical spatiotemporal dataset. We formulate two
mathematical problems: the maximum three-dimensional range-sum (3D MaxRS) problem and the
maximum spatiotemporal range-sum change (MaxStRSC) problem. The 3D MaxRS problem tries to
find the spatiotemporal range where the sum of weights across all objects inside is maximized. On the
other hand, the MaxStRSC problem tries to find the spatiotemporal range where the sum of weights
across all objects inside is maximally increased.

Recently, many researchers have proposed methods for analyzing spatiotemporal data to support
decision-making processes. Existing methods try to find the optimal region over 2D datasets or to
monitor a burst region over 2D data streams. However, the majority of them cannot directly solve our
problems. Although some existing methods can be used or modified to solve the 3D MaxRS problems,
they have limited scalability. In addition, none of them can be used to solve the MaxStRS-RC problem
(a type of MaxStRSC problem). To our knowledge, this is the first research addressing the 3D MaxRS
problem and the MaxStRSC problem in historical spatiotemporal datasets.
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We summarize our contribution as follows: (1) We introduce two problems (3D MaxRS,
MaxStRSC), which try to find interesting spatiotemporal regions in a large historical spatiotemporal
dataset. To our knowledge, this is the first research that studies these problems over large-scale
historical spatiotemporal datasets. (2) We provide a mathematical explanation and propose several
scalable algorithms for each problem. (3) We experimentally study the performance of the proposed
algorithms. We extend existing methods so that they can handle the 3D MaxRS problem or the
MaxStRSC problem for comparison. The experimental results show that our algorithms are much
more efficient and scalable than existing methods.

We organize the rest of this paper as follows: We give a formal definition for each problem in
Section 2. We survey the related works in detail in Section 3. Then, we describe our algorithms for the
3D MaxRS problem (Section 4) and the MaxStRSC problem (Sections 5 and 6). In Section 7, we discuss
the experimental results. In Section 8, we summarize the conclusion of this paper and our future work.

2. Preliminaries

In this section, we give a formal definition of the 3D MaxRS problem and the MaxStRSC problem.

2.1. 3D MaxRS Problem

Let us consider a set O of spatiotemporal objects whose cardinality is too large to fit into
main memory. An object o ∈ O is defined as a tuple < x, y, t, w >, where (x, y, t) represents the
spatiotemporal point, and w is the weight of o.

We now introduce some useful notations to express geometric objects compactly. We use c(p)
to denote the a × b × τ axis-parallel cuboid centered at a point p = (x, y, t) ∈ P, where P is the
entire spatiotemporal space. In addition, for a cuboid c, we denote the set of objects inside c by O(c)
(i.e., O(c) = {o|o ∈ O and (o.x, o.y, o.t) is inside c}). Without loss of generality, an object on the
boundary of a cuboid is not said to be ‘inside’ the cuboid.

Using these notations, we define the three-dimensional Maximum Spatiotemporal Range Sum
(3D MaxRS) problem as follows:

Definition 1. (3D MaxRS problem). Given O, the size a× b× τ of a query cuboid, find the set of all points
p∗ ∈ P such that:

p∗ = arg max
p∈P

 ∑
o∈O(c(p))

o.w

 ,

where P is the entire spatiotemporal space.

As its name implies, the 3D MaxRS problem is a three-dimensional version of the 2D MaxRS
problem [1,2], a well-known problem studied in computational geometry community.

2.2. MaxStRSC Problem

We introduce another notation before we formulate the maximum range sum change problem.
We use cprev(p) to denote the a× b× τ axis-parallel cuboid centered at the point pprev = (p.x, p.y, p.t−
τ), where p = (x, y, t) ∈ P. The Maximum Spatiotemporal Range Sum Change (MaxStRSC) problem
is defined as follows:

Definition 2. (MaxStRSC problem). Given O, the size a× b× τ of a query cuboid, and a function change:
(R×R)→ R, find the set of all points p∗ ∈ P such that:

p∗ = arg max
p∈P

change( ∑
o∈O(cprev(p))

o.w, ∑
o∈O(c(p))

o.w)


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where P is the entire spatiotemporal space.

The MaxStRSC tries to find the location p such that the change between the aggregate weight
of objects in O(cprev(p)) and the aggregate weight of objects in O(c(p)) is maximized. The answer
to an instance of the MaxStRSC problem depends on the choice of a function change. We propose
two types of the MaxStRSC problem called Maximum Spatiotemporal Range-Sum Absolute-Change
(MaxStRS-AC), and Maximum Spatiotemporal Range-Sum Relative-Change (MaxStRS-RC) as follows:

• MaxStRS-AC: The MaxStRSC problem with the absolute change measurement function changeabs,
where changeabs(x1, x2) = x2 − x1

• MaxStRS-RC: The MaxStRSC problem with the relative change measurement function
changerel where changerel(x1, x2) = x2−x1

x1
. Without loss of generality, we assume that

changerel(x1, x2) = 0 if x1 =0.

3. Related Work

We categorize related works into four groups as follows: (1) Range Aggregate Query, (2) MaxRS
and its variants in 2D Space, (3) Max-enclosure Problem in 3D Space, and (4) Burst Detection.

3.1. Range Aggregate Query

Suppose that we have a set O of spatiotemporal objects, where each o ∈ O has weight o.w.
The range aggregate query [3–8] returns the aggregate value over objects inside the query range.
Although it is possible to solve the 3D MaxRS problem by issuing range-aggregate queries, this method
needs too high computational costs even for solving the 2D MaxRS problem as described in [1].

3.2. MaxRS and Its Variants in 2D Space

For the given set O of weighted objects and the size of a query rectangle (or cuboid), the 2D MaxRS
problem tries to find the location of the area where the sum of weights of all objects is maximized.
The majority of studies in this category [1,2,9–14] aim to process the 2D MaxRS query on static spatial
objects. Choi et al. [1,2] proposed scalable algorithms, by modifying the in-memory plane-sweep
algorithm [15], and Zhou et al. [9] proposed an index-based method that solves the MaxRS query.
Several variants of the MaxRS problem [10–14] also have been proposed. Some researchers proposed
methods [16–20] for continuously monitoring the MaxRS problem over spatial data streams.

The existing methods mentioned above are not targeted at the historical spatiotemporal data
analysis. While the input of the 3D MaxRS problem and the MaxStRSC problem is a set of
spatiotemporal objects, the input of the MaxRS problem of each study above is either a set of spatial
objects or a spatial data stream in a two-dimensional space. Most of them cannot be directly extended
to solve the 3D MaxRS problem or the MaxStRSC problem. Although we can use one of some
existing algorithms [1,2] as a sub-routine in our method at least for solving the 3D MaxRS problem, it
degrades the performance due to redundant computations. We describe this in detail in Section 4.2.3,
and Section 7.2.1.

3.3. Max-Enclosure Problem in 3D Space

We found one study [15] that can be directly applied to solve the 3D MaxRS problem. Subhas C.
Nandy and Bhaswar B. Bhattacharya [15] proposed an in-memory algorithm for the max-enclosing
cuboid problem, a special case of the 3D MaxRS problem where every object has weight 1. The main
idea of their approach is to take the projections of all the input objects on the xy-plane and compute
the set S of candidate (x, y) coordinates. Although their method is simple to implement, it has the
following drawbacks: (1) it needs an expensive preprocessing to compute all the potential (x, y)
coordinates; (2) it has limited scalability since large amounts of points can be created in the first phase
as the data size increases. We extend it so that it can handle the 3D MaxRS problem and externalize
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it by employing STR-tree [21] for better scalability, but the experimental results show that it is much
more inefficient than the proposed methods.

