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Abstract: Keeping Internet users protected from cyberattacks and other threats is one of the most
prominent security challenges for network operators nowadays. Among other critical threats,
distributed denial-of-service (DDoS) becomes one of the most widespread attacks in the Internet,
which is very challenging to mitigate appropriately as DDoS attacks cause the system to stop
working by resource exhaustion. Software-defined networking (SDN) has recently emerged as a
new networking technology offering unprecedented programmability that allows network operators
to configure and manage their infrastructures dynamically. The flexible processing and centralized
management of the SDN controller allow flexibly deploying complex security algorithms and
mitigation methods. In this paper, we propose a novel DDoS attack mitigation in SDN-based Internet
Service Provider (ISP) networks for TCP-SYN and ICMP flood attacks utilizing machine learning
approach, i.e., K-Nearest-Neighbor (KNN) and XGBoost. By deploying a testbed, we implement
the proposed algorithms, evaluate their accuracy, and address the trade-off between the accuracy
and mitigation efficiency. Through extensive experiments, the results show that the algorithms can
efficiently mitigate the attack by over 98.0% while benign traffic is not affected.

Keywords: distributed denial-of-service; software-defined networking; security; machine learning;
KNN; TCP-SYN flood mitigation; ICMP flood mitigation.

1. Introduction

Internet cybercrime has been becoming a severe issue that governments and organizations should
cope with nowadays. According to Cisco cybersecurity report, 30% organizations have experienced
cyber attacks in 2019. Denial of Service (DoS) and Distributed DoS (DDoS) [1] are the most common
attacks on the Internet recently. In DoS and DDoS, attackers take control of many hosts, known as
botnets and use them to send extremely large numbers of request to victims to stop their services.
Consequently, the destination victims with limited resources are overloaded and cannot provide
service to the legitimate users. DDoS attack detection and mitigation techniques are discussed
comprehensively in [1,2]. Software-defined networking (SDN) [3] is a new networking architecture in
which the control plane and data plane are separated. While the forwarding engine is located in the
switch, all network control functions, such as traffic monitoring, routing, etc., reside in a centralized
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software-based controller. This makes SDN architecture flexible as the network administrator can use
programming languages such as Python, Java, or others to add new functionality in the controller,
including security functions. The deployment of SDN in network security has gained special attention
recently [4–16]. Therefore, in this work, we make use of the SDN technology in oder to mitigate
DDoS attacks.

Regarding the categorization of DDoS attacks, there are several types of known DDoS attacks that
are divided into three groups, as shown in Figure 1.

Figure 1. Distributed denial-of-service (DDoS) attacks classification [17].

• In volume-based attacks, the attacker attempts to create congestion by consuming all available
bandwidth between the target and the Internet. A large amount of traffic is sent to a target by
using a form of amplification or other means that create massive traffic, such as requests from a
botnet [18]. A good example of this categorization is ICMP flood attack [1].

• Protocol-based attacks, also known as a state-exhaustion attack, cause a service disruption by
consuming all the available state table capacity of servers or intermediate resources like firewalls
and load balancers. Protocol attacks utilize weaknesses in layer 3 and layer 4 of the protocol stack
to render the target inaccessible [18], e.g., TCP-SYN flood [1].

• On the other hand, the goal of application layer attacks is to exhaust the resources of the target.
The attacker establishes a connection with the target and then exhausts the server resources by
monopolizing processes and transactions. The attacker exploits a weakness in the layer 7 protocol
stack [18].

It is noted that in volume-based and protocol-based attacks a large amount of traffic is sent,
making them quite similar and easier to detect than application attack. Although there are many
DDoS attack types, in this article we particularly study TCP-SYN and ICMP flood attacks, and then
propose a novel model to mitigate these two attacks. Specifically, the TCP-SYN flood attack is based
on a weakness of the TCP protocol stack, in which a TCP connection is initiated by the three-way
handshake technique that leads to vulnerability. In the TCP-SYN flood, the attacker sends an extremely
large number of unacknowledged, malicious TCP SYN messages, consequently a large number of
half-open TCP connections leading to the resource exhaustion at the victim. Details of TCP-SYN Flood
are presented in [19]. According to Kaspersky [20], TCP-SYN is the most common DDoS attack in
the fourth quarter of 2018 that takes up over 50% of the total attacks. Meanwhile, the ICMP flood
attack belongs to volume-based DDoS attacks, in which the attacker attempts to overwhelm the
network bandwidth of a targeted device with ICMP echo-request packets, causing the target to become
inaccessible to normal traffic. The details of ICMP flood are presented in [21].

