
electronics

Article

EARL—Embodied Agent-Based Robot Control
Systems Modelling Language

Tomasz Winiarski 1,∗ , Maciej Węgierek 1 , Dawid Seredyński 1 , Wojciech Dudek 1 ,
Konrad Banachowicz 2 and Cezary Zieliński 1

1 Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska 15/19,
00-665 Warsaw, Poland; M.Wegierek@elka.pw.edu.pl (M.W.); d.seredynski@elka.pw.edu.pl (D.S.);
wojciech.dudek@pw.edu.pl (W.D.); C.Zielinski@ia.pw.edu.pl (C.Z.)

2 nomagic Sp. z o.o., ul. Rakowiecka 36, 02-532 Warsaw, Poland; konradb3@gmail.com
* Correspondence: T.Winiarski@ia.pw.edu.pl; Tel.: +48-2223-47397

Received: 22 January 2020; Accepted: 19 February 2020; Published: 24 February 2020
����������
�������

Abstract: The paper presents the Embodied Agent-based Robot control system modelling Language
(EARL). EARL follows a Model-Driven Software Development approach (MDSD), which facilitates
robot control system development. It is based on a mathematical method of robot controller
specification, employing the concept of an Embodied Agent, and a graphical modelling language:
System Modelling Language (SysML). It combines the ease of use of SysML with the precision of
mathematical specification of certain aspects of the designed system. It makes the whole system
specification effective, from the point of view of the time needed to create it, conciseness of the
specification and the possibility of its analysis. By using EARL it is possible to specify systems both
with fixed and variable structure. This was achieved by introducing a generalised system model and
presenting particular structures of the system in terms of modelling block configurations adapted
by using instances. FABRIC framework was created to support the implementation of EARL-based
controllers. EARL is compatible with component based robotic middlewares (e.g., ROS and Orocos).

Keywords: SysML; MDSD; robot system specification; cyber-physical system

1. Introduction

Robotic systems become more and more complex due to the incorporation of an increasing
number of sensors and effectors as well as the complexity of the executed tasks. One of the main
problems of modern robotics is how to design robot controllers effectively and correctly. At the core of
this problem is the formulation of a robot controller specification method. Two of the requirements are
of utmost importance. The specification should be platform-independent and, moreover, it should be
simple to transform into an implementation compatible with a chosen technology. There is no single
solution to those requirements. The literature regarding this subject focuses on best practices in this
field [1,2]. The provided set of tips, principles and proposals for structuring and representing the
operation of controllers is frequently presented with the help of Model-Driven Software Development
(MDSDs) techniques. This representation method helps to effectively implement those principles when
constructing a robot controller. In our work we propose EARL MDSD. To present the context of the
creation of EARL, in the following, other MDSDs that preceded EARL are described. Moreover, SysML
and the concept of Embodied Agent are introduced, as EARL is based on them.

1.1. MDSD in Robotics

In 2016, Nordmann et al. [3] surveyed 137 publications dealing with domain-specific modelling
approaches in robotics. Those publications took into account problems from nine subdomains of

Electronics 2020, 9, 379; doi:10.3390/electronics9020379 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-9316-3284
https://orcid.org/0000-0003-0779-255X
https://orcid.org/0000-0003-2528-6335
https://orcid.org/0000-0001-5326-1034
https://orcid.org/0000-0003-2849-069X
https://orcid.org/0000-0001-7604-8834
http://dx.doi.org/10.3390/electronics9020379
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/2/379?type=check_update&version=2

Electronics 2020, 9, 379 2 of 27

robotics, such as kinematics, dynamics or reasoning methods. Architectures and programming
is the subdomain most relevant to our subject. This subdomain was further subdivided into 12
subsubdomains such as control and handling of events, error and exception handling, design patterns
or architecture design decisions. The survey shows the level of complexity and multifacetedness of the
field of specification of robot controllers. Moreover, the number of papers indicates the importance of
the problem.

Ramaswamy et al. [4] discuss and compare four popular robotic MDSDs: RobotML, SmartSoft,
BRICS Component Model and V3CMM. In the following, the main attributes of these MDSDs are
presented. In Section 5, the selected MDSDs are systematically compared with EARL.

RobotML [5,6] is used to define a metamodel expressed in UML [7]. The model of the designed
system is decomposed into components such as sensors, effectors, maps or planners. It defines
the communication mechanisms between those components. RobotML enables the specification
of the system architecture, inter-subsystem communication mechanism and the behaviour of the
components. Code generation is based on an ontology. The domain metamodel includes architecture,
communications, behaviour and deployment. Behaviours are defined in terms of Finite State Machines
(FSMs) or algorithms. With each state and transition of the FSM activities are associated. Deployment
specifies the middleware and simulators that are to be employed by the target system. RobotML
significantly facilitates robotic system implementation, but it does not guide the designer as to what
should be the roles of individual system components and what should be the rules of their composition.

BRICS Component Model (BCM) formulates guidelines and offers metamodels for the creation
of individual components and their composition into entire systems [1,2]. It introduces a set of
rules for building individual components and component-based architectures. The components
are connected through ports (Component–Port–Component metamodel). Those connections are
independent of the runtime platform. Specification based on those rules distinguishes five development
aspects (5C): computation (processing, reading and writing data), communication (transfer of data
between components), coordination (orchestrating the components), configuration (parametrisation
of behaviour) and composition (coupling of reusable components producing predictable system
behaviour once the behaviour of its components is known). The approach is based on meta-modelling.

Similar rules regarding the software structure of the system are defined in the
SmartSoft [8] language. It highlights the description of the communication between components.
Seven communication patterns are defined: send, query, push newest, push time, event patterns, state and
wiring [4]. The language is related to the set of programming tools included in SmartMDSD
Toolchain [9]. Those tools guide the system creator through subsequent phases of its development:
design, implementation, integration and deployment.

The V3CMM [10] language differentiates three aspects of system architecture:
(1) structure—a static structure of simple and complex components, (2) coordination—an
event-based description of the components and (3) algorithms—a description of algorithms executed
by a component in a given state.

The examples of MDSD tools mentioned above have many common features:

• Utilise well-known graphical specification languages—the MDSD itself, as well as the system
described using this MDSD, are presented in the form of graphic diagrams derived from one of
the well known graphical specification languages, e.g., UML [11] or SysML [12].

• Are based on formal models—rules and constraints defined by MDSD language are represented
in the form of a formal model.

• Enable direct transformation of the specification into implementation—specific entities defined
in the MDSD tools map to specific entities of the framework used for the creation of the robot
software, e.g., components, communication channels and data types.

• Are compatible with open source frameworks—the specification can be easily transformed into
executable code created by using open source frameworks.

Electronics 2020, 9, 379 3 of 27

• Are supplemented with controller code creation software—the MDSD tool provides or can
cooperate with mechanisms that enable the transformation of specifications into the robot
controller code.

1.2. SysML

Reliable methods of creating robot controllers are vital for the quality and certification of the
produced software [13,14]. Thus, robotics MDSD tools usually include robot controller code generation
facilities [15]. The frameworks utilised to implement lower layers of controllers are usually component
oriented to make easier code reuse [16]. Additionally, components are the natural equivalent of blocks,
classes, actions and other entities of UML and SysML [12].

Historically UML preceded SysML. Its first documentation, adopted as an Object Management
Group (OMG) standard, was published in 1997. Many robotic MDSD tools such as BCM, RobotML,
SmartSoft and V3CMM either use directly UML, or use UML profiles or at least adopt some UML
concepts. In 2007, OMG published the first SysML specification, created as an extension/profile of
the UML language. SysML enables the specification of general concepts, not only related to software,
but also to the physical representation of cyber-physical systems. SysML graphical modelling language
is widely used by engineers and specifically utilised in the robotics domain, e.g., [17–20]. SysML
defines nine types of diagrams (Table 1), that enable multi-dimensional decomposition of the system
into: Packages, Requirements, that the designed system should comply with, as well as Behaviours
and system Structure.

Table 1. SysML diagrams and their abbreviations [12].

Diagram Group Diagram Kind Abbreviation

Package pkg
Requirement req

Behavioural

Activity act
Sequence sd
State Machine stm
Use Case uc

Parametric par

Structural Block Definition bdd
Internal Block ibd

As SysML has no formal semantics, a number of works has proposed its formalisation.
By embedding SysML within a formal logic, formal methods can be used to maintain consistency as
the design evolves [21]. In [22], the authors present TEPE, a graphical TEmporal Property Expression
language based on SysML parametric diagrams. Properties are built upon temporal and logical
relations between block attributes and signals. TEPE may be integrated with a SysML real-time profile.
The paper [23] presents a method of formalizing the SysML Internal Block Diagram (IBD) semantics,
by mapping it into the Hierarchical Colored Petri Net (HCPNs) semantics. The Description Logic,
namely, SHIOQ(D), is used in [24] to describe the block diagrams. However, the informal semantics
of SysML is often not completely captured or preserved when encoded in logic-based languages.
Examples include the generation of a B-Specification from a UML class [25]. In [26], Chouali et al.
use interface automata to formalize the semantics of SysML sequence and definition block diagrams.
The work proposes verification of interoperability in component-based systems by combining interface
automata and SysML models. The formalisation is presented by an algorithm and illustrated with an
example. The approach is neither automated nor analysed.