3.4. Burst Detection

Some existing work [22,23] tried to identify burst regions (hot spots), which is similar to our
MaxStRS-AC problem. For example, Mathioudakis et al. [22] propose the spatial burst problem, which
seeks to find ‘spatial bursts’ where related documents exhibit a surge. They tried to find ‘burst cells’,
where notable events happen over a grid. Conceptually, it may seem similar to our works, but they are
different. The answer to the MaxStRSC problem can be an arbitrary region that does not need to be
one of the pre-defined cells, unlike that of the spatial burst problem of [22].

Recently, Feng et al. [23] proposed the continuous bursty region detection (SURGE) problem,
which tries to monitor a bursty region from a stream of spatial objects. For the given size a× b of
a query rectangle, a bursty region is the rectangular region of size a× b with the maximum burst
score. The burst score of a rectangular region r is defined over two consecutive temporal windows
Wprev, Wcurrent. The higher the change of the aggregate value of objects inside r for Wprev between that
of objects inside r for Wcurrent, the higher tends to be the burst score of r over Wprev, Wcurrent. Unlike
studies for the MaxRS problem or its variations, Feng et al. [23] focuses on the change of the aggregate
value of the region between two consecutive temporal windows.

Although The SURGE problem is similar conceptually to the MaxStRS-AC problem, they are
different. They assume a stream environment, so it is not feasible to use their solution to analyze the
large historical spatiotemporal dataset. We can extend it to solve the MaxStRS-AC problem, but it has
limited scalability (see Section 7.3). In addition, it is impossible to extend the algorithm for the SURGE
problem to solve the MaxStRS-RC problem (see Section 7.1).

4. Algorithms for 3D MaxRS

We solve the 3D MaxRS problem by transforming it into an equivalent problem with a finite set
of objects to be examined. We present an alternative definition of the 3D MaxRS problem and show
how to transform the problem in Section 4.1. Then, we describe our algorithms for the 3D MaxRS in
Sections 4.2 and 4.3.

4.1. Alternative Definition of 3D MaxRS

In this subsection, we show how to transform the 3D MaxRS problem into an equivalent problem
by generalizing the idea of [15] to 3D space. We first introduce notations used to define the new version
of the 3D MaxRS problem:

Definition 3. (Weighted Cuboid) For an object o ∈ O, the weighted cuboid c(o) is defined as the axis-parallel
cuboid which is centered at (o.x,o.y,o.t), whose size is a× b× τ, and whose weight is the same as o.w. We
denote the weight of a cuboid c(o) by c.w. In addition, for the set O of objects, the set C of weighted cuboids is
defined as {c(o)|o ∈ O}.

Definition 4. (Point-Weight). Let C be the set of weighted cuboids. For a point p in P, the point-weight of p is
defined as ∑c∈C(p) c.w, where C(p) = {c|c ∈ C and c contains p}, and is denoted by p.w.

Definition 5. (Weighted Cuboid Partition) For the set C of weighted cuboids, a weighted cuboid partition CP
is a set of disjoint, weighted cuboids satisfying the following conditions:

1. CP is a set of disjoint weighted cuboids, that is, any pair of cuboids in CP are not overlapping.
2. The geometric union of cuboids in CP is the same as the geometric union of cuboids in C.
3. For each cuboid c ∈ CP, the point-weight of any p ∈ c is the same as c.w.
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Figure 2 gives an example of these new concepts. Figure 2a shows the set of objects O = {o1, o2},
where each object has weight 1. As illustrated in Figure 2b, we create a corresponding weighted cuboid
for each object. Let us denote the set of created cuboids by C = {c(o1), c(o2)}. Figure 2c describes a set
CP of seven weighted cuboids, where the weight of the shaded cuboid (i.e., c∗) is set to 2, and weights
of the other cuboids are all set to 1. Note that c∗ is the common intersection area of c(o1) and c(o2).
We show that CP satisfies three conditions of Definition 5. First, it is trivial that CP satisfies the first
and second conditions, as shown in Figure 2c. In addition, CP satisfies the third condition as well:
(1) the point-weight of each point p∗ in c∗ is 2 since p∗ is enclosed by c(o1) and c(o2); (2) for each
cuboid c in CP \ {c∗}, the point-weight of every point p in c is 1 since p is covered by one cuboid.
In other words, CP is the valid weighted cuboid partition of the given C.

Figure 2. An example of the set of weighted cuboids and a weighted cuboid partition.

We now introduce an alternative definition of the 3D MaxRS problem, which is equivalent to the
original version as follows:

Definition 6. (Alternative version of the 3D MaxRS problem). For a set C of weighted cuboids, find the set of
all cuboids c∗ ∈ CP such that c∗ = arg maxc∈CP (c.w), where CP is a weighted cuboid partition of C.

If we can obtain a weighted cuboid partition of C, it is easy to solve the alternative version since
it enables us to solve the problem with a finite set of cuboids to be examined. Going back to the
example of Figure 2, suppose that we have an instance of the original 3D MaxRS problem with input
O = {o1, o2}, and a × b × τ of a query cuboid. Then, the corresponding input for the alternative
version is C = {c(o1), c(o2)}. It is easy to obtain the answer to the alternative version by selecting
the set of cuboids with the maximum weight (i.e., {c∗}) among all cuboids in the provided weighted
cuboid partition CP.

We now show the equivalence of the two versions with the example of Figure 2. For any point
p ∈ P, p is one of: (1) not covered by any cuboid in CP, (2) inside a cuboid in CP \ {c∗}, and (3) inside
c∗. Observe that the point-weight is smaller than c∗.w in the first case (p.w = 0) and second case
(p.w = 1). Thus, every point p∗ inside c∗ belongs to the answer set of the alternative version because it
has the maximum point-weight (p∗.w = 2).

4.2. Nested Plane-Sweep Algorithm

If we obtain a weighted cuboid partition of C, it is easy to obtain the set of optimal cuboids. In this
section, we present a nested plane-sweep (NPS) algorithm which solves the transformed 3D MaxRS
problem by computing a weighted cuboid partition with the plane-sweep paradigm. Throughout this
section, we use the problem instance shown in Figure 2 as a running example to explain the algorithm.
We show how the NPS algorithm eventually finds the shaded cuboid in Figure 2c.
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4.2.1. The Outline of the NPS Algorithm

As its name implies, the NPS algorithm uses the plane-sweep paradigm to solve the problem.
To illustrate the idea, let us consider an imaginary plane perpendicular to the t-axis, as shown in
Figure 3. While sweeping the plane from bottom to top across the entire space, the algorithm performs
some geometric operations whenever the plane meets the top or bottom rectangle of a cuboid. We call
such rectangles event rectangles and the imaginary plane as sweep-plane. In addition, we say a
cuboid c is active if and only if the sweep-plane has encountered the bottom of c but has not entirely
passed over the top of c yet. From now on, we assume that each object in O has different t-axis value
for the sake of simplicity. The algorithm terminates after a sweep-plane encounters the (2 ∗ |C|)-th
(or (2 ∗ |O|)-th) event rectangle.