Defeating against DDoS attacks has been extensively researched recently [4–16,21–23], but there
exist some limitations of the current approaches that require further investigation, namely:

• Detection versus mitigation: most of research work focuses on DDoS detection. The number of
mitigation research is quite limited as they are more difficult. The main methodology of current
detection approaches is mainly based on the difference of network traffic characteristics and
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patterns during normal and attack states. However, once DDoS attack is detected, it is more
difficult to differentiate attack traffic with innocent traffic. That is why DDoS attack is much more
difficult to mitigate.

• Complexity of detection and mitigation algorithms: several approaches are based on simulation and
offline analysis with complex operations. This makes it difficult to evaluate the performance of
detection and mitigation algorithms under real network conditions and real-time.

Following our previous research [24] to address the aforementioned existing issues, in this paper
we propose a new DDoS attack mitigation scheme. The contributions of this work are as the follows:

• Characterizing attack traffic and innocent traffic in Internet Service Provider (ISP) networks: by
investigating real traffic traces, we find out important features that can be used to differentiate
normal traffic and TCP-SYN, ICMP Flood attacks traffic in ISP network scenarios;

• Proposing novel machine learning mitigation algorithms: based on these features, a machine-learning
algorithm integrated in the SDN controller has been developed to detect and drop attack traffic
while innocent traffic is almost not affected;

• An adaptive method to optimize the parameters of mitigation algorithms for accuracy improvement: A
testbed is deployed to evaluate the approach in real devices and real time. Based on experiments
conducted in the testbed, an adaptive mechanism to improve the mitigation accuracy is proposed.

The rest of this paper is organized as follows. Section 2 analyzes related work concerning detection
and mitigation solutions. Section 3 discusses our analysis of real traces with important features to
differentiate normal and attack traffic. The details of our proposed approach are described in Sections 4
and 5, including mitigation algorithms and the trade-off between accuracy and system capacity.
Section 6 presents the testbed setup and performance evaluation. Section 7 concludes the work and
draws our future research direction.

2. Related Work

There are a number of solutions for DDoS detection that can be classified into two types:
statistic-based and machine learning-based. The statistic-based solution makes use of statistical
methods to analyze traffic between normal and attack phase. In [4], a method relies on the deviation of
the throughput from normal distribution when the server is in normal status. Attacks can be detected
by a significant deviation in the mean throughput value from the normal status. In [7], Sufian Hameed
et al. present a new collaborative DDoS mitigation with a new protocol that allows the SDN controller
lying in different autonomous systems to securely communicate and transfer attack information
with each other. In [13], the authors present an SDN-based DDoS attack detection framework which
performs a two-stage granularity filtering procedure between coarse-grained detection data plane and
fine-grained detection control plane for abnormal flows. It leverages the capacity of the SDN-enabled
switch and controller. A lightweight flow monitoring algorithm is used in the SDN-enabled switches
to capture the key features of DDoS attack traffics to analyze and detect the attack. As a solution to
better utilize SDN for network measurement to detect DDoS attack, Ref. [14] proposes a method to
detect DDoS attacks leveraging on SDN’s flow monitoring capability. This method use measurement
resources available in the whole SDN network to adaptively balance the coverage and granularity of
attack detection.

The machine learning-based solution uses smart algorithms to find out hidden features inside
network traffic in normal and attack states. In [25], a hybrid machine learning algorithm based on
Seft-Organizing-Map (SOM) and K-Nearest-Neighbor (KNN) is used to detect ICMP attack. SOM
is used to cluster traffic into attack and normal groups in training phase. KNN is used to assigned
label for network status based on the label of k nearest neighbors. Other machine learning detection
methods are based on determining the time of request between hosts [5], by getting request time,
number of source host and number of destination host, and using different algorithms (Naive Bayes,
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KNN, K-means) to classify traffic into normal and attack. Using the entropy method to determine the
randomness of the flow data, Ref. [15] presents a novel solution for the early detection and mitigation
of TCP SYN flooding. The entropy information includes destination IP and few attributes of TCP flags.
It is implemented as an extension module in Floodlight and evaluate it under different conditional
scenarios. Hu et al. [16] proposes an efficient and lightweight framework to detect and mitigate
DDoS attacks in SDN by using entropy of features and an SVM algorithm. Firstly, the network traffic
information is collected through the SDN controller and sFlow agents. Then an entropy-based method
is used to measure network features, and the SVM classifier is applied to identify network anomalies.
Another approach using SVM algorithm is presented in [26]. The paper mostly focuses on anomaly
traffic detection based on the entropy of IP source addresses and ports by integrating SVM into the Ryu
controller. The performance of the system is relied on Mininet that can hardly be evaluated in realtine.