The literature review presented above indicates that so far no single dominating standard of
formalization and use of SysML has emerged. Usually, the method of SysML formalisation and how it
is used depends on a specific application.

Electronics 2020, 9, 379 4 of 27

1.3. Embodied Agent

A robotic system can be composed of one or more agents. The discussion whether a symbolic
representation of the environment is necessary in control of intelligent robots lead to the reformulation
of the concepts of embodiment and situatedness within robotics, which subsequently lead to the
formulation of the concept of an embodied agent [27–35]. The classification presented in, e.g., [35]
or Section 2.4, points out that structurally an embodied agent is the most complete type of an agent.
It gathers the information about the state of the environment using its receptors and influences the
environment using its effectors. Its control system is aware of the task that it has to execute. Using that
knowledge combined with the information produced by receptors it commands the effectors in such
a way as to fulfil the task. A monolithic control system would be too complex to specify and implement,
thus its decomposition into subsystems is required. A natural way of decomposing complex systems
is to partition them into hardware drivers and the task dependent part. Thus, the control system of
an embodied agent is decomposed into its control subsystem, virtual effectors and receptors [32–35].
Virtual effectors transform commands obtained from the control subsystem into commands acceptable
by the real (hardware) effectors. Virtual receptors aggregate the information acquired by the real
(hardware) receptors. The control subsystem, being aware of the task it has to accomplish, uses the
aggregated receptor data to produce effector commands. The transformative abilities of the virtual
effectors and receptors enable the control system to express the task in terms of concepts more
appropriate for that purpose than if it would have to process raw sensor readings and produce
hardware control commands. Thus, the structure of an embodied agent produces the natural control
loop: from the environment, through the real and virtual receptors, further to the control subsystem
and finally through the virtual and real effectors back to the environment. As receptors sometimes
have to be configured and the control subsystem might need proprioceptive data, a reverse path
also exists.

The subsystems of an embodied agent communicate through data buffers. Subsystems also
have internal memory. The contents of subsystem input buffers and internal memory form the
arguments of transition functions producing the contents of the output buffers and internal memory.
Transition functions are responsible for performing computations only. However, data has to be also
propagated between subsystems. Iterative acquisition of new data, computation of the transition
function and dispatch of the results is called a behaviour. The iterations cease when either a terminal
or error condition is fulfilled. Both conditions take as arguments the contents of input buffers and
internal memory and produce a Boolean value, and are therefore predicates. Multiplicity of subsystem
behaviours leads to the necessity of choosing the next one, once the previous one terminates its
activities. This is done by the subsystem finite state machine (FSM). The directed arcs of the state graph
of the FSM are labeled by predicates called initial conditions. The true initial condition directs the FSM
to its next state, in which a successive behaviour is invoked.

Embodied agents were used to specify research-oriented controllers for the investigation of control
laws [36,37], fuzzy logic based controllers [38] and object-oriented ontology [39]. They utilised Finite
State Machines, Hierarchical Finite State Machines and Petri Nets [40] to describe the system activities.
This approach was used to develop the controllers of many different types of robots:

• Industrial robots, e.g., modified IRb-6 manipulator [34], whose control software was an inspiration
for the example included in this article.

• Service robots, e.g., Velma robot [37].
• Mobile robots, e.g., Lynx [41], with selectable modes of locomotion, either horizontal or vertical.
• Skid steering platform Rex [42].
• General model of the wheeled robot [43].
• Social robots [44].

Electronics 2020, 9, 379 5 of 27

1.4. EARL

Although Robot Operating System (ROS) is the most commonly used robot control system
implementation tool, the authors of [45] indicate that no hints guiding the creation of robot controllers
are provided with it. The authors state that ROS is very well suited for creating various control
systems, but it lacks support for the reuse of once created architectural solutions. They opted for
SciROS, dedicated to the implementation of hybrid behaviour-deliberative systems. It purposefully
constrains the developer creating a specific set of functionalities. On the one hand, this approach
makes it impossible to create a controller with an architecture that does not meet the requirements,
and on the other hand, it allows the reuse of its fragments. The problems indicated in this
publication do not appear only in the popular frameworks, used for the creation of modern robot
controllers. Those problems have a very general nature. In our work, we propose another solution,
guiding robot controller developers creating systems composed both of real-time (RT) and non-RT
components. This approach, in particular, can be applied to systems implemented using the ROS and
Orocos frameworks.

EARL proposes a standardized approach to the control system specification of cyber-physical
systems. The Embodied Agent (Section 1.3) is its foundation. EARL maps the concepts associated with
Embodied Agents into SysML (Section 1.2) blocks with theirs properties, i.e., parts, references, values
and operations. EARL fulfils all of the requirements formulated at the end of Section 1.1. It extends the
set of best practices, by answering the following questions.

• How to organize a specification into SysML packages?
• For what purposes should the graphical tools be used and where the mathematical notation

should be applied directly?
• How to map the specification into component systems?
• How to describe systems with a time-varying structure?

Figure 1 presents the dependencies of EARL packages. The model utilised by EARL is defined in
the Model package (Section 2). The system instances that «realize» EARL model constraints are defined
in the System Instance package (Section 3). This package «uses» independently defined computational
structures from the Calculation Components package and data types from the DataTypes package.

Figure 1. EARL package dependencies.

A robot controller is created by first producing an EARL based system specification, and then it is
implemented with the support of FABRIC framework (Section 4). Section 5 provides a comparison of
EARL with other MDSD tools. Section 6 provides final remarks and conclusions.

2. Model Formulation

The model of a system specified in EARL is composed of concepts describing its structure and
behaviour. The structure of the model is specified with SysML Block Definition Diagrams (bdd) and
Internal Block Diagrams (ibd) [46]. For clarity of presentation, the various aspects of the structure are
presented by separate diagrams. The model is composed of a set of diagrams. Each of the diagrams

Electronics 2020, 9, 379 6 of 27

presents only a part of the structure, however the whole set has to be consistent. Some of the model
constraints are defined by mathematical equations.

2.1. System and Its Parts

System and Robot are the most general EARL concepts. They are structurally defined as in Figure 2.
A System must contain at least one Robot r. A Robot is composed of at least one Agent a. A system
may contain agents that are not elements of robots, e.g., an Agent coordinating the work of a group
of Robots [35]. Agents are connected with aa inter-agent communication Links. Each aa Link can be
referred by a Robot. In general, the Links parts names are created by combining the source block part
name at the beginning of the Link part name and destination block part name at the end of the Link
part name.

Figure 2. System and its parts.

In cyber-physical systems an Agent usually has a physical body, thus it is an Embodied Agent.
It represents either a whole or a part of a robot [47]. The structure of an Agent is defined in Figure 2.
The specific features of robotics, where an Agent can take on various roles, from real-time control,
through sensor data processing, to execution of computationally demanding tasks [48], require its
decomposition into various types of Subsystems and specialized Links between them. The variety
of link names was introduced to distinguish the types of Subsystems or Agents that communicate
with each other and the direction of data transmission. The blocks cardinality presented in Figure 2 is
general, but particular system structure may introduce more strict constraints according to the extra
rules presented further.

There are five different specialisations of Subsystems (right side of Figure 2). The main one
(indispensable for an Agent) is a Control Subsystem cs, which coordinates the Agent’s Subsystems

Electronics 2020, 9, 379 7 of 27

and communicates with other Agents. Real Effectors re are Subsystems which affect the environment,
whereas Real Receptors rr (exteroceptors) gather information from the environment. Virtual
Subsystems (Virtual Receptors vr and Virtual Effectors ve) supervise the work of Real Subsystems.
Therefore, the Real Subsystems of a particular type, cannot exist without virtual ones and vice versa,
see Equation (1).

|vr| > 1 ⇐⇒ |rr| > 1, |ve| > 1 ⇐⇒ |re| > 1. (1)

Inequalities Equation (1) represents the necessary conditions ensuring the preservation of system
integrity. Additional constraints have to be imposed on the number of Subsystems due to the specificity
of inter-subsystem communication Links (Section 2.3).

2.2. Subsystem and Its Parts

The structure of a Subsystem is defined in Figures 3 and 4a. It contains Input Buffers ib and
Output Buffers ob, Internal Memory m and other entities that are used to model both structural and
behavioural aspects of a Subsystem, i.e., FSM fsm (Finite State Machine), Primitive Predicates pp, Basic
Behaviours bb and Partial Transition Functions pf .

Figure 3. Subsystem and its parts (Input, Output Buffers and Internal Memory are excluded).

Electronics 2020, 9, 379 8 of 27

Figure 4b depicts relations between a particular Subsystem and its communication buffers.
The communication constraints depicted in Section 2.3 cause that each Virtual Receptor or Virtual
Effector must have at least one Input Buffer and one Output Buffer. A Real Effector needs at least
one Input Buffer to receive commands, and a Real Receptor needs at least one Output Buffer to send
sensory data.

(a) (b)

Figure 4. Subsystems and Buffers. (a) Subsystem Buffers and Internal Memory; (b) Relation of
particular Subsystems to Communication buffers.

Input Buffer, Output Buffer and Internal Memory are defined analogically as in [49]. Each Buffer
contains a data structure msg, which stores data of type dataType. The dataType can be defined either
as a primitive type or a composite and nested structure. Input Buffer possesses an operation receive(),
which enables communication with Output Buffers, and stores the received data in the Input Buffer.
Analogically, Output Buffer has a send() operation, which dispatches the data stored in the Output
Buffer to the connected Input Buffers. Internal Memory stores data, which is a value of type dataType.
Input and Output Buffers are graphically represented by squares connected by an arrow showing
the direction of data transfer. Internal Memory is represented by a square with a bidirectional arrow.
Various forms of communication between Subsystems have been described in the paper [33].