Let us explain terms related to this approach with the example of Figure 2b. Since we sweep the
plane from bottom to top, the first event rectangle encountered by the sweep-plane is r1, the bottom of
c1 (at t = t1) as shown in Figure 3a. At this moment, there is only one active cuboid, c1. As shown in
Figure 3b, the second event rectangle encountered by the sweep-plane is r2, the bottom of c2 (at t = t2).
Then, the set of active cuboids at t = t2 becomes {c1, c2}. When the sweep-plane encounters r3, the top
of c1 at t = t3; then, c1 becomes inactive. Thus, the set of active cuboids at t = t3 becomes {c2}.

Figure 3. The plane sweep approach.

The plane-sweep approach enables us to convert the 3D geometric problem into a series of 2D
problems. To demonstrate this idea clearly, let us use ri to denote the i-th event rectangle encountered
by the sweep-plane and ti to denote the t-axis value of the sweep-plane at which the plane encounters
ri. Then, the following observation allows us to find the local solution in the subspace ti ≤ t < ti+1 by
just investigating the 2D plane t = ti.

Observation 1. For any point p in ti ≤ t < ti+1, the point-weight of p is the same as the point-weight of
pi = (p.x, p.y, ti).

Proof. We prove this observation by contradiction. Suppose that p.w 6= pi.w. Then, C(p) 6= C(pi)

(see Definition 4), which means that either there exists a cuboid which contains p but does not contain
pi or there exists a cuboid which contains pi but does not contain p. Both cases imply that an event
rectangle must exist in ti < t < ti+1, which leads to the following contradiction: there is no event
rectangle in ti < t < ti+1.

By Observation 1, the point-weight of p is the same as the point-weight of pi, the projection of p
onto the plane t = ti. Thus, it is easy to compute a weighted cuboid partition if we know the point
weight of every point on the plane t = ti. To investigate the point-weight of each point on the plane
t = ti, we need the set of cuboids intersecting with the plane. This set, in fact, is the set of active
cuboids at t = ti. By taking the projection of each active cuboid onto the plane t = ti, we can obtain a
set R of weighted rectangles. Then, we compute the weighted rectangular partition for R, a 2D version of
the weighted cuboid partition. We give formal definitions of the weighted rectangle and the weighted
rectangular partition as follows.
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Definition 7. (Weighted Rectangle) a weighted rectangle r is an axis-parallel rectangle with a real-valued
weight r.o.

Definition 8. (Weighted Rectangular Partition) For the set R of weighted rectangles, a weighted rectangular
partition RP is a set of weighted rectangles satisfying following conditions: (1) any pair of rectangles in RP are
not overlapping, (2) the geometric union of rectangles in RP is the same as the geometric union of rectangles in
R. (3) for each rectangle r ∈ RP, the point-weight of p ∈ R is r.w.

Now, we show how to find the local solution in the subspace ti ≤ t < ti+1 by solving a 2D
geometric problem. Suppose that we have an algorithm for computing a weighted rectangular
partition RPi at t = ti. RPi contains information of the point-weight of every point on t = ti. Thus,
we can obtain a subset of the weighted cuboid partition as follows: for each r ∈ RPi, we create the
weighted cuboid which is bounded by two plane t = ti and t = ti+1, whose bottom rectangle is r,
and whose weight is r.w. By selecting the set of cuboids with the maximum weight among the created
cuboids, we can obtain the local solution in the subspace ti ≤ t < ti+1.

By iterating this procedure until there are no event rectangles, the NPS algorithm can find the
optimal solution. The outline of the NPS algorithm is summarized as follows. The NPS algorithm has
a nested plane-sweep structure: the outer plane-sweep structure (lines 4–15 of Algorithm 1) and the
inner plane-sweep algorithm (Algorithm 2). In the outer plane-sweep structure, the NPS algorithm
calls the inner plane-sweep algorithm (line 14 of Algorithm 1) for each event rectangle encountered by the
sweep-plane. The inner plane-sweep algorithm computes the weighted rectangular partition by using
the plane-sweep approach on a two-dimensional plane with a data structure defined in Definition
9. By using the outcome of the inner plane-sweep algorithm, the NPS algorithm computes the local
solution (lines 5–7 of Algorithm 1). When there are no event rectangles, the NPS can obtain the global
optimal solution by selecting the set of cuboids with the maximum weight among the local solutions.
To describe our algorithm in detail, we introduce a data structure in Section 4.2.2. Then, we explain the
inner plane-sweep algorithm in Section 4.2.3 and the outer plane-sweep structure in Section 4.2.4.

Algorithm 1: Nested Plane-Sweep Algorithm
Data: a set of weighted cuboids C
Result: a set of cuboids with the maximum weight in CP, where CP is a weighted cuboid

partition of C
1 MaxSet← ∅ ;
2 Y ← an empty array ;
3 tprev ← −∞ ;
4 while sweep-plane p encounters an event rectangle r do
5 t← p.t ;
6 CP′ ← GetLocalMaxWeightedCuboids(Y, tprev, t) ;
7 MaxSet← UpdateMaxSet(MaxSet ∪ CP′) ;
8 tprev ← t ;
9 if r is the bottom rectangle of c ∈ C then

10 r.w← c.w ; /* c becomes active */

11 else if r is the top rectangle of c ∈ C then
12 r.w← −1× c.w ; /* c is no longer active */

13 end
14 Y ← InnerPlaneSweep(Yprev, r) ; /* Algorithm 2 */

15 end
16 CP′ ← GetLocalMaxWeightedCuboids(Yprev, tprev, t) ;
17 MaxSet← UpdateMaxSet(MaxSet ∪ CP′) ;
18 return MaxSet ;
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Algorithm 2: The Inner Plane-Sweep Algorithm
Data: a sorted array of ylines Y, a weighted rectangle r
Result: the updated array Ynew of ylines

1 ly← the lower bound of r on the y-axis ;
2 uy← the upper bound of r on the y-axis ;
3 if Y is empty then
4 Ynew ←HandleCase0() ;
5 else
6 Ynew ← ∅ ;
7 yLinelower ← Y.GetGreatestLower(ly) ;
8 while yLinelower.y ≤ uy do
9 yLineupper ← Y.GetNext,Line() ;

10 Ytemp ←HandleEachCase(yLinelower, yLineupper) ;
11 Ynew ← Ynew ∪Ytemp ;
12 yLine← yLineupper ;
13 end
14 end
15 Ynew ← Y ∪Ynew ;
16 Ynew ← SortAndDeleteRedundant(Ynew) ;
17 return Ynew ;

4.2.2. Data Structure for Weighted Rectangles

We define a data structure named y-line for weighted rectangles as follows:

Definition 9. (y-line) y-line is a horizontal line parallel to the x-axis. Formally, y-line is defined as a
tuple < y, sp > where y is the y-axis value and sp is a sequence of split-points. Each split-point is a tuple
< x, sum >, where x is a partitioning point on the x-axis, and sum is the sum of weights of rectangles
intersecting with (x, y).