Although recent research work mostly involves in detecting DDoS attack, mitigating attack traffic
is not easy to deploy as the system cannot process extremely large traffic in a very short time. Also, it is
difficult to differentiate innocent traffic from attack traffic. A popular solution to mitigate DDoS attack
is to drop all packets to protect the target. That is, normal traffic is blocked, too. Another solution
is based on SDN and an Intrusion Detection System (IDS) to mitigate network attack as proposed
by Manso et al. [11]. The work proposes a combination of the widely used Snort IDS [27] with Ryu
controller [28] by deploying an Unix Domain Socket between them. Upon detecting attacks by using
well-known, predefined signatures, Snort can then alert the SDN controller so that the controller can
impose policies on SDN-enabled switches to block malicious blacklisted IPs. The system can detect
various kinds of attacks but there are some disadvantages. Firstly, it deploys Snort’s predefined rules
rather than making use of machine learning algorithms to adapt the policies to the real situation of the
traffic at the point of deployment in a specific network. Secondly, the test cases are performed based
on Mininet, that cannot ensure the real-time performance in a real system.

As presented in the following sections, by finding important features of malicious TCP-SYN and
ICMP flood attacks in an ISP network, the approach in this work makes used of machine learning
algorithms being able to classify traffic into attack and normal, so that attack traffic can be mitigated.
Moreover, the mitigation mechanism is deployed in a real testbed with physical network devices and
servers, thus facilitating the performance evaluation of the newly developed system in realtime, under
real network conditions.

3. Traffic Analysis

3.1. Traffic Dataset

In order to develop a new DDoS attack mitigation algorithm, there are two DDoS traffic datasets
that have been used. We firstly study and analyze CAIDA 2007 dataset, which is a DDoS attack traffic
traces on August 4, 2007 (20:50:08 UTC to 21:56:16 UTC) provided by the Center for Applied Internet
Data Analysis [29]. CAIDA 2007 dataset is analyzed in detail in [30]. It is widely used until recently
as the reliable dataset for many research work on network security, especially on DDoS modeling,
detection and mitigation [6,22,31–33]. The total size of the original dataset is 21 GB. It includes normal
traffic and attack traffic. The maximum and minimum packet sizes are 1500 and 46 bytes for malicious
attack traffic and 1474 and 40 bytes for the innocent traffic, which are almost the same. However, in the
detailed data analysis represented in the next subsection, we recognize some differences between the
attack and normal traffic.

The second set of traffic traces have been created in our testbed by using Bonesi [34], a tool to
emulate botnet traffic in a testbed environment on the wire. In the testbed the botnets are located in 31
different subnets representing 31 corporate networks. Traffic going from the corporates to the Internet
are translated to 31 public IP addresses using NAT. The traffic is generated in 220 s, including 20 s of
normal traffic and 200 s of TCP and ICMP attack traffic. We make use of this second dataset as the
additional data for training and testing of the machine learning algorithms.
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Table 1 presents the number of active source IPs, ports of TCP-SYN and number of source IPs,
packets of ICMP in the CAIDA 2007 dataset, while Table 2 shows these corresponding data generated
by our testbed.

Table 1. Number of active IPs and ports in CAIDA 2007 dataset.

Time (second) # of IPs (TCP) # of TCP Ports # of IPs (ICMP) # of ICMP Packets

0–20 2 149 9 7363
20–40 72 424 10 7191
40–60 84 946 9 6646
60–80 94 1291 65 9580

80–100 177 35702 739 370873
100–120 242 82685 1368 983884
120–140 332 134838 2126 1616179
140–160 421 180078 2714 2291028
160–180 504 233090 3365 2905617
180–200 585 186489 4020 2307083
200–220 663 100631 4583 1238029
220–240 747 265239 5218 2970610
240–260 817 262481 5817 3059760
260–280 890 254574 6447 3053683
280–300 1043 253794 7083 3013000

Table 2. Number of active IPs and ports in dataset generated by Bonesi.