Similarly to [5,32], the EARL Subsystem structural model contains a Finite State Machine (FSM)
that determines its activities (Figure 3). To define the FSM, the set s of FSM States and the set t of FSM
Transitions are distinguished. With each of the states a behaviour bb is associated. Figure 5a defines
how the run() operation works. The FSM starts in the initial FSM State ifs. Then, while the Subsystem
is running, the bb.execute() operation executes a behaviour associated with the current state, which is
represented by cfs. The fsm.selectState() operation evaluates the predicates associated with the FSM
Transitions emerging from cfs to select the next FSM State. FSM Transition (Figure 3) is defined by the
source and destination FSM States as well as the associated Initial Condition, i.e., predicate ic.

In the following part of the article a SysML dot “.” notation [46] is used to depict the nesting of
the part instances as well as other block properties. The dot “.” can be treated as an extraction operator.
It is assumed that if a specific instance of a part is not indicated, the set of all instances of the part is
taken into account. In particular, if there is only one instance, there is no need to name it explicitly,
only the part name is needed. The same rule applies to references. As the particular parts compose
objects of the same type, they can be interpreted as sets in mathematical formulas.

Electronics 2020, 9, 379 9 of 27

The structure of a Basic Behaviour is defined in Figure 3. It should be noted that in our previous
papers using the concept of an Embodied Agent, e.g., [32–35], the “Basic Behaviour” was called shortly
a “Behaviour”. The name has been extended as “Behaviour” is a very general term in UML. The Basic
Behaviour includes a Transition Function tf ; a Terminal Condition tc , which is a Predicate determining
when the execution of the Basic Behaviour should terminate; and an error condition ec, which is
a predicate indicating that an error has been detected in the execution of the Basic Behaviour. Basic
Behaviour also posses an execute() operation (Figure 5b). That operation, first executes a Transition
Function tf .execute(), then all calculated Output Buffers values are sent out by tf .pf .ob.send(). Next,
iterationNumber is incremented, and tf .pf .ib.receive() gets new values into Input Buffers. Finally, Error
Condition ec. f un and Terminal Condition tc. f un are tested. If both values are false starts a new
iteration of operations composing the Basic Behaviour; otherwise, the fsm.run() operation designates
the next FSM State (Figure 5a).

(a) FSM.run(). (b) Basic Behaviour.execute().

Figure 5. FSM and Basic Behaviour operations.

The structure of a Transition Function is defined in Figure 3. A Transition Function is decomposed
into Partial Transition Functions. This sometimes reduces the redundancy of the specification, making it
more comprehensible. Moreover, if the implementation of the specified system is based on components,
a Partial Transition Function can be identified with a separate component or a set of components [50,51].
In this case, a Partial Transition Function can be reused in more than one Transition Function similarly
as a component can be reused in more than one of the separate groups of components, where one group
implements one specific behaviour of a system. Partial Transition Functions composing a Transition
Function can be executed in diverse orders, see, e.g., in [47]. To define the execution of Partial Transition
Functions within a Transition Function, the operation execute() was introduced. The operation may
vary between particular instances of Subsystems.

The structure of a Partial Transition Function is defined in Figure 3. It refers to Input Buffers,
Output Buffers as well as Subsystem Internal Memory (Figure 6). A Partial Transition Function can
read from the Internal Memory (using the mi reference) or write to it (using the mo reference). It can
be defined as a composition of components from the Calculation Components Package (Figure 1).
The composition is defined by a tf .execute() operation. The Partial Transition Function algorithm is
executed by an pf .execute() operation. The concept of the Embodied Agent as presented in this paper
introduces no restrictions on how to implement both of these operations.

Terminal Conditions used by a Basic Behaviour and Initial Conditions utilised within an FSM
Transition can be decomposed into Primitive Predicates. A Primitive Predicate takes its arguments
from Subsystem Buffers, see Figures 3 and 6. Both Predicate and Primitive Predicate execute an
operation called f un producing a Boolean output.

Electronics 2020, 9, 379 10 of 27

Figure 6. The utilisation of Buffers and Internal Memory by: Partial Transition Function, Primitive
Predicate and Links.

2.3. Embodied Agent Communication

The general system architecture is defined by the Agents and their Subsystems, being the building
blocks forming the system structure, and the communication links between those entities. In a way, the
architecture is defined by the constraints that are imposed on permissible connections. If no constraints
are imposed on the communication links, then the system designer has an excessive freedom of choice,
which in the case of his limited experience might lead to an obscure structure. Therefore, architectures
limiting this choice are preferred, thus leading to freedom from choice [9]. This provides guidance to
the designers, which results in a clear system structure.

In the case of EARL, inter-agent and inter-subsystem communication [47] is defined by
unidirectional communication Links (see Figures 2 and 6). The communication takes place between
Input Buffers and Output Buffers of Subsystems. Figure 7 presents acceptable communication links
between pairs of Subsystems. Note that the inter-agent communication is realized between the Control
Subsystems of the communicating agents. Additionally, Figure 7 shows that for each Real Effector
present in the system at least one transmission chain should exist. The commands produced by the
Control Subsystem, transformed by the Virtual Effector, must reach the Real Effector. Analogically,
for each Real Receptor, there is one compulsory communication chain that transmits and processes
sensory data. The Real Receptor provides data to the Virtual Receptor which in an agregated form
passes it to the Control Subsystem. The other communication Links appearing in Figure 7 are not
obligatory. To define bidirectional communication, a pair of unidirectional communication Links is
used. Detailed discussion of communication in Embodied Agent systems is presented in [33].

Figure 7. Communication constraints, where i 6= j.

Electronics 2020, 9, 379 11 of 27

2.4. Types of Agents

Four general activities of an Agent can be distinguished [35]:

C – overall control of the agent,
E – exerting influence over the environment by using effectors,
R – gathering the information from the environment by using receptors, and
T – inter-agent communication (transmission).

The first activity is indispensable, but the other three are optional, thus eight types of Agents
result (Table 2), depending on their capabilities. However, only seven are of utility, as an agent without
any of the optional capabilities is useless.

Table 2. Type of Agent, number of its Subsystems (|ve|, |re|, |vr|, |rr|) and number of inter agent
communication Links (|aa|) expressed with respect to the number of Buffers of the considered Agent.

|cs| |ve| |re| |vr| |rr| |aa| Description

C 1 0 0 0 0 0 zombie (useless)
CT 1 0 0 0 0 1..* purely computational agent
CE 1 1..* 1..* 0 0 0 blind agent
CR 1 0 0 1..* 1..* 0 monitoring agent

CET 1 1..* 1..* 0 0 1..* teleoperated agent
CRT 1 0 0 1..* 1..* 1..* remote sensor
CER 1 1..* 1..* 1..* 1..* 0 autonomous agent

CERT 1 1..* 1..* 1..* 1..* 1..* full capabilities

2.5. Specification of a Particular Robot Control System

The particular structure of a system is specified by application of instances of specializations of
blocks [12] constituting the general model presented above. The names of instances should be long
enough to be descriptive and intuitive to interpret, thus reducing the need for additional glossaries.
In our approach, each instance can set the number of parts and references (e.g., associated Buffers),
however within the limits imposed by the general model. Similarly, each instance can redefine the
particular operations of parent blocks present in the general model (e.g., each instance of Partial
Transition Function redefines pf .execute operation).

In general, a system instance is defined as a graph. Its nodes represent Agents a and the directed
arcs represent the communication Links aa between them. It is a good practice to name Links by using
the names of communicating Agents: first the source Agent name, then a comma, and finally the
destination Agent name. Input Buffers and Output Buffers of the Control Subsystems are depicted as
sources and destinations of dataTypes being transmitted through the Links. The Buffer names reflect
the content of dataType being transmitted. The Subsystems are defined analogically.

Specification refers to a system with a static structure and invariable behaviour, or a system with
a variable structure at a certain time instant that both can be efficiently solved by using advanced
optimization techniques proposed in [52,53]. To specify a particular system, instances of the relevant
concepts appearing in the general system model should be concretised. The SysML diagrams [54] are
a part of the EARL-based system (Table 3). Some of the EARL concepts are specified mathematically:

• model and system instance constraints that can not be practically formulated in diagrams,
• f un operations of Predicates and Primitive Predicates, and
• some calculations performed inside actions of Activity Diagrams of Partial Transition Functions,

e.g., control laws.

In addition, mathematical notation is used to express formal conditions ascertaining the correctness of
the composition of Partial Transition Functions.

Electronics 2020, 9, 379 12 of 27

Table 3. SysML diagrams describing system parts in EARL.

System Part and Function SysML Diagrams

System and its parts, initial analysis req, uc
System and Agent internal structure, Links, Input Buffer, Output Buffer ibd
FSM, FSM State stm
Operations of blocks act

3. Example of a System Specified Using EARL

This section is devoted to the illustration of how to use the EARL language to specify a robot
control system. The example presents a single robot multi-agent system containing CT and CET agents.
For the obvious reason of briefness, this description is not a complete specification, but contains only
examples of important aspects of the general model and its use:

• Structure of the whole System with Buffers, Internal Memories, inter Agent communication Links,
and dataTypes used by them.