We use a set of y-lines to represent a weighted rectangular partition on a plane as shown in
the example of Figure 4. In Figure 4a, we have four y-lines. They define five weighted rectangles
in Figure 4b. Specifically, each consecutive pair (ylinei, ylinei+1) of them defines a set of rectangles
bounded by two horizontal line y = ylinei.y and y = ylinei+1.y. For example, yline2 and yline3

defines a set of rectangles bounded by y = y2 and y = y3. Each consecutive pair (spi, spi+1) of
split points in sp of a y-line defines a rectangle which is bounded by two vertical line x = spi.x
and x = spi+1.x, and whose weight is spi.sum. For example, we show that the shaded rectangle in
Figure 4b can be represented by two y-lines and their split points. Let us consider yline2 =< y2, sp2 >,
where sp2 = (sp1

2, sp2
2, sp3

2, sp4
2) as illustrated in Figure 4a. The shaded rectangle in Figure 4b is the

rectangle whose bottom-left corner coordinate is (sp2
2.x, yline2.y), whose top-right corner coordinate is

(sp3
2.x, yline3.y), and whose weight is sp2

2.sum.

4.2.3. The Inner Plane-Sweep Algorithm

In Section 4.2.1, we described the inner plane-sweep algorithm as if it took a set R, the set of
projections of all the active cuboids onto sweep-plane, as an input. It should be noted, however, that R
is a conceptual notation to help readers understand the overall algorithm rather than an actual input
(we will explain the actual input later). In fact, we can obtain the weighted rectangular partition of
R by using existing methods [1,2]. However, using one of them in our NPS algorithm may cause
redundant computations since only a small portion of the weighted rectangular partition of the
current R (at t = ti+1) differ from that of the previous R (at t = ti). We can avoid those redundant
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computations if we reuse the previously computed weighted rectangular partition and update it
partially. (We implement an algorithm which uses the existing method proposed in [1] instead of
our inner plane-sweep algorithm as a baseline algorithm and compare it with our NPS algorithm in
Section 7.)

Figure 4. An example of y-lines.

We show how the inner plane-sweep algorithm computes the weighted cuboid partition by
reusing the previously computed result. Suppose that the sweep-plane encounters a new event
rectangle r. Let Rp be the previous R, Rc be the current R which is updated with r, and Y be the set of
y-lines representing the weighted rectangular partition of Rp. The inner-sweep algorithm takes (Y, r)
as input, and returns Ynew, which represents the weighted rectangular partition of Rc. While sweeping
a line parallel to the x-axis from bottom to top, it incrementally computes Ynew. We call this line the
sweep-line to avoid confusion with the ‘sweep-plane’ of the outer plane sweep structure. Since we do
not have to consider y-lines which are not intersecting with r, the algorithm starts from the y-line right
below (or on) the bottom line of r. Similarly, it terminates when the sweep-line encountered the y-line
right above (or on) the top line of r.

We give a pseudo-code of the inner plane-sweep algorithm in Algorithm 2. Let us explain it with
the running example. Figures 5–7 illustrate the step by step procedures of the NPS algorithm to solve
the problem instance of Figure 2b. We draw a non-visited object as a transparent cuboid and a current
visiting object as a half-transparent cuboid. Also, we illustrate thirteen cases that line 10 of Algorithm
2 can encounter during execution in Figure 8. Table 1 summarizes the update policy for each case.

Figure 5a depicts the scenario when the sweep-plane encounters r1. Since r1 is the first rectangle
encountered by the sweep-plane, Y is set to an empty array. This instance corresponds to case 0 in
Figure 8. It is trivial to compute Ynew for a single rectangle: the algorithm creates two y-lines (line 4
of Algorithm 2). Since there are no ‘redundant y-lines’, they just are sorted by their y values (line 16).
We will explain redundant y-lines and the function ‘SortAndDeleteRedundant’ later. The output Ynew

is a sorted array of {yline1, yline2}, which represents this single rectangle as described in the bottom of
Figure 5b.

Figure 6a depicts the scenario when the sweep-plane encounters r2. As shown in the top of
Figure 6b, Y is given by {yline1, yline2}, the previously computed array of y-lines. The algorithm
starts by searching the y-line right below r2, namely yline1 (line 7). Then, it fetches the next y-line,
namely yline2 (line 9). We now have a consecutive pair (yline1, yline2) of y-lines. From now on, we
denote the lower y-line by yLinelower and the upper y-line by yLineupper as described in Algorithm 2
(i.e., yline1=yLinelower, and yline2=yLineupper). As shown in Figure 8, this instance corresponds to the
case 4 where yLinelower is below r2 and yLineupper intersects with r2. In this case, we need an additional
y-line (namely, yline3) to represent new area where point-weight changes (lines 10–11). To compute
yline3, the algorithm makes a copy of yline1, and updates it by creating or updating split-points for
r2. The underlying principle of creating/updating y-lines is the same as that of [1,15]. In particular,
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let (sp1, sp2) be the first two element of yline3.sp, where sp1 =< lx1, 1 > and sp2 =< ux1, 0 >.
Then, the algorithm updates it to be (sp3, sp1, sp4, sp2) where sp3 =< lx2, 1 >, sp1 =< lx1, 2 >,
sp4 =< ux2, 1 >, and sp2 =< ux1, 0 > as shown in Figure 6b.

After creating yline3, the sweep-line moves to the next y-line, namely yline2. In other words,
yLinelower becomes yline2 (line 12). Since yLinelower.y is lower than uy (line 8), the algorithm does not
terminate, so it tries to fetch the next y-line (line 9). However, yLineupper is set to null because there
are no y-lines any more. This instance corresponds to the case 3, so the algorithm updates yline2 and
creates a new y-line at y = uy2 by the update policy of Table 1 as shown in the bottom of Figure 6
(we omit the detail update procedure due to the space limitation). Finally, the algorithm returns as an
output the sorted array of four y-lines, which represents weighted rectangular partitions for {r1, r2}.

Figure 5. Sweep-plane encounters r1 at t1.

Figure 6. Sweep-plane encounters r2 at t2.

Figure 7a shows the scenario when the sweep-plane encounters r′1, the top of c1. The input is
given by r′1, and the array Y of four y-lines representing the weighted rectangular partition of {r1,
r2}. This example is different from the previous examples since it meets the top of a cuboid. In this
case, we adopt the following trick instead of recomputing the weighted rectangular partition from the
beginning. Setting the weight of r′1 to−1× r1.w, we invoke the inner plane sweep algorithm with input
(Y, r′1) to compute the weighted rectangular partition of {r1, r2, r′1}. Since r′1 cancels out the effect of r1,
we can obtain the weighted rectangular partition of {r2}. The algorithm finally computes four y-lines,
as shown in the bottom of Figure 7b. However, the dashed y-lines (i.e., yline1, yline2) are removed (line
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16) because yline1 has an empty sequence of split-points, and yline2 has the same sequence of split-points
as its previous y-line except for the y-value. If a y-line has the same configuration as its previous y-line,
then it means that the point-weight of every point remains unchanged. If the bottommost y-line has an
empty sequence, then it is meaningless. By a similar reason, if two consecutive split-points have the
same sum of weight, then the upper split-point is removed.

Figure 7. Sweep-plane encounters r3 at t3.

Figure 8. Cases of a pair of consecutive y-lines.

Table 1. Update policy for each case.

Case # y-Line Creation Update yLinelower

case 0 new y-lines for ly, uy X
case 1 new y-lines for ly, uy X
case 2–3 new y-line for uy O
case 4 new y-line for ly X
case 5–6 O
case 7 new y-line for ly X
case 8–9 O
case 10 new y-lines for ly, uy X
case 11–12 new y-line for uy O

4.2.4. The Outer Plane-Sweep Structure of NPS

The NPS algorithm scans each cuboid from bottom to top in its outer plane-sweep structure. While
scanning each cuboid, it computes local solutions incrementally by invoking the inner plane-sweep
algorithm (line 14 of Algorithm 1). First, the algorithm initializes variables MaxSet, Y, and tprev: the
set MaxSet of cuboids with the maximum weight is set to ∅, the array Y of y-lines is set to an empty
array, and the previous timestamp tprev is set to −∞ (lines 1–3 of Algorithm 1).