Time (second) # of IPs (TCP) # of TCP Ports # of IPs (ICMP) # of ICMP Packets

0–20 30 3690 31 12540
20–40 31 214631 31 435002
40–60 30 21410 31 804340
60–80 30 23183 31 790350

80–100 30 25273 31 796565
100–120 30 11357 31 799529
120–140 30 26692 31 794226
140–160 30 27139 31 797614
160–180 31 26008 31 797680
180–200 31 25428 31 795097
200–220 31 13500 31 801166

3.2. Traffic Analysis

For TCP-SYN, a flow is defined as a TCP session with 4 specific parameters, namely [IP source
addr., IP destination addr., source port number, dest. port number]. The analysis from CAIDA 2007
shows that in the first 20 s, the number of flows is low, which indicates that network is in the normal
state. From the 20th second, the number of flows increases sharply. It is worthwhile to note that
while the number of source IPs increases, the number of opened ports increases much more sharply.
That is, the number of opened ports per IP source address escalates aggressively during the attack
phase. Each attack source IP opens several ports in seconds before opening extremely high number
of ports and sends very large number of packets to the victim. There are approximately 1000 attack
IPs corresponding to the sources of malicious attack flows, each malicious flow attacks at different
moment. In the top attack phase, the number of ports is over 240 times of the number of source IPs.

Also for ICMP flood attack, Table 1 shows that in the first 60 s, the number of source IPs is low.
The number of ICMP packets and IPs begins increasing from the 60th second and reaches to over
370 thousands packets and more from 80th second, which indicates that network is flooded by ICMP
packets from 80th second. From that time, the number of ICMP packets per IP is extremely high,
reaching over 860 times at 160th second. This phenomenon can also be observed in the Bonesi datasets,
as shown in Table 2.
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From the both datasets it is observed that in the case of TCP-SYN flood the attacker creates an
extremely high number of TCP flows by opening many ports per one IP address instead of just using a
large number of faked IP addresses. Also, in the case of ICMP attack, an IP address is used to send
many ICMP packets instead of using large number of IP addresses to send just few ICMP packets per
address. One remarkable explanation of this observation is the follows: in an ISP network, where an
ISP serves a few corporate networks, the attacker poisons hosts in some corporate LANs as botnets.
When a botnet sends out a packet, the source IP address of the botnet from the local host is translated
to public IP address by the NAT device (see Figure 2). Thus, due to the network translation mechanism
the number of source IPs is limited, which leads to the above phenomenon. It is worthy to note that
this observation always applies in ISP networks that serve several corporates, independent of the
traffic patterns.

Figure 2. DDoS attack in an Internet Service Provider (ISP) network.

It is also noted that attacks inside the cloud might be different, where attackers can use many IP
source addresses. Figure 3a presents the average entropy of port per each IP address in case of normal
and attack state. The entropy of port per IP in normal state is around 5 while the entropy in attack
state is considerably higher. Figure 3b presents logarithm of number ICMP packets per IP. It shows the
different between normal and attack traffic. Based on the results, it is observed that the number of
ports per IP address, the entropy of ports per each IP address and number of ICMP packets per IP are
important features for developing DDoS detection and mitigation algorithms. The difference of the
pattern between attack and normal status lets us use machine learning for this mission.
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(a) TCP-SYN

(b) ICMP

Figure 3. (a) Average entropy of source ports per each IP address; (b) Logarithm of number of ICMP
packets per each IP address.

4. KNN-Based Approach for DDoS Attack Mitigation

In this section, we propose an approach to mitigate DDoS flood attack. Figure 4 represents
a system architecture of an SDN-based security gateway. The gateway resides at the border of a
corporate network that receives traffic coming in and out of the corporate network. The system
consists of two components, namely the SDN-enabled switch and the SDN controller. All intelligent,
programmable functionalities of the system locates at the controller, which imposes different policies
on the SDN-enabled switch. In our architecture, we extend the controller to support DDoS detection
and mitigation mechanisms. The Mitigation Block is based on machine learning algorithms developed
inside the controller. When a new incoming flow arriving at the switch does not match in the flow
table, the switch sends a query to the controller in the packets-in. At this stage the Mitigation Block
performs an ML-based detection and mitigation algorithm to decide if the flow is innocent or attack
based on port’s entropy for TCP traffic or logarithm of the number of packets for ICMP traffic as
mentioned above. For a malicious flow, the controller then imposes a rule on the switch by creating
a packets-out with 2 features: “IP_address = attack IP” and “action = drop” to block the attack flow,
while normal traffic is treated as usual in the controller and forwarded to the destination.
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Figure 4. System architecture.