• Structure of the particular Agent with Buffers, Internal Memories, inter Subsystem communication
Links, and dataTypes used by them.

• Specification of a particular Subsystem, its structure and behaviour, i.e., Buffers, Internal Memories,
dataTypes, FSM, Basic Behaviours and their Terminal Conditions and Error Conditions; Primitive
Predicates, FSM Transitions and their Initial Conditions; method of both composition and
execution of Partial Transition Functions and control law utilised in the activity diagram of
Partial Transition Function.

A manipulation robot with N degrees of freedom and a gripper is considered, capable to perform
e.g. pick and place task. The specification process starts with the definition of the System structure.
Tips on the specification of requirements and use cases using SysML can be found in [55,56].

3.1. Structure of the System Composed of Agents

There are three Agents in the System (Figure 8). The Agent task/a supervises the task execution,
i.e., picking and placing objects; the Agent manip/a controls the N-DOF manipulator; and the Agent
grip/a controls the gripper. The gripper controller is separate from the manipulator controller,
because different grippers can be attached to the manipulator, thus separate Agents facilitate
system modification.

Figure 8. Structure of the considered exemplary System.

Figure 9 presents the dataTypes transmitted between the Agents. The Task Agent task/a sends
ManipulatorCommands to the Manipulator Agent manip/a. The commands contain parameters, e.g.,
operational or joint position setpoints and a command to perform emergency stop. In return task/a
gets a ManipulatorState dataType containing: the current operational or joint position, status of the

Electronics 2020, 9, 379 13 of 27

manipulator movement and information whether an emergency stop occurred. The Task Agent task/a
sends GripperCommand messages to the Gripper Agent grip/a and receives GripperStatus in return.
Similarly to messages exchanged between manip/a and task/a Agents, the GripperCommand and
GripperStatus messages contain parameters describing the desired and current gripper finger positions.

Figure 9. dataTypes transmitted within the System.

3.2. Manipulator Agent manip/a

The structure of the Manipulator Agent manip/a is presented in Figure 10. Each Real Effector re
represents one of the N drives of manipulator joints. Each drive is controlled by a Virtual Effector
that, e.g., implements a motor position regulator. All N Virtual Effectors ve are controlled by a single
Control Subsystem cs, which causes the manipulator to move either in joint space, where it interpolates
between joint positions, or in operational space, where it interpolates between Cartesian poses of
a frame affixed to a chosen link of the kinematic chain.

Figure 10. Structure of the Agent manip/a; letter K placed at the end of the instance name should be
substituted by a number, i.e. K ∈ {1, ..., N}.

The dataTypes transmitted inside the Manipulator Agent manip/a are presented in
Figure 11. The Control Subsystem cs sends MotorControllerCommand to each Virtual Effector
motorControllerK/ve. The dataType contains the desired winding current value or a command to
switch the hardware driver to the emergency stop state. Each Virtual Effector motorControllerK/ve
sends to the Control Subsystem cs information about the current motor position and whether the
hardware driver is in an emergency stop state. Each Virtual Effector motorControllerK/ve sends the

Electronics 2020, 9, 379 14 of 27

desired motor winding current to its respective Real Effector motorK/re, and in return receives the
encoder readings. Table 4 describes types of data stored in the manip/a.cs.

Figure 11. Definition of manip/a dataTypes.

Table 4. manip/a.cs.m dataTypes.

m dataType

motionFinished/m boolean
currentOperationalPos/m OperPosition
currentJointPos/m JointPosition
emergencyStopCommandK/m boolean
windingCurrentK/m double

Table 5 describes Primitive Predicates pp used in the Control Subsystem manip/a.cs. They take
as arguments the contents of the buffers and memory. The newData(InputBu f f er.msg) function
producing Boolean values, returns TRUE if there is new data in the Input Buffer, and FALSE if the data
is obsolete.

Table 5. Definitions of manip/a.cs.pp. f un.

pp f un

emergencyStop/pp
manipulatorCommand/ib.msg.emergencyStopCommand ∨
motorControllerState1/ib.msg.emergencyStopCommand ∨ . . .∨
motorControllerStateN/ib.msg.emergencyStopCommand

motionFinished/pp motionFinished/mi.msg
newJointPos/pp newData(manipulatorCommand/ib.msg.jointPosSetpoint)
newOperationalPos/pp newData(manipulatorCommand/ib.msg.operationalPosSetpoint)
false/pp FALSE

Table 6 describes the Predicates utilised by manip/a.cs. Figure 12 shows possible transitions
between the FSM States of the Control Subsystem manip/a.cs as well as the association of Basic
Behaviours to particular FSM States.

Electronics 2020, 9, 379 15 of 27

Table 6. Initial conditions labelling manip/a.cs.fsm transitions and terminal conditions of manip/a.cs.bb.
It is assumed that task/a can not set simultaneously a new joint position and an operational space pose.

Labels of transitions between FSM States

cs.fsm.t.ic. f un , PREDICATE
t PREDICATE

idle, jointMove/t newJointPos/pp. f un ∧ ¬emergencyStop/pp. f un
jointMove, jointMove/t newJointPos/pp. f un ∧ ¬emergencyStop/pp. f un

idle, operationalMove/t newOperationalPos/pp. f un ∧
¬emergencyStop/pp. f un

operationalMove, operationalMove/t newOperationalPos/pp. f un ∧
¬emergencyStop/pp. f un

jointMove, idle/t ¬emergencyStop/pp. f un
operationalMove, idle/t ¬emergencyStop/pp. f un

i, emergencyStop/t; where i 6= emergencyStop emergencyStop/pp. f un
Definitions of Terminal Conditions

cs.bb.tc. f un , PREDICATE
bb PREDICATE

idle/bb newJointPos/pp. f un ∨ newOperationalPos/pp. f un ∨
emergencyStop/pp. f un

jointMove/bb motionFinished/pp. f un ∨ emergencyStop/pp. f un
operationalMove/bb motionFinished/pp. f un ∨ emergencyStop/pp. f un
emergencyStop/bb false/pp. f un

The Control Subsystem manip/a.cs uses the following Partial Transition Functions.

• calculatePosition/pf —calculates manipulator joint positions and end-effector operational
space pose.

• jointMove/pf / operationalMove/pf —generates the joint/operational space trajectory and
calculates the winding current needed to realize the motion (Figure 13).

• passiveRegulation/pf —calculates the winding current needed to keep the manipulator in
a stationary position.

• emergencyStop/pf —copies the information about the occurrence of an emergency stop to Output
Buffers that are linked to the associated Subsystem Input Buffers.

• outputManipState/pf —composes ManipulatorState/ob (Figure 14a).
• outputMotorCon/pf —composes DriveControllerCommandK/ob (Figure 14b).

Figure 12. manip/a.cs.fsm definition. Conditions of transitions between FSM States are specified
in Table 6.

Electronics 2020, 9, 379 16 of 27

Figure 13. manip/a.cs.jointMove/pf .execute() – operation definition.

(a) outputManipState/pf .execute(). (b) outputMotorCon/pf .execute().

Figure 14. manip/a.cs.pf .execute()—operations definition.

Figure 13 shows the execute operation of a jointMove/pf Partial Transition Function. This Partial
Transition Function realises, e.g., the PI type motor position regulator for each joint Equation (2),
Equation (3):

windingCurrent = Kp e(t) + Ki

∫ t

0
e(t′)dt′, (2)

e = desiredMotorPos− currentMotorPos, (3)

where Kp and Ki are, respectively, proportional and integral gain factors, e is the position error, t is time.
Table 7 shows which Partial Transition Functions constitute the definitions of Transition Function

compositions used by Basic Behaviours of manip/a.cs.bb.
The Partial Transition Functions manip/a.cs.pf are subdivided into two disjoint sets: pfc and pfo.

The pfc set Equation (4) contains Partial Transition Functions that take as arguments Input Buffers:
manipulatorCommand/ib and motorControllerCommandK/ib[N]

pfc={calculatePosition/pf , jointMove/pf , operationalMove/pf ,

passiveRegulation/pf , emergencyStop/pf}.
(4)

Electronics 2020, 9, 379 17 of 27

The values produced by them are inserted into the Internal Memory mbo Equation (5)

mbo={motionFinished/mo, currentOperationalPos/mo, currentJointPos/mo,

emergencyStopCommandK/mo, windingCurrentK/mo}.
(5)

Functions from the pfo set Equation (6) take arguments from the Internal Memory mbo Equation (5)
and produce the Output Buffer values: ManipulatorState/ob and MotorControllerCommandK/ob[N],
hence they produce output of the whole Subsystem

pfo={outputManipState/pf , outputMotorCon/pf}. (6)

It was assumed that any two Partial Transition Functions used by a particular Transition Function
do not produce data to the same Output Buffers and Internal Memories, therefore the following
conditions are formulated for the pfc set Equation (7) and the pfo set Equation (8), respectively,

(∀x/bb)(∀x/bb.i/pf , x/bb.j/pf ∈ pfc, i 6= j)(x/bb.i/pf .k/mo � x/bb.j/pf .k/mo, k/mo ∈ mbo), (7)

(∀x/bb)(∀x/bb.i/pf , x/bb.j/pf ∈ pfo, i 6= j)(x/bb.i/pf .k/ob � x/bb.j/pf .k/ob), (8)

where � stands for “is not the same entity”.