Suppose that the sweep-plane p encounters the i-th event rectangle r at t = p.t (line 4) after it
visited the (i-1)-th event rectangle rprev at tprev. Since the sweep-plane moved upwards to encounter
r, we need to update MaxSet before we update Y. To update MaxSet, the NPS algorithm computes
CP′, a local solution in tprev ≤ t < p.t. Let RPprev be the weighted rectangular partition represented
by Yprev, previously computed at t = tprev. Then, the function ‘GetLocalMaxWeightedCuboids’ finds
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the local solution as follows (line 6): (1) for r ∈ RPprev, it creates a cuboid whose bottom rectangle is
r, which is bounded by two planes t = tprev and t = p.t, and whose weight is r.w, (2) and select the
cuboid with the maximum weight in the created set of cuboids. The NPS algorithm updates MaxSet
by selecting the cuboids with the maximum weight in MaxSet ∪ CP′ (line 7). After updating MaxSet,
it computes Y which represents the weighted rectangular partition RPcurrent for R, where R is the set of
bottom rectangles of active cuboids (lines 9–14).

The NPS algorithm iterates this process until there are no event rectangles. When the while-loop
ends, the NPS algorithm updates MaxSet for the last event rectangle (lines 16–17), and returns it as
a result. In the running example, the cuboid with weight 2, which is bounded by x = lx1, x = ux2,
y = ly2, y = uy1, t = t2, and t = t3 is the final result (see Figures 6 and 7). Observe that this cuboid is
identical to c∗ of Figure 2.

4.2.5. Analysis of the NPS Algorithm

The time complexity of the NPS algorithm is O(|C| log |C|) + O(|C| log2 λ1 + λ1λ2|C|), where λ1

is the maximum number of elements in Y of y-lines, and λ2 is the maximum number of elements in the
sequence yline.sp of split-points among the created y-lines during the entire processing operation.

In particular, it requires 2|C| × log 2|C| operations for sorting cuboids for the outer plane-sweep
structure. The inner plane-sweep algorithm has the complexity of O(log2 λ1 + λ1λ2): it takes
O(log2 λ1) to search yLinelower within a sorted array Y, and the upper bound of the number of
iterations (lines 8–13 of Algorithm 2) is λ1λ2, the upper bound of rectangles represented by y-lines.
In addition, function ‘GetLocalMaxWeightedCuboids’ has the complexity of O(λ1λ2). Thus, the total
time complexity for processing each event rectangle is O(log2 λ1 + λ1λ2). Finally, the upper bound for
the total time complexity of the NPS algorithm is O(|C| log |C|) + O(|C| log2 λ1 + λ1λ2|C|).

The NPS algorithm is straightforward but has limited scalability. If it takes a large dataset or a
large query cuboid, then it may create too many y-lines. Consequently, the time complexity dramatically
increases since λ1 and λ2 increases.

To reduce computational overhead to search y-lines, we implement an improved NPS algorithm
which manages y-lines with an in-memory height-balanced tree structure, named Rectangular Partition
Tree (RP-Tree). Our RP-Tree satisfies the following characteristics: (1) it provides efficient retrieval of
y-lines intersecting with a rectangle; (2) it provides an efficient in-order traversal from an arbitrary y-line.
Since RP-Tree is similar to B+Tree [24,25], we omit the description of the improved NPS algorithm.
Although we observed that the improved algorithm is more efficient than the original NPS algorithm,
the improved one also has limited scalability because RP-Tree itself cannot reduce λ1 or λ2.

4.3. Divide and Conquer Algorithm

We can reduce the computational complexity by dividing the whole problem into independent
smaller sub-problems. If each sub-problem deals with a small number of objects, it can be solved more
effectively (this is because λ2 is reduced). This approach is also known as the divide-and-conquer (DC)
strategy, a natural way to cope with optimization problems in computational geometry. For example,
Choi et al. [1,2] proposed a DC-based scalable algorithm for the two-dimensional MaxRS problem.
Similar to [1,2], we propose an improved algorithm based on DC strategy.

4.3.1. Division Phase

First, our DC algorithm creates c(o) for each o ∈ O. Then, it recursively divides the entire space
into a set of subspaces until each subspace has a small enough number of cuboids. However, unlike
in [1,2], the number of cuboids in each subspace does not have to fit in the main memory in our method
necessarily. We will explain the reason for this later.

Specifically, to split the entire space P into M disjoint subspaces, it creates M − 1 planes
perpendicular to the x-axis. Each cuboid c in C may be split into several cuboids by planes. As shown
in Figure 9, if a subspace Si overlaps with a cuboid c, then c is one of: (1) covered by Si; (2) partially
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intersecting with Si; and (3) spanning Si. It is trivial to handle the first and second cases: the intersection
(of c and Si) is assigned to Si. However, the third case is non-trivial because it may cause infinite
recursion. Let us consider an extreme scenario, where every cuboid spans Si. No matter how we
divide Si, there exists a subspace where the number of cuboids inside remains the same. A similar case,
where a rectangle spans a subspace, is demonstrated in [1,2]. Authors of [1,2] solve this problem by
preventing spanning objects from being passed to the next level recursion and processing them later in
the merging phase together with intermediate results of sub-problems. Since spanning rectangles are
excluded, it is possible to obtain a set of subspaces where each subspace has a small enough number of
cuboids to fit into the main memory.

Figure 9. Cases when subspace Si overlaps with c.

However, this method may not be the best solution in a spatiotemporal space for two critical
reasons. First, the intermediate result of each sub-problem tends to be large to guarantee the correctness.
Suppose that we have a sub-problem in a subspace Si where a small number of cuboids are inside.
We can obtain c∗i , the answer to the 3D MaxRS problem with input Ci, by using the NPS algorithm.
Note that, if it is guaranteed that the c∗i is the solution in the subspace Si, then we can return c∗i alone
as an intermediate result. However, c∗i may not be the exact solution in Si because a spanning cuboid
may exist in Si. Thus, for every single pair of consecutive timestamp (tprev, t), we have to report
cuboids with the maximum weight in CP′prev (line 7 in Algorithm 1). In the merging phase, we have to
consider every cuboid reported in each subspace and every spanning cuboid altogether to obtain the
correct answer.

Second, we do not necessarily have to load all cuboids in a subspace into the main memory.
We observed that memory accesses for input objects are not the bottleneck for computing the 3D
MaxRS problem. In fact, each event rectangle is read once, and we can linearly scan all event rectangles
after sorting them. Thus, accessing them from a sequential access memory (i.e., disk-storage) after
sorting them does not significantly affect the overall execution time.

Due to these reasons, the number of cuboids in each subspace does not have to fit into the main
memory necessarily. To prevent spanning rectangles from being created, our DC algorithm terminates
recursion when the number of cuboids inside the subspace fits into the main memory, or the length of
the space along the x-axis is equal to or smaller than a. Suppose that we obtain a set S of subspaces.
For each Si ∈ S, it solves the 3D MaxRS problem with input Ci of cuboids inside Si. Although there
may exist a subspace Si ∈ S such that all cuboids in Si cannot be loaded at the same time into main
memory, we can compute the answer set efficiently by using the NPS algorithm.