In the mitigation functional block, each IP source is monitored and processed following the
diagram shown in Figure 5. The information of each IP source is collected by the OpenFlow switch
(OvS) and then is sent to the controller. Let X = {X1, ..., Xn} be the set of source IP addresses. In the
case of attack, a source IP Xi may open many ports denoted as xi = {xi1 , ..., xim} or have number of
ICMP packets ni. The controller calculates the entropy of the number of TCP ports as in Equation 1 or
logarithm of the number of ICMP packets per IP address Xi:

H(Xi) = −
m

∑
j=1

p(xij) log[p(xij)], (1)

where p(xij) is defined in the Equation (2); p(xij) reflects the number of flows carried in a number of
packets sent during a particular time.

p(xij) =
Number of packets in flow[IP(Xi), port(xij)]

∑ all packets of all ports opening in IP(Xi)
. (2)

Let H(X) = {H(X1), ..., H(Xn)} be the entropy vector of n IP addresses; H(Xi) is the entropy of
the ith IP that needs to be normalized in the range [−1, 1] for the KNN algorithm. The normalized
yi = Ĥ(Xi) can be calculated as:

yi =

{
tanh

[
0.1

(
H(Xi)− µi

σi

)]}
, (3)

where µi and σi are the mean and the standard deviation of H(Xi). Both values are used in real-time
DDoS attack mitigation.

K-Nearest Neighbors (KNN) [35,36] algorithm is used to find K nearest neighbors for evaluating
the entropy of ports or logarithm of number of ICMP packets. It then defines thresholds to differentiate
two states of the data set, namely normal and attack with an equivalent ratio. A data point is marked as
attack or normal based on the labels of k nearest Euclidean distance points. In the mitigation phase,
the algorithm in the controller marks the traffic as attack or normal and sets label for each flow.
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Figure 5. Mitigation process diagram.

5. Adaptice Monitoring Time Window

Real-time is an important factor in a normal network operation as traffic should be monitored and
processed online. In general, many features of a real-time series dataset cannot be extracted instantly,
as they are calculated based on an accumulative collection of data points over a time duration. In this
work this time duration is referred to as the monitoring time window (MTW). For instance, as for the
TCP-SYN mitigation algorithms proposed in Section 4, in an MTW period the number of source IP
addresses as well as their corresponding opened ports are collected, so that entropy of ports belonging
to various source IP addresses can be calculated. In the training phase, the KNN algorithm decides
a threshold of the entropy of the opened ports. During the testing phase, entropy of ports collected
over the monitoring time window is compared with the threshold, thus incoming traffic with the
corresponding source IPs can be classified as normal or attack. The same process also applies for ICMP
flood attack.

Choosing the size of the monitoring time window is of important as it has an impact on the
performance of the system as well as the accuracy of the mitigation algorithms. If the monitoring
time window is too short, collected information (e.g., the number of opened ports per IP addresses)
would not be sufficient for an accurate attack detection (e.g., entropy of ports and the corresponding
threshold). Consequently, the system cannot block malicious incoming traffic efficiently. On the other
hand, longer monitoring time window would improve the accuracy of the detection and mitigation
algorithms. However, during the data collection process in a MTW period, malicious attack flows
have not been detected and blocked yet. Thus in both cases if the MTW is too long or too short, attack
flows are not blocked efficiently, leading to a high number of attack flows coming to the victim. This
phenomenon can be seen in Figure 6a,b and will be discussed later in this section. Based on this
observation, we propose a method to optimize the monitoring window time, so that the efficiency of
the mitigation algorithms proposed in Section 4 can be improved.
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Figure 7 shows the DDoS mitigation process for incoming traffic based on machine learning
deployed in this work. There are two operational phases in the model, namely the training phase
and the prediction phase. During the training phase, the monitoring window size as well as the
corresponding threshold are defined based on the information extracted from the training traffic. We
then develop prediction functions that are used in the prediction phase for mitigating malicious real
incoming traffic. The process is descried in detail below.

(a) ICMP (b) TCP-SYN

Figure 6. Performance of the system for each monitoring time window value in (a) ICMP flood
attack—45,000 pkts/s and (b) TCP-SYN attack—12,000 f lows/s (CAIDA 2007).

Figure 7. DDoS mitigation process based on machine learning.

Let P be the percentage of attack traffic that is blocked at the security gateway (see Figure 4).
Ideally, the system should block all attack traffic, that is Pideal = 100%. Thus, P can be considered as
the mitigation efficiency of the security gateway. Thus, the objective of the system is to maximize this
mitigation efficiency.

Let W be the monitoring time window that needs to be determined and F be the features of attack
traffic, i.e., the number of TCP flow per second or the number of ICMP packet per second. Then, P is
defined as a function g of F and W:

P = g(W, F) (4)
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For each attack traffic scenario with a corresponding value fi of number of TCP flow per second
or the number of ICMP packet per second, we will have an optimized W̃i with the best mitigation
efficiency pi. For each value of fi, the optimal window size can be chosen by trying many values
of Wi and finding the value that maximizes pi. After that, the KNN algorithm is deployed for each
monitoring time window W̃i to find a threshold Ti corresponding to pi.