Table 7. Compositions of Transition Functions manip/a.cs.bb.tf .pf . The right part of the
table presents what parts of output buffers and internal memory are produced by the specific
Partial Transition Functions.

/mo /ob

bb pf m
ot

io
nF

in
is

he
d

cu
rr

en
tJ

oi
nt

P
os

cu
rr

en
tO

pe
ra

ti
on

al
P

os

em
er

ge
nc

yS
to

p

w
in

di
ng

C
ur

re
nt

K

M
an

ip
ul

at
or

St
at

e

M
ot

or
C

on
tr

ol
le

rC
om

m
an

dK

idle/bb

outputManipState/pf •
outputMotorCon/pf •
calculatePosition/pf • •
passiveRegulation/pf •

jointMove/bb

outputManipState/pf •
outputMotorCon/pf •
calculatePosition/pf • •

jointMove/pf • •

operationalMove/bb

outputManipState/pf •
outputMotorCon/pf •
calculatePosition/pf • •
operationalMove/pf • •

emergencyStop/bb

outputManipState/pf •
outputMotorCon/pf •
calculatePosition/pf • •
emergencyStop/pf •

Electronics 2020, 9, 379 18 of 27

Transition Functions act in the following way. First, they compute the Partial Transition
Functions from the pfc set, and then they compute the Partial Transition Functions from the pfo
set. The fulfilment of Equations (7) and (8) makes it possible to run Partial Transition Functions
being members of pfc in parallel in the first stage of the Transition Function execution, and then
run the Partial Transition Functions being members of pfo set in parallel in the second stage of
Transition Function execution. To illustrate the above considerations, Figure 15 shows the definition of
jointMove/bb.tf .execute() operation – practical realization of Partial Transition Functions execution for
jointMove Basic Behaviour.

Figure 15. jointMove/bb.tf .execute() operation definition.

4. FABRIC Framework

Four roles can be assigned to people developing and using robotics software: end users, application
builders, component builders and framework builders [57]. The following considerations pertaining to code
generation take into account the mentioned roles. The code of a Subsystem is generated out of its
specification expressed using EARL and the source code written manually in C++. The specification
items are referred to using the numbers and letters, e.g., 1.a—deployer. Figure 16 presents the
relationship between: specification, patterns, parameters and code.

pattern: Basic Behaviour

parameters

Transition Function

communication with
other subsystems,

waiting

Predicates for
terminal and error

conditions

pattern: communication

parameters

communication
parameters

Buffers

pattern: Transition Function

parameters

nodes

graph of connections

pattern: FSM

parameters

associations of
Fsm States and

 Basic Behaviours,
Fsm Transitions

Predicates for
initial conditionscode 2.a: master_service

code 3: Orocos components

code 4: Orocos services

code 1.b: master_component

pattern: Predicate

parameters

Primitive Predicates

logical expression

code 5: ROS messages

code 2.b: run-time
configuration

pattern: Subsystem

parameters

Basic Behaviours

FSM

code 1.a: deployer

Figure 16. Specification decomposition into patterns and their parameters at various levels of
generality [16]. Parameters are implemented using either code, or patterns at lower level of generality.
Patterns are expressed as code. Arrows point from more general entities to more specific, i.e.,
their implementation.

Electronics 2020, 9, 379 19 of 27

For the purpose of Subsystem code generation EARL uses the FABRIC [16] framework. The
Subsystem code generation procedure uses the following input data.

1. FABRIC—framework code, common to all Subsystems; it was manually written by the framework
builders; it invokes Subsystem specific parts of code loaded at run-time; it is composed of the
following items.

a) deployer—code that loads Orocos framework together with its components and
configures them.

b) master_component—a specialised Orocos component that manages the activities of
the subsystem.

2. Subsystem specification complying with MDSD, created by application builders, and delivered as
two separate XML files:

a) The first complies with the EARL system model containing the definitions of FSM, terminal
and error conditions of Basic Behaviours, initial conditions of FSM Transitions, dataTypes
and send() and receive() operations employed by the Buffers,.

b) The second is used for run-time configuration; it contains the description of
Orocos components that compose the Transition Functions, and the parameters of
those components.

3. Orocos components that form Partial Transition Functions, written by component builders; the set
of components that are to be used is selected by application builders.

4. Source code of the Primitive Predicates produced by application builders; it is delivered in the form
of Orocos services.

5. ROS message definitions specifying dataTypes of the variables composing the Buffers; this code
is written by application builders.

Figure 17 shows the method of creating the executable code out of the above mentioned items
and the library source code.

patterns (FABRIC, C++)

automatically
generated C++ code

C++ code

DSL
code

generation

1.b: master_component

2.a: specification for code generator

3: Orocos components

compilation
1.a: deployer

compiled
deployer

compiled
Orocos plugins

master_service

compilation

compilation

machine code

compilation

2.b: configuration for Orocos

running
subsystem

deployer

load

written by framework builders

written by application builders

4: Orocos services

compilation

load

run

5: ROS messages
code of ROS messagescode

generation

Figure 17. Creation of Subsystem executable code basing on its library source code and specification as
well as subsystem deployment in run-time [16].

Electronics 2020, 9, 379 20 of 27

Out of the specification in item 2.a source code is generated. It is subsequently compiled together
with the code written manually, i.e., both the source code of the framework (items 1.a and 1.b) as well
as the code of the Orocos components and services (items 3 and 4). The deployer loads the necessary
components and the item 2.b of the specification, configures Orocos components, and thus composes
a working Subsystem.

5. Discussion

The transformation of the standard description of the Embodied Agent based
systems [32,33,42,44,47,58] into EARL facilitates robot control system implementation.
The introduction to this paper lists some of the other MDSD languages used to specify robot
controllers: RobotML, SmartSoft, BCM (BRICS), and V3CMM. The article [4] had introduced nine
features of Model Driven Software Development approaches that were used to compare those four
MDSDs. We extend this comparison by adding EARL. The results of the comparison are presented in
the form of Table 8, see the following definitions.

• Composability—in the phase of system integration, all the main properties of components should
remain unchanged. The problem may concern, e.g., duplication of component names. EARL and
other discussed MDSD languages do not meet this requirement.

Table 8. Comparison of robotic MDSD languages; feature: (+) exists, (−) does not exist.

Feature \ MDSD language EA
R

L

R
ob

ot
M

L

Sm
ar

tS
of

t

BR
IC

S

V
3C

M
M

Composability − − − − −
Compositionality − − − − −
Static Variability + + + + +

Dynamic Variability + − + − −
Component Abstraction + + + + +
Technology Neutrality + + + + +

Knowledge Model + + − − −
System Level Reasoning − − + − −

Non-Functional Property Model − − − − −

• Compositionality—ensures correct operation of the system composed of components. System
performance can be predicted for each reused component composition. In the case of EARL,
this refers to, e.g., the composition of Partial Transition Function out of Calculation Components
and creation of an Agent out of Subsystems. In both cases, the Calculation Components can
be reused to create different structures, but EARL does not provide mechanisms verifying the
correctness of the composition. EARL describes constraints imposed on communication between
Subsystems and requirements for compatibility of communication Link dataTypes (Section 2.3).
However, checking the fulfillment of these requirements is the responsibility of the system
designer. Other discussed MDSD languages do not meet the compositionality requirement either.

• Static Variability—set of constraints imposed on the communication between specific parts of the
system. All the discussed approaches have this feature. EARL also fulfills this requirement by
defining restrictions imposed on the communication between Subsystems (Section 2.3).

• Dynamic Variability—during system operation, the structure of connections can vary. Out of the
MDSD languages considered here SmartSoft and EARL have this capability. EARL assumes that
the connection structure between Agents may vary during System operation.

• Component Abstraction—refers to component-based systems. EARL and all other MDSD
languages discussed here meet this requirement. In EARL, a Calculation Component as well as
an Agent or Subsystem can be treated as a component.

Electronics 2020, 9, 379 21 of 27

• Technology Neutrality—system specification should be independent of the system
implementation technology. EARL as well as all the other MDSD languages discussed
here have this feature. EARL is based on the concept of Embodied Agent, which abstracts away
the implementation details. EARL itself is adapted to component systems and can be used, for the
specification of ROS and Orocos based systems.

• Knowledge Model—MDSD is based on domain knowledge represented, for example, in the form
of an ontology [59]. RobotML is based on an ontology that defines various concepts, entities and
relationships between them, pertaining to the domain of robotics. EARL is based on the concept
of an Embodied Agent, which can be treated as an ontology defining such robotics concepts as
effector, receptor, control subsystem, communication buffers, internal memory, FSM, behaviour
and transition function. Those concepts enable the composition of a robot system architecture
taking into account the separation of concerns approach to software design [60], resulting in
a hierarchic layered system.

• System Level Reasoning—refers to reasoning about the execution time or the model semantics.
Only SmartSoft implements some aspects of this kind of reasoning.

• Non-Functional Property Model—defines such aspects of the system operation as reliability or
performance. None of the discussed MDSD languages address this aspect. EARL also does not,
but it is based on SysML, which enables the definition of such requirements.