4.3.2. Merging Phase

Our dividing method not only reduces the size of intermediate results significantly, but also
makes the merging phase simple. Suppose that a subspace Si contains a set Ci of weighted cuboids,
and a set Ai is the answer set of cuboids to the 3D MaxRS problem with input Ci. Unlike in [1,2], it is
guaranteed that Ai is the optimal solution in the subspace Si since there are no spanning objects. Thus,
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the remaining task is selecting the set of cuboids with the maximum weight in A, where A = ∪1≤i≤M Ai,
which is trivial to compute.

5. Algorithms for MaxStRS-AC

In this section, we show that the MaxStRS-AC problem is polynomially reducible to the 3D MaxRS
problem. In addition, we introduce the baseline algorithm for the MaxStRS-AC problem and then
present the extension of the baseline algorithm based on the divide-and-conquer approach.

5.1. Overview

The MaxStRS-AC problem tries to find the set of all points p∗ ∈ P such that:

p∗ = arg max
p∈P

 ∑
o∈O(c(p))

o.w− ∑
o∈O(cprev(p))

o.w


To examine a point p whether it belongs to the answer set or not, we need to consider two different
cuboids (i.e., c(p) and c(pprev)) at the same time. Thus, it may seem that it is not feasible to solve
the MaxStRS-AC problem with the plane-sweep approach at first glance. However, we observe an
interesting property of the MaxStRS-AC problem: we can transform the MaxStRS-AC problem into the
3D MaxRS problem. We first present a novel idea to transform the MaxStRS-AC problem to the 3D
MaxRS problem.

We illustrate the idea with a motivating example in Figure 10. Figure 10a shows a set O of
objects. Since c(p) encloses o1, o2 and cprev(p) encloses o3, o4, ∑o∈O(c(p)) o.w - ∑o∈O(cprev(p)) o.w is equal
to o1.w + o2.w - o3.w - o4.w. Observe that we need to consider both c(p) and c(pprev) to examine p
whether it belongs to the answer set or not. To transform the problem, we create a virtual object
o′i = (oi.x, oi.y, oi.t + τ,−oi.w) for each object oi as illustrated in Figure 10b. Let O′ be the set of created
objects and Ô be the union of O and O′ (i.e., O ∪O′). We now show that we no longer need to consider
cprev(p) in the transformed problem. First, observe that c(p) encloses not only o1, o2, but also o′3, o′4,
as shown in Figure 10c. Thus, the sum of the weights of all the object in c(p) is o1.w + o2.w + o′3.w +
o′4.w, which is identical to o1.w + o2.w - o3.w - o4.w. In other words, ∑o∈O(c(p)) o.w - ∑o∈O(cprev(p)) o.w
of Figure 10a is equivalent to ∑o∈Ô(c(p)) o.w of Figure 10c. Therefore, the goal of the MaxStRS-AC

problem for O is equivalent to the goal of the 3D MaxRS problem for Ô.

Figure 10. A motivating example of transforming the MaxStRS-AC problem to the 3D-MaxRS problem.

Here, we give a mathematical justification for our method. To prove the reducibility, we need
additional terminologies. For an object o = (x, y, t, w), we use onext to denote the virtual object
(o.x, o.y, o.t + τ,−w). Similarly, for a set O of objects, we use Onext to denote {onext|o ∈ O}. Lemma 1
and Theorem 1 show that we can transform the MaxStRS-AC problem into the 3D MaxRS problem.



Electronics 2020, 9, 514 16 of 24

Lemma 1. Given O, the size a × b × τ of a query cuboid, the following equation holds for every p in the
entire space:

∑
o∈O(cprev(p))

o.w = −1× ∑
o∈Onext(c(p))

o.w

Proof. We present the proof of Lemma 1 in the Appendix A.

Theorem 1. The answer to the MaxStRS-AC problem with input O and the size a× b× τ of a query cuboid
is equivalent to the answer to the 3D-MaxRS problem with input O ∪Onext and the size a × b × τ of the
query cuboid.

Proof. The point p∗ ∈ P belongs to the answer set of the MaxStRS-AC problem if it satisfies the
following equation:

p∗ = arg max
p∈P

 ∑
o∈O(c(p))

o.w − ∑
o∈O(cprev(p))

o.w


Using Lemma 1, we can safely rewrite p∗ as follows:

p∗ = arg max
p∈P

 ∑
o∈O(c(p))

o.w + ∑
o∈Onext(c(p))

o.w

 (1)

= arg max
p∈P

 ∑
o∈Ô(c(p))

o.w

 , where Ô = O ∪Onext (2)

Observe that Equation (2) is the form of the expression for the answer to the 3D MaxRS problem with
input O ∪Onext and the size of a× b× τ of the query cuboid.

5.2. Baseline Algorithm for MaxStRS-AC

We present a two-phase nested plane-sweep based algorithm (NPS-AC) for the MaxStRS-AC
problem.Suppose that we aim to solve the MaxStRS-AC problem with input O and the size a× b× τ

of a query cuboid. This algorithm consists of two phases: (1) generating a set Ĉ of cuboids such that
Ĉ = C ∪ Cnext, where C = {c(o)|o ∈ O}, and Cnext = {c(o)|o ∈ Onext}; (2) finding the answer set by
using the NPS algorithm with input Ĉ. Theorem 1 guarantees the correctness of this algorithm.

5.3. Divide and Conquer Algorithm

We introduce a divide-and-conquer based algorithm for the MaxStRS-AC (DC–AC) as an
extension of the baseline algorithm. It also consists of two phases. In the first phase of each
algorithm, Ĉ = C ∪ Cnext is generated, as in that of the NPS-AC algorithm. In the second phase,
the divide-and-conquer based algorithm for the MaxStRS-AC (DC–AC) finds the answer set based on
the DC algorithm.

6. Algorithms for MaxStRS-RC

In this section, we show how to solve the MaxStRS-RC problem by computing a modified
weighted cuboid partition, and then introduce the baseline algorithm for it. In addition, we present
extensions of it, which is more scalable.
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6.1. Overview

The MaxStRS-RC problem tries to find the set of all points p∗ ∈ P such that:

p∗ = arg max
p∈P

(
∑o∈O(c(p)) o.w−∑o∈O(cprev(p)) o.w

∑o∈O(cprev(p)) o.w

)
(3)

To solve this problem, we introduce a new notation and an alternative version of the MaxStRS-RC
problem as follows:

Definition 10. (Modified Weighted Cuboid Partition) For the set C of weighted cuboids, a modified weighted
cuboid partition MCP is a set of disjoint cuboids, where each cuboid c has two different weight c.wchange, c.wprev,
satisfying the following conditions:

1. MCP is a set of disjoint cuboids, that is, any pair in MCP are not overlapping.
2. The geometric union of cuboids in MCP is the same as the geometric union of cuboids in C ∪ Cnext, where

Cnext = {c(o)|o ∈ Onext}.
3. For each cuboid c ∈ MCP, the point-weight of pprev for any p ∈ c is the same as c.wprev.
4. For any point p in each cuboid c ∈ MCP, the change between the point-weight of p and the

past-point-weight of p (i.e., p.w− pprev.w) is the same as c.wchange.