Figure 6a shows the number of malicious ICMP packets that get through the system in an ICMP
flood attack with 45,000 pkts/s, depending on the monitoring time window. As presented in the figure,
MTW = 0.1s is the optimal window size. Similarly, the optimal monitoring window size in case of
TCP-SYN flood with 12,000 f lows/s is 2.0s, as shown in Figure 6b. Thus, for each traffic scenario
fi, an optimal monitoring window size W̃i and the corresponding threshold Ti can be found, so that
a Reference Table can be predefined as shown in Tables 3–5 are the aforementioned reference table
with optimized MTW and threshold under various traffic scenarios for TCP-SYN and ICMP flood,
respectively. The reference table, however, represents only a limited number of traffic scenarios with
their corresponding parameters. In order to predict an arbitrary feature variable value fc based on
known data points in the reference table, the XGBoost [37] algorithm has been used. XGBoost is a
machine learning-based algorithm belonging to gradient boosting [38] that is widely used recently.
XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solves many data science
problems in a fast and accurate way.

Table 3. Reference table with optimized monitoring time window (MTW) and threshold for given
traffic scenarios.

F (# of Flows/s; # of Packets/s) W̃ Threshold

f1 W̃1 T1
f2 W̃2 T2
... ... ...
fi W̃i Ti
... ... ...
fn W̃n Tn

Table 4. Optimized monitoring time window W̃TCP for TCP-SYN attack under different traffic scenarios.

F (# of TCP Flows/s) W̃TCP Threshold

500 1.6 5.606
3000 1.7 5.723
6000 1.75 5.781
9000 1.8 5.835

12,000 2.0 6.087
15,000 2.1 6.223

Table 5. Optimized monitoring time window W̃ICMP for ICMP attack under different traffic scenarios.

F (# of ICMP Packets/s) W̃ICMP Threshold

2500 0.07 0.372
4000 0.075 0.454

15,000 0.085 0.715
35,000 0.095 0.824
45,000 0.10 0.922
80,000 0.15 1.367

As shown in the figure, two XGBoost instances have been used in the training phase. The first
instance is used to predict the monitoring time window W̃i based on the parameters Fi and Wi in the
training data as described in Table 3. The second instance predicts threshold Ti with training data
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including Fi, Wi and threshold Ti. During the prediction phase, based on data gathered in the current
MTW W̃t

i , the next monitoring window time W̃(t+1)
i and its corresponding threshold Ti+1 are predicted

based on the prediction functions (see also Figure 7).

6. Performance Evaluation

6.1. Tesbed Setup and Parameter Settings

In order to evaluate the performance of our approach, a testbed is deployed as shown in Figure 8,
which includes POX [39] as the SDN controller, OpenVSwitch (OvS) [40] as the SDN-enabled switch,
a normal user, attack traffic replay machine, and the victim. We use TCP replay to replay the CAIDA
attack traffic while using Bonesi [34] to generate both innocent and attack NATed IP traffic with opened
ports in different experimental scenarios. The configurations of the testbed are shown in Table 6.
MWT is adaptive by using the method discussed above. For the sake of simplicity, only results from
the CAIDA 2007 dataset are mostly shown and discussed as they are more complex, and the results
from the Bonesi dataset generated in our testbed also support the same findings of this work.

Figure 8. Testbed setup.

Table 6. Testbed configurations.

OvS Controller Traffic Generator Victim

Version 2.5.5 POX with OpenFlow 1.0
Bonesi; CAIDA 2007,
5 pcap files, 25 min attack

CPU 6 Xeon(R) 2.67 GHz 6 Xeon(R) 2.53 GHz Xeon(R) 3.70 GHz Xeon(R) 2.67 GHz
RAM 64 GB 32 GB 16 GB 64 GB
Cores 24 16 12 24

OS Ubuntu 14.04 Ubuntu 14.04 Ubuntu 14.04 Ubuntu 14.04

In the training phase of the aforementioned machine learning algorithms (see Figure 7), 80% of
the CAIDA dataset and normal traffic generated by Bonesi are sent to testbed for training. In the
testing phase, the remaining 20% of the CAIDA dataset and normal traffic are used. The following
aspects are to be addressed in the evaluation:

• We firstly argue the deployment of the KNN algorithm in the proposed approach by comparing
the accuracy and complexity of some machine learning algorithms, since they are important
trade-off in realtime operations.

• The performance of the KNN algorithm based on accuracy, precision, recall and F1 score is
then evaluated.