Section 1.1 lists five features that are common to the four described MDSD languages. We used
those features to compare EARL to the other MDSD languages. The assessment is based on the papers
describing the MDSD languages, i.e., RobotML [5,6], BCM (BRICS) [1,2], SmartSoft [8], V3CMM [10]
as well as the internet page of the SmartSoft project [61]. The results of the comparison are presented
in the form of Table 9, please see the following.

• Utilisation of well known graphical specification languages—EARL is based on the SysML
standard, RobotML implements a UML profile, SmartSoft relies on the UML standard,
BCM (BRICS) defines a meta-model using UML and V3CMM although does not use UML directly,
it adopts and adapts it.

• Reliance on a formal model—EARL uses the formal SysML notation, V3CMM uses Object
Constraint Language (OCL) to define model constraints formally. Although no information
on the use of formal models to define the other MDSD languages has been found by us, it can
be assumed that they are formally defined, because it is possible to generate executable code out
of them. It should be emphasised, that defining the model in the form of a UML profile can be
considered as a formal description as there are tools enabling the verification of the correctness of
instances of such models.

• Direct transformation into implementation—BCM (BRICS) supports model to model
(M2M) transformation, which enables the transformation of a model defined in
component-port-component metamodel into an Orocos component composition model.
RobotML uses a code generator toolchain defined in the PROTEUS project [5]. SmartSoft
uses SmartMDSD Toolchain to generate component hulls. Empty functions of the generated
components are subsequently filled in with source-code by the user [61]. V3CMM transforms
models defined using UML into skeletons of controllers expressed in the Ada language. EARL
uses FABRIC [16] framework to transform the specification into code utilising the ROS and
Orocos frameworks. The transformation of a specification into implementation is simple, because
EARL was created taking into account the component nature of robotic frameworks. For instance,
Subsystems naturally map to ROS nodes or nodelets, EARL Links map to ROS topics, and EARL,
recursively, decomposed dataTypes map to ROS messages (rosmsg), Partial Transition Functions
execute() operations map to a set of Orocos components. DataTypes and Calculation Components,
due to the organisation of the specification into packages, can be shared between various systems.

Electronics 2020, 9, 379 22 of 27

Similarily ROS messages and Orocos components can be shared between different robotic
controllers.

• Compatibility with open source frameworks—BCM (BRICS) and EARL are compatible with ROS
and Orocos, RobotML is compatible with Orocos-RTT and SmartSoft uses ROS. To the best of the
authors’ knowledge, V3CMM is not compatible with open source frameworks yet.

• Controller code generation software—V3CMM and RobotML are supported by the Eclipse
platform. BCM (BRICS) uses the BRIDE toolchain, which is based on Eclipse. SmartSoft is
associated with the SmartMDSD Toolchain utilising Eclipse. EARL uses FABRIC for code
generation. The FABRIC configuration files are created using any text editor, whereas the system
tests and its online analysis are done using FABRIC based graphical tools.

Table 9. Comparison of robotic MDSD language features: (+) exists, (−) does not exist.

Feature/MDSD EARL RobotML SmartSoft BRICS V3CMM

Utilisation of graphical
specification languages SysML UML UML UML UML

Reliance on a formal model mathematical + + + OCL
Direct transformation
into implementation FABRIC PROTEUS project SmartMDSD Toolchain M2M Ada language skeleton

Compatibility with open
source frameworks

ROS
Orocos Orocos-RTT ROS

ROS
Orocos −

Controller code
generation software FABRIC based on Eclipse SMARTSOFT

MDSD (Eclipse) BRIDE (Eclipse) based on Eclipse

6. Final Remarks and Future Work

EARL is convenient tool to effectively specify cyber-physical systems due to the following features,

• it employs model driven engineering, especially the rules governing the hierarchic composition
of system layers out of lower level elements;

• it uses the FABRIC framework to automatically create controllers out of their specification,
• it is based on the concept of an Embodied Agent, which proved to be instrumental in the

specification and implementation of many practical applications;
• it utilises standardised tools, i.e. SysML, supported by auxiliary software tools for developers,
• a large part of the designed system is specified by using graphical diagrams;
• there is no redundancy in the specification; and
• it is compact—contextual notation enables the introduction of long, descriptive names of block

instances, which do not have to be repeated frequently.

The above mentioned advantages made EARL a tool of preference for the specification and
implementation of the currently developed systems. The Velma https://www.robotyka.ia.pw.edu.
pl/robots/velma robot (Figure 18a,b) is used as the main test-bed. As a two-handed robot, capable
of force/torque sensing, equipped with three-fingered grippers, and having a movable head with
mounted cameras and a Kinect sensor, it is sufficiently complex to perform tasks that one would
expect of service robots. Our current research concentrates on several topics: (i) robot task planning
especially for the purpose of grasping (continuation of [37,62,63]), (ii) automatic identification of
physical parameters of the grasped object and their reflection in impedance control law (continuation
of [36,37]) and (iii) ontology-based task planning and execution on an example of searching for a lost
object somewhere at home [64,65] (continuation of [37]).

https://www.robotyka.ia.pw.edu.pl/robots/velma
https://www.robotyka.ia.pw.edu.pl/robots/velma

Electronics 2020, 9, 379 23 of 27

(a) (b) (c)

Figure 18. Velma service robot presenting an exemplary skill [16]—opening a cabinet door:
(a) simulation, (b) reality, (c) Rico–TIAGo social robot with RFID antenna and tablet.

Additionally, EARL is currently being used to develop a system to assist elderly people at
homes. The system uses a Rico https://www.robotyka.ia.pw.edu.pl/robots/rico robot (Figure 18c)
and intelligent house components. This also takes EARL into an area beyond robotics, into the
realm of cyber-physical systems [66], where robot works together with external devices, both sensors
and effectors. Event-driven interruption of Agent’s behaviours [67] as well as simulation of human
behaviour for the purpose of testing social robots is currently investigated. In both cases, EARL is used
to specify and implement the investigated systems.

Author Contributions: Conceptualisation: T.W., M.W. and C.Z.; methodology: T.W., M.W. and K.B.; software:
T.W., D.S., M.W. and K.B.; validation: T.W., M.W. and D.S.; formal analysis: T.W., M.W. and C.Z.; investigation:
T.W., M.W., D.S. and W.D.; resources, T.W.; data curation: T.W. and M.W.; writing—original draft preparation:
T.W. and M.W.; writing—review and editing: T.W., M.W., D.S., W.D. and C.Z.; visualisation: T.W. and M.W.;
supervision: T.W. and C.Z.; project administration: T.W.; funding acquisition: T.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded by the National Science Centre following the decision number
DEC-2012/05/D/ST6/03097.

Acknowledgments: The authors would like to thank Maciej Bogusz, Szymon Jarocki, Daniel Giełdowski, Jarosław
Karwowski and Jakub Postępski for their effort to evaluate EARL and Jacek Malec and Maciej Stefańczyk for
valuable remarks.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study
in the collection, analyses or interpretation of data; in writing of the manuscript; or in the decision to publish the
results.

References

1. Bruyninckx, H.; Klotzbücher, M.; Hochgeschwender, N.; Kraetzschmar, G.; Gherardi, L.; Brugali, D.
The BRICS Component Model: A Model-Based Development Paradigm for Complex Robotics Software
Systems. In Proceedings of the SAC ’13: Proceedings of the 28th Annual ACM Symposium on Applied
Computing, Coimbra, Portugal, 18–22 March 2013; pp. 1758–1764. [CrossRef]

2. Bischoff, R.; Guhl, T.; Prassler, E.; Nowak, W.; Kraetzschmar, G.; Bruyninckx, H.; Soetens, P.; Hägele, M.; Pott,
A.; Breedveld, P.; et al. BRICS—Best Practice in Robotics; In Proceedings of the ISR 2010 (41st International
Symposium on Robotics) and ROBOTIK (6th German Conference on Robotics), Munich, Germany, 7–9 June
2010; pp. 1–8.

3. Nordmann, A.; Hochgeschwender, N.; Wigand, D.L.; Wrede, S. A Survey on Domain-specific Modeling and
Languages in Robotics. J. Softw. Eng. Robot. 2016, 7, 75–99.

4. Ramaswamy, A.; Monsuez, B.; Tapus, A. Model-driven software development approaches in robotics
research. In Proceedings of the 6th International Workshop on Modeling in Software Engineering (MISE
2014), Hyderabad, India, 23–29 May 2014. [CrossRef]

https://www.robotyka.ia.pw.edu.pl/robots/rico
http://dx.doi.org/10.1145/2480362.2480693
http://dx.doi.org/10.1145/2593770.2593781

Electronics 2020, 9, 379 24 of 27

5. Dhouib, S.; Kchir, S.; Stinckwich, S.; Ziadi, T.; Ziane, M. RobotML, a Domain-Specific Language to Design,
Simulate and Deploy Robotic Applications. In Simulation, Modeling, and Programming for Autonomous
Robots; Lecture Notes in Computer Science; Noda, I., Ando, N., Brugali, D., Kuffner, J.J., Eds.; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 7628. [CrossRef]

6. Kchir, S.; Dhouib, S.; Tatibouet, J.; Gradoussoff, B.; Simoes, M.D.S. RobotML for industrial robots: Design
and simulation of manipulation scenarios. In Proceedings of the IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 6–9 September 2016; pp. 1–8.
[CrossRef]

7. Booch, G.; Jacobson, I.; Rumbaugh, J. The Unified Modeling Language Reference Manual, 2nd ed.; Addison
Wesley: Reading, MA, USA, 2005.