Definition 11. (Alternative version of the MaxStRS-RC). Let MCP be a modified weighted cuboid partition of
the set C of weighted cuboids. Then, find c∗ ∈ MCP such that:

c∗ = arg max
c∈MCP

c.wchange

c.wprev
(4)

Similar to Section 4.1, the alternative version of the MaxStRS-RC problem is equivalent to the
original MaxStRS-RC problem, and it is easy to solve the alternative version if we have a valid modified
weighted partition of C.

Now, we show that computing a modified weighted cuboid partition can be transformed into
computing a weighted cuboid partition. Suppose that CPnext is a weighted cuboid partition of Cnext,
and CPchange is a weighted cuboid partition of (C ∪ Cnext). For each point p in a cuboid c ∈ CPnext,
the point-weight of p is same as c.w = ∑o∈Onext(c(p)) o.w (by Definitions 4 and 5). By Lemma 1.
∑o∈Onext(c(p)) o.w = −1×∑o∈O(cprev(p)) o.w holds. Thus, the point-weight of each point p in a cuboid
c ∈ CPnext is −∑o∈O(cprev)) o.w, which equals −1× pprev.w (i.e., −1× denominator of Equation (4)).
Similarly, the point-weight of each point p equals p.w − pprev.w (i.e., numerator of Equation (4)).
Therefore, if CPnext and CPchange are provided, we can obtain a modified weighted cuboid partition by
partitioning them all together again. We describe the method in detail in the next subsection.

6.2. Baseline Algorithm for MaxStRS-RC

In this subsection, we propose a nested plane-sweep based algorithm (NPS-RC) for the
MaxStRS-RC problem. The NPS-RC algorithm also consists of two phases. First, it creates set
Ĉ = C ∪ Cnext. In the second phase, it computes a modified weighted cuboid partition MCP and
selects the set of cuboids with the maximum value of

c.wchange
c.wprev

in MCP.
The basic idea of the second phase of the NPS-RC algorithm is to compute CPnext and CPchange

concurrently to obtain MCP while scanning each cuboid in C∪Cnext. To do so, we introduce a modified
version of y-line as follows:

Definition 12. (modified-y-line) modified-y-line, a horizontal line parallel to the x-axis, is defined as
a tuple < y, sp >, where y is the y-axis value and sp is a sequence of modified-split-points. Each
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modified-split-point is a tuple < x , sumchange, sumprev > where x is a partitioning point on the x-axis,
sumchange is the change between the weight-sums, and sumprev is the previous weight-sum.

Unlike an original y-line, a modified-y-line has a set of modified-split-points where each element
contains two variables sumchange and sumprev instead of a variables sum. Conceptually, sumchange is
used to represent c.wchange, and sumprev is used to represent c.wprev. In particular, if the sweep-plane
encounters an event rectangle r which belongs to Cnext, then the NPS-RC algorithm updates sumchange
and sumprev variables in modified-y-lines intersecting with r. On the other hand, if the sweep-plane
encounters an event rectangle which belongs to C, then it updates sumchange variables in modified-y-lines
intersecting with r. Before updating the array of modified-y-lines, it computes a subset of MCP,
and updates the current set of cuboids with the maximum value of

c.wchange
c.wprev

. It iterates this procedure
until there are no event rectangles.

6.3. Divide and Conquer Algorithm

We introduce a divide-and-conquer based algorithm (DC–RC) for the MaxStRS-RC problem. This
algorithm first generates Ĉ = C ∪ Cnext. Then, it finds the answer set for the input Ĉ based on the
divide-and-conquer strategy as follows. In the division phase, it divides the problem into sub-problems
with the same manner in the division phase of the DC-Algorithm. Then, it solves each sub-problem
using the NPS-RC algorithm. In the merging phase, it selects the set of cuboids maximizing

c.wchange
c.wprev

.

7. Experimental Result

In this section, we evaluate the performance of the proposed algorithms and compare it with
existing methods.

7.1. Experimental Setup

We evaluate the performance of algorithms both on synthetic and real datasets. First, we generate
synthetic datasets in a spatiotemporal space of size [0, 10000] × [0, 10000] × [0, 10000], where the
first two dimensions correspond to space, and the third dimension corresponds to time. We use both
Uniform distribution and Gaussian distribution for generating datasets in order to study how skewness
affects the total response time. To create Gaussian-distributed datasets, we generate tuples by sampling
a random number from a Gaussian distribution N(µ = 5000, σ = 1500) for each dimension. We create
datasets of different sizes (10,000 to 500,000) for each data distribution. In addition, we collected a set
of geo-tagged text data from Twitter using the Twitter Streaming API from 25 January 2018, to 28 June
2018. This real dataset contains 162,011 geo-tagged tweets that mentioned the keyword ‘restaurant’.

We evaluate the performance of the NPS-based algorithm (optimized by RP-Tree) and DC-based
algorithm comparing with existing methods by the response time and compare it against existing
methods. Since no existing methods are directly applicable to the 3D MaxRS problem and the
MaxStRSC problem, we extend existing algorithms for comparison as follows. For the 3D MaxRS
problem, we extend the algorithm of [15], which tries to solve the max-enclosure problem in
three-dimensional space in memory to solve the 3D MaxRS problem, and externalize it by employing
STR-Tree [21] for better scalability. We call this algorithm ‘UNIFIED’ named after the title of their
paper. Since the UNIFIED algorithm is somewhat outdated, we also implement another algorithm
called ’BASELINE’ Algorithm, as mentioned in Section 4.2.3. The BASELINE algorithm is similar to
the NPS algorithm, but uses the algorithm proposed in [1] instead of our inner plane-sweep algorithm.

For the MaxStRS-AC problem, we extend the algorithm of [23]. We call this algorithm
‘SURGE’. The original SURGE algorithm tries to continuously monitor the generalized version of the
MaxStRS-AC problem over data streams. Thus, we first generate a data stream where each object in a
set of historical spatiotemporal objects arrives in increasing order of timestamps and invoke the SURGE
algorithm to handle this stream. By keeping track of the point with the maximum burst score, we
can obtain at least one point which belongs to the answer set to the MaxStRS-AC problem. However,
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note that it is impossible to extend the SURGE algorithm to solve the MaxStRS-RC problem since its
pruning rules are no longer valid when we try to maximize

c.wchange
c.wprev

.
We conduct experiments by varying parameters such as data cardinality, cuboid size, buffer size.

We set the default experimental parameters as follows: data cardinality is 105, a is 100, b is 100, t is 100,
the buffer size is 2 MB, and the block size is 8 KB. We implemented all the algorithms in JAVA assuming
that those algorithms will be deployed on environments based on a big data pipeline architecture
such as Apache Hadoop and Spark, since programs written in JAVA are easily integrated into such
architectures. We run all experiments on an Ubuntu (16.04 LTS) PC with Intel Xeon E5-1620 (3.6 Ghz
Quad-core) and 32 GB memory.

7.2. Results of the 3D MaxRS Problem

We conduct various experiments for the 3D MaxRS problem on synthetic datasets as follows.

7.2.1. Effect of Data Size

Experimental results for varying the size of a dataset are summarized in Figure 11, where the
y-axis shows the response time in the log scale. Observe that our DC algorithm shows superior
performance in all the cases. Although the NPS algorithm shows the worse performance than the DC
algorithm, it is more efficient than the UNIFIED algorithm or the BASELINE algorithm. Observe that
the response time of the DC algorithm does not rapidly increase when the size of the dataset increases,
which means it is scalable. In addition, the DC algorithm is less sensitive to data skewness compared
to the other algorithm.