• The next step is to discuss the mitigation efficiency of the proposed adaptive MTW in both
TCP-SYN and ICMP flood cases.

• Finally, behaviour of innocent traffic under DDoS attack is investigated.
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6.2. Experimental Results

In Table 7, we firstly compare some common machine-learning algorithm to evaluate their
performance, each algorithm processes 100 records in testing data. As can be seen, KNN can trade
off the processing time with low complexity while guaranteeing high performance and high accuracy
compared to others.

Table 7. Performance of different ML algorithms.

Parameters KNN Decision Tree NeuralNet

Calculation time (ms) 0.411 0.405 14.325
Accuracy 0.982143 0.981522 0.988425
Precision 0.990291 0.976744 0.966942

Recall 0.971429 0.984375 0.983193
F1-score 0.980769 0.980544 0.975000

Table 8 shows the accuracy, precision, recall and F1-score of KNN with different numbers of
neighbor-k (3, 5, 7, 9, 11). If the k value is too high, the algorithm will be overfitting. Overfitting is a
modeling error that occurs when a function is too closely fit to a limited set of data points. For this
reason, k equals to 9 is the best choice according to our calculation, in which:

• Accuracy is the number of correctly detected cases in all tests.
• Precision is how accurate the model is out of those predicted positive, how many of them are

actually positive.

precision =
true positive

true positive + false positive
. (5)

• Recall calculates how many of the Actual Positives that the model captures through labeling it
as Positive.

recall =
true positive

true positive + false negative
. (6)

• F1-score is a function of Precision and Recall. It balances between Precision and Recall; therefore,
F1 might be a better measurement to use.

F1-score = 2× precision× recall
precision + recall

. (7)

Table 8. Performance of k-Nearest-Neighbor (KNN).

K-Neighbors Accuracy Precision Recall F1-Score

3 0.964286 0.940171 0.990991 0.964912
5 0.968750 0.947368 0.990826 0.968610
7 0.973214 0.956897 0.991071 0.973684
9 0.991071 0.991453 0.991453 0.991453

11 0.982143 0.990291 0.971429 0.980769

As shown in Table 8, the accuracy of the algorithm is over 96% and up to 99% in case k = 9, while
the system performance can be adapted to its capacity.

As can be seen in Figure 9a,b, the number of malicious ICMP packets and the number of TCP
flows that get through the gateway to the destination vary depending on the monitoring window time.
If adaptive window size is applied as described previously in Section 5, which is visible in the lower
part of the figures, then the system can block malicious traffic most efficiently. It is also worthwhile
to note that too large or too small window sizes, e.g., MWTTCP = 1 s or MWTTCP = 5 s as shown in
Figure 9b, are not the optimal values for the best mitigation efficiency.
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(a) ICMP

b
(b) TCP-SYN

Figure 9. Mitigation efficiency depending on monitoring window time in two cases: (a) ICMP Flood
attack and (b) TCP-SYN attack.

Moreover, it is also observed that in an SDN network environment, TCP-SYN flood attack has
a negative impact not only on the destination victim, but also on the SDN controller. Since each
TCP-SYN message is considered as a new flow that should be processed by the controller, a large
number of TCP-SYN may cause the controller to be overloaded. Thus, selecting the right MWT as in
the adaptive selection method can also minimize the number of requests arriving in the controller and
protect the controller from collapse.

Figure 10 shows the number of TCP flows entering (flows_in as red dashed line) and flows
exiting (flows_out as blue solid line) the system in a second, where flows_in include normal and
attack traffic. As can be seen in normal condition, from the 0th second to 75th second, the system
lets all flows through, no flow is dropped. In the attack phase, after the 75th second, the number of
flows_in increases to 15,000 flows per second but flows_out are approximately 700 flows. That means
the attack is restricted by the proposed mitigation algorithm, most of the attack flows are dropped.
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Figure 11a presents the number of TCP-SYN attack flows per second to victim. It shows that the
victim still receives attack traffic from the 80th second. However, the number of flows is less than 600
flows per second while the number of TCP-SYN flows coming to the network reaches 15,000 flows per
second as shown in Figure 10. That is, most of attack traffic is dropped. There is less than 4% attack
traffic coming to the victim, which is acceptable. The reason is that the information of the traffic is
collected during the monitoring window time. At the beginning of the attack, the number of ports
per IP of an attack flow does not sufficiently reach the threshold, the algorithm labels it as the normal
traffic and forwards it to the victim. In the next window time, the number of ports per IP reaches the
threshold and the controller decides to label the flow as attack and drop.