8. Lutz, M.; Stampfer, D.; Lotz, A.; Schlegel, C. Service Robot Control Architectures for Flexible and Robust
Real-World task execution: Best Practices and Patterns; Plödereder, E., Grunske, L., Schneider, E., Ull, D., Eds.;
Informatik 2014; Gesellschaft für Informatik e.V.: Bonn, Germany, 2014; pp. 1295–1306.

9. Dennis, S.; Alex, L.; Matthias, L.; Christian, S. The SmartMDSD Toolchain: An Integrated MDSD Workflow
and Integrated Development Environment (IDE) for Robotics Softwaree. J. Softw. Eng. Robot. 2016, 7, 3–19.

10. Diego, A.; Cristina, V.C.; Francisco, O.; Juan, P.; Bárbara, Á. V3CMM: A 3-view component meta-model for
model-driven robotic software development. J. Softw. Eng. Robot. 2010, 1, 3–17.

11. Pilone, D.; Pitman, N. UML 2.0 in a Nutshell; O’Reilly: Springfield, MO, USA, 2005.
12. Friedenthal, S.; Moore, A.; Steiner, R. A Practical Guide to SysML: The Systems Modeling Language, 3rd ed.;

Elsevier, Morgan Kaufmann: Burlington, MA, USA, 2015.
13. Guiochet, J.; Machin, M.; Waeselynck, H. Safety-critical advanced robots: A survey. Robot. Auton. Syst. 2017,

94, 43–52. [CrossRef]
14. Chhaya, B.; Jafer, S.; Durak, U. Formal Verification of Simulation Scenarios in Aviation Scenario Definition

Language (ASDL). Aerospace 2018, 5, 10. [CrossRef]
15. Pietrusewicz, K. Metamodelling for Design of Mechatronic and Cyber-Physical Systems. Appl. Sci. 2019, 9,

376. [CrossRef]
16. Seredyński, D.; Winiarski, T.; Zieliński, C. FABRIC: Framework for Agent-Based Robot Control Systems.

In Proceedings of the IEEE 12th International Workshop on Robot Motion and Control (RoMoCo), Poznań,
Poland, 8–10 July 2019; pp. 215–222. [CrossRef]

17. Dudek, W.; Banachowicz, K.; Szynkiewicz, W.; Winiarski, T. Distributed NAO robot navigation system in
the hazard detection application. In Proceedings of the 21th IEEE International Conference on Methods and
Models in Automation and Robotics, MMAR’2016, Miedzyzdroje, Poland, 29 August–1 September 2016;
pp. 942–947. [CrossRef]

18. Stańczyk, B.; Kurnicki, A.; Arent, K. Logical architecture of medical telediagnostic robotic system.
In Proceedings of the IEEE 21st International Conference on Methods and Models in Automation and
Robotics (MMAR), Miedzyzdroje, Poland, 29 August–1 September 2016; pp. 200–205.

19. Mohd, N.N.S.; Mizukawa, M. Robotic services at home: An initialization system based on robots’ information
and user preferences in unknown environments. Int. J. Adv. Robot. Syst. 2014, 11, 112. [CrossRef]

20. Rahman, M.A.A.; Mizukawa, M. Model-based development and simulation for robotic systems with SysML,
Simulink and Simscape profiles. Int. J. Adv. Robot. Syst. 2013, 10, 112. [CrossRef]

21. Graves, H.; Bijan, Y. Using formal methods with SysML in aerospace design and engineering. Ann. Math.
Artif. Intell. 2011, 63, 53–102. [CrossRef]

22. Knorreck, D.; Apvrille, L.; de Saqui-Sannes, P. TEPE: A SysML language for time-constrained property
modeling and formal verification. ACM SIGSOFT Softw. Eng. Notes 2011, 36, 1–8. [CrossRef]

23. Bouabana-Tebibel, T.; Rubin, S.H.; Bennama, M. Formal modeling with SysML. In Proceedings of the
2012 IEEE 13th International Conference on Information Reuse & Integration (IRI), Las Vegas, NV, USA,
8–10 August 2012; pp. 340–347.

24. Ding, S.; Tang, S.Q. An approach for formal representation of SysML block diagram with description logic
SHIOQ(D). In Proceedings of the IEEE 2010 2nd International Conference on Industrial and Information
Systems, Dalian, China, 10–11 July 2010; Volume 2, pp. 259–261.

25. Laleau, R.; Semmak, F.; Matoussi, A.; Petit, D.; Hammad, A.; Tatibouet, B. A first attempt to combine SysML
requirements diagrams and B. Innov. Syst. Softw. Eng. 2010, 6, 47–54. [CrossRef]

http://dx.doi.org/10.1007/978-3-642-34327-8_16
http://dx.doi.org/10.1109/ETFA.2016.7733727
http://dx.doi.org/10.1016/j.robot.2017.04.004
http://dx.doi.org/10.3390/aerospace5010010
http://dx.doi.org/10.3390/app9030376
http://dx.doi.org/10.1109/RoMoCo.2019.8787370
http://dx.doi.org/10.1109/MMAR.2016.7575264
http://dx.doi.org/10.5772/58682
http://dx.doi.org/10.5772/55533
http://dx.doi.org/10.1007/s10472-011-9267-5
http://dx.doi.org/10.1145/1921532.1921556
http://dx.doi.org/10.1007/s11334-009-0119-y

Electronics 2020, 9, 379 25 of 27

26. Chouali, S.; Hammad, A. Formal verification of components assembly based on SysML and interface
automata. Innov. Syst. Softw. Eng. 2011, 7, 265–274. [CrossRef]

27. Brooks, R.A. Intelligence without reason. Artif. Intell. Crit. Concepts 1991, 3, 107–163.
28. Brooks, R.A. New approaches to robotics. Science 1991, 253, 1227–1232. [CrossRef]
29. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Prentice Hall: Upper Saddle River, NJ,

USA, 1995.
30. Arkin, R.C. Behavior-Based Robotics; MIT Press: Cambridge, MA, USA, 1998.
31. Steels, L.; Brooks, R. The Artificial Life Route to Artificial Intelligence: Building Embodied, Situated Agents;

Routledge: Abingdon, UK, 2018.
32. Kornuta, T.; Zieliński, C. Robot control system design exemplified by multi-camera visual servoing. J. Intell.

Robot. Syst. 2013, 77, 499–524. [CrossRef]
33. Zieliński, C.; Figat, M.; Hexel, R. Communication within Multi-FSM Based Robotic Systems. J. Intell.

Robot. Syst. 2018, 93, 787–805. [CrossRef]
34. Zieliński, C.; Kornuta, T.; Winiarski, T. A Systematic Method of Designing Control Systems for Service

and Field Robots. In Proceedings of the 19th IEEE International Conference on Methods and Models in
Automation and Robotics (MMAR), Miedzyzdroje, Poland, 2–5 September 2014; pp. 1–14. [CrossRef]

35. Zieliński, C.; Winiarski, T.; Kornuta, T. Agent-Based Structures of Robot Systems. In Trends in Advanced
Intelligent Control, Optimization and Automation, Proceedings of the KKA 2017, Advances in Intelligent Systems
and Computing, Kraków, Poland, 18–21 June 2017; Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P.,
Eds.; Springer: Cham, Switzerland, 2017; Volume 577, pp. 493–502. [CrossRef]

36. Zieliński, C.; Winiarski, T. Motion Generation in the MRROC++ Robot Programming Framework. Int. J.
Robot. Res. 2010, 29, 386–413. [CrossRef]

37. Seredyński, D.; Banachowicz, K.; Winiarski, T. Graph–based potential field for the end–effector control within
the torque–based task hierarchy. In Proceedings of the 21th IEEE International Conference on Methods and
Models in Automation and Robotics (MMAR’2016), Miedzyzdroje, Poland, 29 August–1 September 2016;
pp. 645–650. [CrossRef]

38. Winiarski, T.; Kasprzak, W.; Stefańczyk, M.; Walęcki, M. Automated inspection of door parts based on fuzzy
recognition system. In Proceedings of the 21th IEEE International Conference on Methods and Models in
Automation and Robotics (MMAR’2016), Miedzyzdroje, Poland, 29 August–1 September 2016; pp. 478–483.
[CrossRef]

39. Zieliński, C.; Kornuta, T. An Object-Based Robot Ontology. In Advances in Intelligent Systems and Computing
(AISC); Springer: Berlin, Germany, 2015; Volume 323, pp. 3–14. [CrossRef]

40. Figat, M.; Zieliński, C. Methodology of Designing Multi-agent Robot Control Systems Utilising Hierarchical
Petri Nets. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA),
Montreal, QC, Canada, 20–24 May 2019; pp. 3363–3369.