Figure 11. Effect of data size in 3D MaxRS.

7.2.2. Effect of Query Cuboid Size

We conduct two experiments to investigate the effect of query cuboid size. We do not plot
the result of the BASELINE algorithm and the UNIFIED algorithm because they are much more
inefficient than the NPS or the DC algorithm. Figure 12a summarizes the experimental results for
varying the size of the spatial range (fixing the length of the temporal window to be 100). We use
squares for the spatial range. In both distributions, the DC algorithm is more efficient than the NPS
algorithm. While the performance of the NPS algorithm deteriorates as the size of the spatial range
increases, the performance of the DC algorithm is stable. In addition, observe that the response
time of the NPS algorithm severely increases in Gaussian distribution as the size of the spatial range
increases. The reason for this is that the number of cuboids in the weighted cuboid partition increases
extraordinarily in the Gaussian distribution. However, the performance of the DC algorithm in the
Gaussian distribution is relatively stable since it reduces the computational cost by dividing the skewed
space into several subspaces.
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Figure 12. Effect of query cuboid size in 3D MaxRS.

Figure 12b summarizes the experimental results by varying the length of temporal range (i.e., τ).
The experimental results are similar to the results shown in Figure 12a. The performance of the DC
algorithm is relatively stable, compared to that of the NPS algorithm.

7.2.3. Results Related to the Buffer Size

We conduct experiments to evaluate I/O-related efficiency. Since the other algorithms are
in-memory algorithms, we only evaluate the performance of the DC algorithm by varying the size
of (in-memory) buffer and the size of data (50k, 100k, and 150k) in both distributions. Although the
UNIFIED algorithm takes advantage of a buffered data structure named STR-tree, we do not plot its
performance because it is too inefficient.

As shown in Figure 13a, the response time of the DC algorithm decreases as we increase the
buffer size in the uniform distribution. On the contrary, the response time of the DC algorithm tends
to increase as we increase the buffer size in the Gaussian distribution. It means that using a larger
size buffer does not always guarantee better performance, especially in the skewed data distribution.
Recall that, if the number of cuboids in each subspace fits into the buffer, the DC algorithm stops to
divide space in its division phase. If the buffer size increases, then the subspace of each sub-problem
gets enlarged. Meanwhile, it may take more time to solve sub-problems in dense regions in the highly
skewed data distribution. Thus, if the buffer size becomes too large in skewed data distribution, it may
take much more time to solve some sub-problems in large subspaces.

Figure 13. Results related to the I/O in 3D MaxRS.

7.3. Results of the MaxStRSC Problem

We investigate the performance of the DC–AC algorithm for the MaxStRS-AC problem and the
DC–RC algorithm for the MaxStRS-RC problem on synthetic data sets in both distributions by varying
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the size of the dataset. As shown in Figure 14, we do not plot the performance of NPS-based algorithms
since they are much more inefficient than DC-based algorithms. Instead, we plot the performance of
the DC algorithm for the 3D MaxRS problem and the performance of the SURGE algorithm [23] for the
MaxStRS-AC problem on the same input datasets for comparison.

The experimental results of the MaxStRSC problem are summarized in Figure 14, where the
y-axis shows the response time in the log scale. The DC–AC algorithm has a slightly higher response
time than the DC algorithm in both distributions because it has to deal with two times more objects
(i.e., |C ∪ Cnext| = 2× |C|). In addition, the DC–RC algorithm has a higher response time than the
DC–AC algorithm in both distributions because the DC–RC algorithm computes a modified weighted
cuboid partition, which is more complicated than the original weighted cuboid partition. The SURGE
algorithm is about ten times slower than the DC–AC algorithm in both data distributions. We observe
that the DC–RC algorithm is more sensitive to data skewness. We guess the reason for this as follows.
Since the DC–RC algorithm needs additional geometric operations and memory space for managing
modified-y-lines, the DC–RC algorithm takes more time than the DC–AC algorithm takes for the same
dataset. This tendency becomes worse in the skewed data distribution.

Figure 14. Effect of data size in MaxstRSC.

7.4. Experimental Results in Real Dataset

We conduct two experiments to investigate the effect of query cuboid size, as shown in Figure 15
in the real dataset collected from Twitter. We do not plot the result of the existing methods because
they are much more inefficient than the NPS or the DC algorithms. For example, the response time of
the SURGE algorithm with the size of query cuboid (0.1 km × 0.1 km × 100 s) on the Twitter dataset is
more than one hour (5,263,782 ms).

Figure 15. Experimental results in a real dataset.
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Figure 15a summarizes the experimental results for varying the size of the spatial range (fixing
the length of the temporal window to be one month). The DC-based algorithms are more efficient
than NPS algorithms. While the performance of NPS-based algorithms deteriorates as the size of the
spatial range increases, the performance of the DC-based algorithms is stable. Figure 15b shows the
experimental results for varying the size of the temporal window (i.e., τ), fixing the size of the spatial
range to be 4 km × 4 km. For the short-term (less than one month), the NPS-based methods are usually
better than the DC-based algorithms. However, the DC-based algorithms are more efficient than the
NPS algorithms for a long-term period. The DC-based algorithm is less sensitive to the length of the
temporal window.

8. Conclusions

In this paper, we introduce the 3D MaxRS problem and the MaxStRSC problem which can be
used to find interesting spatiotemporal regions in a large historical spatiotemporal dataset. We first
propose a nested plane sweep (NPS) algorithm for the 3D MaxRS problem, and then propose the
divide-and-conquer algorithm (DC) for better scalability. In addition, we give a mathematical
explanation for reducing the MaxStRSC problem to the 3D MaxRS problem and propose several
algorithms for the MaxStRSC problem. The experimental results show that our DC-based algorithm is
scalable and much more efficient than other algorithms (including existing methods) in general. As part
of future work, we intend to build a system which executes analytical queries over the set of historical
data and stream data in a distributed and parallel environment such as Apache Spark [26]. By executing
the 3D MaxRS problem and the MaxStRSC problem in a distributed and parallel environment, we
expect that it can provide more efficient and scalable support for spatiotemporal analysis over a
large-scale spatiotemporal dataset.
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Abbreviations

The following abbreviations are used in this manuscript:

MaxRS Maximum Range-Sum
MaxStRSC Maximum Spatiotemporal Range-Sum Change
NPS Nested Plane-Sweep algorithm

Appendix A. Proof of Lemma 1

We prove Lemma 1 using the following notations. For an object o = (x, y, t, w), we use onext to
denote the object (o.x, o.y, o.t + τ, w), and onext to denote the object (o.x, o.y, o.t + τ,−w). For a set of
objects O, we denote Onext to denote {onext|o ∈ O}, and Onext to denote {onext|o ∈ O}.
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Proof.

∑
o∈O(cprev(p))

o.w = ∑
o∈{o∈O|cprev(p) contains o}

o.w

= ∑
o∈{o∈O|c(p) contains onext}

o.w

= ∑
o∈{o∈O|c(p) contains onext}

(−1× o.w)

= ∑
o∈{o∈Onext |c(p) contains o}

(−1× o.w)

= ∑
o∈Onext(c(p))

(−1× o.w)

= −1× ∑
o∈Onext(c(p))

o.w
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