Figure 10. TCP flows entering and leaving the controller.

(a) TCP-SYN (b) ICMP

Figure 11. Attack traffic volume arriving at the victim: (a) TCP-SYN (flows per second) and (b) ICMP
(packets per second).

Figure 12a presents normal arrival and departure TCP traffic at the gateway, where the red line is
the volume of TCP traffic that enters the system in flows/s, and the green line is the TCP traffic that is
delivered to the victim. The result shows that most of normal traffic flow is delivered to the victim.
The same is also applied for ICMP traffic as presented in Figure 11b and Figure 12b. Overall, the
experimental results in Table 9 confirm that our proposed approach can efficiently mitigate TCP-SYN
Flood and ICMP Flood attacks up to more than to 98% and 99% respectively while normal traffic is
almost not affected. In addition, the SDN-based Smart Security gateway (Figure 8) is robust against
TCP-SYN Flood attack, ICMP Flood attack as the time window size is adapted automatically. The SDN
controller is also protected from attack traffic and stays operational when the new mitigation model
is applied.
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(a) TCP-SYN

(b) ICMP

Figure 12. Normal traffic volume arriving at the victim: (a) TCP-SYN (flows/s); and (b) ICMP (packets/s).

Table 9. Efficiently Mitigate TCP-SYN Flood and ICMP Flood Attacks.

% Blocked ICMP Flood Attack Packets % Blocked TCP-SYN Flood Attack Flows

99.4% 98.9%

Finally, Figure 13 shows five boxplots of the latency of innocent TCP users under TCP-SYN attack
in 5 cases: (1) MWT = 1s; (2) MWT = 2s; (3) MWT = 3s; (4) no mitigation method is applied; and
(5) adaptive window size. Each bar represents the maximum and minimum, the average (orange
line) and the 50-percentile (the box) of latency. When the system does not use any DDoS mitigation
method, only a small part of innocent traffic can come through with very high latency (average from
7.5s to 9.5s). As TCP-SYN mitigation is deployed with fixed window size larger than the average of
the adaptive window size (3s—see Figure 9b), most innocent traffic can get to the destination with
the latency around 0.18s. This implies that our mitigation approach can greatly improve the system
performance. However, larger window size causes larger latency, as the controller should receive
more inquiries within a window that leads to over-utilization. When the window size is too large,
the controller is overloaded by too many malicious incoming requests. On the other hand, a window
size smaller than the average of the adaptive window size (e.g., 1s in our experiment) decreases the
accuracy of the mitigation algorithm, as the controller does not collect sufficient information to decide
if a source IP is a malicious one. Consequently, some attacks can get through that increases the latency
of innocent traffic, which is as high as 1.8s. On the contrary, in case adaptive window size is used,
normal traffic can come through with the smallest latency, around 0.1 s.
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Figure 13. Latency of normal traffic.

7. Conclusions

This article presents a solution for mitigating DDoS attack, especially TCP-SYN flood attack
and ICMP flood attack using machine learning in SDN-based ISP networks. A light-weight and fast
machine-learning algorithm based on KNN that facilitates realtime operations is used to detect and
mitigate attack traffic by tracing back IP sources of attack while normal traffic is almost not affected.
In addition, we also propose a machine learning method to automatically adapt the monitoring window
time based on traffic input for better performance in terms of mitigation efficiency. The concept has been
realized in a real testbed with traffic generators, a POX controller, an SDN-enabled OpenVSwitch and
the victim, so that realtime operations of the proposed algorithms can be investigated. Experimental
results with the CAIDA traffic traces as well as the botnet traffic from the testbed show that over 98.0%
of attack traffic are detected and dropped, and innocent traffic is almost not affected while realtime
operation of the system can be maintained.

There are several research directions that would be worthy for more in-depth investigation in
the future. As mentioned earlier in this work, DDoS mitigation is much more difficult than DDoS
detection, as innocent traffic should be differentiated from attack traffic on-the-flight. In this paper
we show some features that support this differentiation for ISP networks, where botnets reside in
corporate networks with local IP subnets. With the increasing deployment of IoT and cloud computing
paradigms, this picture might greatly be changed. In the cloud paradigm, as attacks may come
inside the cloud, features for detection and mitigation of malicious traffic will be more complex.
Moreover, as cloud computing allows virtualizing physical resources and facilitates a flexible and
scalable pay-as-you-go provisioning of services, DDoS in the cloud can come from compromised VMs
in an on-demand, flexible and more sophisticated manner. Thus, mitigating DDoS attack in these
scenarios would be interesting and require more thorough research in the forthcoming few years.
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