41. Seredyński, D.; Stefańczyk, M.; Banachowicz, K.; Świstak, B.; Kutia, V.; Winiarski, T. Control system design
procedure of a mobile robot with various modes of locomotion. In Proceedings of the 21th IEEE International
Conference on Methods and Models in Automation and Robotics (MMAR’2016), Miedzyzdroje, Poland, 29
August–1 September 2016; pp. 490–495. [CrossRef]

42. Janiak, M.; Zieliński, C. Control System Architecture for the Investigation of Motion Control Algorithms on
an Example of the Mobile Platform Rex. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 667–678. [CrossRef]

43. Oprzędkiewicz, K.; Ciurej, M.; Garbacz, M. The agent, state-space model of the mobile robot. Pomiary Autom.
Robot. 2018, 22, 41–50. [CrossRef]

44. Zieliński, C.; Stefańczyk, M.; Kornuta, T.; Figat, M.; Dudek, W.; Szynkiewicz, W.; Kasprzak, W.; Figat, J.;
Szlenk, M.; Winiarski, T.; et al. Variable structure robot control systems: The RAPP approach. Robot. Auton.
Syst. 2017, 94, 226–244. [CrossRef]

45. Rovida, F.; Crosby, M.; Holz, D.; Polydoros, A.S.; Großmann, B.; Petrick, R.P.A.; Krüger, V. SkiROS—A
Skill-Based Robot Control Platform on Top of ROS. In Robot Operating System (ROS): The Complete Reference;
Koubaa, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 2; pp. 121–160.
[CrossRef]

46. Open Management Group. OMG Systems Modeling Language—Version 1.6. 2019. Available online: https:
//www.omg.org/spec/SysML/1.6/PDF (accessed on 20 February 2020).

http://dx.doi.org/10.1007/s11334-011-0170-3
http://dx.doi.org/10.1126/science.253.5025.1227
http://dx.doi.org/10.1007/s10846-013-9883-x
http://dx.doi.org/10.1007/s10846-018-0869-6
http://dx.doi.org/10.1109/MMAR.2014.6957317
http://dx.doi.org/10.1007/978-3-319-60699-6_48
http://dx.doi.org/10.1177/0278364909348761
http://dx.doi.org/10.1109/MMAR.2016.7575212
http://dx.doi.org/10.1109/MMAR.2016.7575182
http://dx.doi.org/10.1007/978-3-319-11310-4_1
http://dx.doi.org/10.1109/MMAR.2016.7575184
http://dx.doi.org/10.1515/bpasts-2015-0078
http://dx.doi.org/10.14313/PAR_229/41
http://dx.doi.org/10.1016/j.robot.2017.05.002
http://dx.doi.org/10.1007/978-3-319-54927-9_4
https://www.omg.org/spec/SysML/1.6/PDF
https://www.omg.org/spec/SysML/1.6/PDF

Electronics 2020, 9, 379 26 of 27

47. Zieliński, C. Transition-Function Based Approach to Structuring Robot Control Software. In Robot Motion and
Control; Lecture Notes in Control and Information Sciences; Kozłowski, K., Ed.; Springe: Berlin, Germany,
2006; Volume 335, pp. 265–286.

48. Zieliński, C.; Trojanek, P. Stigmergic cooperation of autonomous robots. J. Mech. Mach. Theory 2009,
44, 656–670. [CrossRef]

49. Trojanek, P. Design and Implementation of Robot Control Systems Reacting to Asynchronous Events.
Ph.D. Thesis, Warsaw University of Technology, Warsaw, Poland, 2012.

50. Dudek, W.; Szynkiewicz, W.; Winiarski, T. Nao Robot Navigation System Structure Development in an
Agent-Based Architecture of the RAPP Platform. In Recent Advances in Automation, Robotics and Measuring
Techniques; Szewczyk, R., Zieliński, C., Kaliczyńska, M., Eds.; Springer: Berlin, Germany, 2016; Volume 440,
pp. 623–633. [CrossRef]

51. Winiarski, T.; Banachowicz, K.; Walęcki, M.; Bohren, J. Multibehavioral position–force manipulator controller.
In Proceedings of the 21th IEEE International Conference on Methods and Models in Automation and
Robotics (MMAR’2016), Miedzyzdroje, Poland, 29 August–1 September 2016; pp. 651–656. [CrossRef]

52. Caliciotti, A.; Fasano, G.; Nash, S.G.; Roma, M. An adaptive truncation criterion, for linesearch-based
truncated Newton methods in large scale nonconvex optimization. Oper. Res. Lett. 2018, 46, 7–12. [CrossRef]

53. Caliciotti, A.; Fasano, G.; Nash, S.G.; Roma, M. Data and performance profiles applying an adaptive
truncation criterion, within linesearch-based truncated Newton methods, in large scale nonconvex
optimization. Data Brief 2018, 17, 246–255. [CrossRef] [PubMed]

54. Salado, A.; Wach, P. Constructing True Model-Based Requirements in SysML. Systems 2019, 7, 19. [CrossRef]
55. dos Santos Soares, M.; Vrancken, J. Requirements specification and modeling through SysML. In Proceedings

of the 2007 IEEE International Conference on Systems, Man and Cybernetics, Montreal, QC, Canada,
7–10 October 2007; pp. 1735–1740. [CrossRef]

56. Soares, M.; Vrancken, J.; Verbraeck, A. User requirements modeling and analysis of software-intensive
systems. J. Syst. Softw. 2011, 84, 328–339. [CrossRef]

57. Bruyninckx, H. OROCOS: Design and implementation of a robot control software framework. In Proceedings
of the IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11–15 May 2002.

58. Zieliński, C.; Szynkiewicz, W.; Figat, M.; Szlenk, M.; Kornuta, T.; Kasprzak, W.; Stefańczyk, M.; Zielińska,
T.; Figat, J. Reconfigurable control architecture for exploratory robots. In Proceedings of the IEEE 10th
International Workshop on Robot Motion and Control (RoMoCo), Poznan, Poland, 6–8 July 2015; pp. 130–135.
[CrossRef]

59. Stenmark, M.; Malec, J. Knowledge-based instruction of manipulation tasks for industrial robotics. Robot.
-Comput.-Integr. Manuf. 2014, 33, 56–67. [CrossRef]

60. Dijkstra, E. On the Role Of Scientific Thought. In Selected Writings on Computing: A Personal Perspective;
Springer-Verlag: New York, NY, USA, 1982; pp. 60–66. [CrossRef]

61. The SmartSoft Approach. Available online: https://wiki.servicerobotik-ulm.de/about-smartsoft:approach
(accessed on 20 February 2020).

62. Seredyński, D.; Szynkiewicz, W. Fast Grasp Learning for Novel Objects. Recent Advances in Automation,
Robotics and Measuring Techniques. In Advances in Intelligent Systems and Computing (AISC); Springer:
Cham, Switzerland, 2016; Volume 440, pp. 681–692. [CrossRef]

63. Seredyński, D.; Winiarski, T.; Banachowicz, K.; Zieliński, C. Grasp planning taking into account the external
wrenches acting on the grasped object. In Proceedings of the 2015 10th International Workshop on Robot
Motion and Control (RoMoCo), Poznan, Poland, 6–8 July 2015; pp. 40–45. [CrossRef]

64. Tenorth, M.; Beetz, M. KnowRob: A knowledge processing infrastructure for cognition-enabled robots. Int. J.
Robot. Res. 2013, 32, 566–590. [CrossRef]

65. Kunze, L.; Beetz, M.; Saito, M.; Azuma, H.; Okada, K.; Inaba, M. Searching objects in large-scale indoor
environments: A decision-theoretic approach. In Proceedings of the 2012 IEEE International Conference on
Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 4385–4390. [CrossRef]

http://dx.doi.org/10.1016/j.mechmachtheory.2008.08.012
http://dx.doi.org/10.1007/978-3-319-29357-8_54
http://dx.doi.org/10.1109/MMAR.2016.7575213
http://dx.doi.org/10.1016/j.orl.2017.10.014
http://dx.doi.org/10.1016/j.dib.2018.01.012
http://www.ncbi.nlm.nih.gov/pubmed/29387739
http://dx.doi.org/10.3390/systems7020019
http://dx.doi.org/10.1109/ICSMC.2007.4413936
http://dx.doi.org/10.1016/j.jss.2010.10.020
http://dx.doi.org/10.1109/RoMoCo.2015.7219724
http://dx.doi.org/10.1016/j.rcim.2014.07.004
http://dx.doi.org/10.1007/978-1-4612-5695-3_12
https://wiki.servicerobotik-ulm.de/about-smartsoft:approach
http://dx.doi.org/10.1007/978-3-319-29357-8_59
http://dx.doi.org/10.1109/RoMoCo.2015.7219711
http://dx.doi.org/10.1177/0278364913481635
http://dx.doi.org/10.1109/ICRA.2012.6224965

Electronics 2020, 9, 379 27 of 27

66. Khaitan, S.K.; McCalley, J.D. Design techniques and applications of cyberphysical systems: A survey.
IEEE Syst. J. 2015, 9, 350–365. [CrossRef]

67. Dudek, W.; Węgierek, M.; Karwowski, J.; Szynkiewicz, W.; Winiarski, T. Task harmonisation for a single–task
robot controller. In Proceedings of the 2019 12th International Workshop on Robot Motion and Control
(RoMoCo), Poznań, Poland, 8–10 July 2019; pp. 86–91. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSYST.2014.2322503
http://dx.doi.org/10.1109/RoMoCo.2019.8787385
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	MDSD in Robotics
	SysML
	Embodied Agent
	EARL

	Model Formulation
	System and Its Parts
	Subsystem and Its Parts
	Embodied Agent Communication
	Types of Agents
	Specification of a Particular Robot Control System

	Example of a System Specified Using EARL
	Structure of the System Composed of Agents
	Manipulator Agent manip/a

	FABRIC Framework
	Discussion
	Final Remarks and Future Work
	References

