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Abstract: Athlete detection in sports videos is a challenging task due to the dynamic and cluttered
background. Distractor-aware SiamRPN (DaSiamRPN) has a simple network structure and can be
utilized to perform long-term tracking of large data sets. However, similarly to the Siamese network,
the tracking results heavily rely on the given position in the initial frame. Hence, there is a lack of
solutions for some complex tracking scenarios, such as running and changing of bodies of athletes,
especially in the stage from squatting to standing to running. The Haar feature-based cascade classifier
is involved to catch the key frame, representing the video frame of the most dramatic changes of the
athletes. DaSiamRPN is implemented as the tracking method. In each frame after the key frame, a
detection window is given based on the bounding box generated by the DaSiamRPN tracker. In the
new detection window, a fusion method (HOG-SVM) combining features of Histograms of Oriented
Gradients (HOG) and a linear Support-Vector Machine (SVM) is proposed for detecting the athlete,
and the tracking results are updated in real-time by fusing the tracking results of DaSiamRPN and
HOG-SVM. Our proposed method has reached a stable and accurate tracking effect in testing on
men’s 100 m video sequences and has realized real-time operation.
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1. Introduction

Nowadays, it is possible to obtain various types of videos through various channels, and automatic
video analysis is becoming a quite urgent task. Since it is time consuming and labor intensive to
analyze sports video manually, automatic sports video analysis has received much attention, which
involves disciplines such as image processing knowledge, pattern recognition, and artificial intelligence.
Therefore, application of automated video analysis has been widely used in motion analysis, video
surveillance, and athlete tracking [1,2].

People keep healthy and strong through sports such as basketball and football. Running is the
basis of most sports, and has been an important part of competitive sports in the Olympic Games. Over
the past couple of decades, the technical level of running training has developed slowly. Subjective
and experience-based teaching methods have been used. Coaches detect the technical movements of
athletes with their naked eyes and experiences. After long-term practice and research, sports experts
believe that the introduction of digital video technology in sports training is conducive to significantly
improving training efficiency. Therefore, it is necessary to conduct automatic analysis of sports videos,
such as detecting and tracking the motion parameters of sports videos to analyze the behavioral
characteristics. Equipping athletes with various sensors is a traditional detection and tracking method
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for quickly and accurately obtaining useful information [3]. However, it brings additional burdens to
the athletes and seriously affects their competitive level.

Video-based detection and tracking methods for athletes, as non-contact methods, have been
widely studied and applied in fields such as basketball [4–6], football [7–9], and volleyball [10]. Athlete
detection and tracking is the basic element for understanding the competition. In general, there are
some difficulties in automatic athlete detection, such as the squatting start in a running race that
affects subsequent prediction, as well as athletes with similar appearances, complex interactions and
large-area occlusion, various outdoor environments, changing backgrounds, unpredictable numbers of
athletes, unpredictable movement, sudden movement of the camera, zooming, and calibration. The
detection and tracking of athletes also face great challenges due to the low texture area, broadcast
video editing, noise, insufficient pixel resolution (especially when playing at small distances), clutter,
and motion blur that result in inaccurate results.

Inspired by the above studies, this paper implements the Haar feature-based cascade classifier for
detecting the key frame representing the dramatic changes of athletes, and improving tracking accuracy
by combining Distractor-aware SiamRPN (DaSiamRPN) and Histograms of Oriented Gradients with a
linear Support-Vector Machine (HOG-SVM) to realize real-time tracking. The main contributions of
our work are as follows.

1. The dramatic body changes of athletes during a running race have a great influence on athlete
tracking. DaSiamRPN has achieved a leading position in real-time evaluation, but it heavily relies on
the given position in the initial frame. In order to reduce the influence of body changes on tracking
results, DaSiamRPN is involved for generating a based bounding box. Therefore, a combined tracking
method of DaSiamRPN and HOG-SVM based on key frame is proposed in order to detect and track
the athletes during the race.

2. A cascade classifier based on the Haar feature is implemented for catching the convert key
frame. During the running race, the height and width of the bounding boxes of athletes identified by
cascade classifier are calculated to determine the key frame, which represents the frame in which the
athlete’s body changes the most dramatically. This method not only helps to reduce the tracking error
by DaSiamRPN, but also helps switch to a new tracking mode.

3. We propose a novel tracking method utilizing the DaSiamRPN and HOG-SVM athlete tracking
results at the same time. Before the application of HOG-SVM, we trained thousands of positive and
negative samples of athletes. The proposed algorithm can further enhance the adaptability of dramatic
changes in athletes’ bodies. Experiments on actual race sequences indicate that our proposed algorithm
can realize accurate tracking of athletes in real-time.

The rest of this paper is organized as follows: Section 2 briefly reviews previous research works
and related technologies. Section 3 details the Haar feature-based cascade classifier, DaSiamRPN-based
HOG-SVM Tracker, and the fusion tracker of DaSiamRPN and HOG-SVM. Section 4 evaluates the
proposed tracker’s performance and compares the proposed algorithm with other trackers; then, the
experimental results are discussed. Section 5 presents the conclusion and future prospects.

2. Related Work

Two key points of the research method are the Distractor-aware SiamRPN and HOG. Video
target tracking has become a hot topic, and several deep-learning-based trackers have been applied in
multiple fields. However, target changes caused by deformation, occlusion, and motion are still major
issues that cannot be ignored [11,12]. It is a common problem for most autonomous driving and video
surveillance systems [13,14] that the tracker lacks real-time performance [15,16].

In recent years, one of the important research directions in the tracking field is tracking algorithms
based on correlation filtering, such as Kernelized Correlation Filters (KCF) [17], (Scale Adaptive
with Multiple Features tracker) SAMF [18] and MUlti-Store Tracker (MUSTer) [19]. These algorithms
have better performance in tracking accuracy and speed. The feature expression of the target is
an important factor affecting target tracking performance. In practical applications, it often faces
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complex environments. Traditional artificial feature detection is insensitive to the shape change of the
target. Deep networks have remarkable performance in feature expression. Luca Bertinetto proposed
a fully convolutional twin network based on similarity learning, SiamFC [20] (fully convolutional
Siamese network) and a tracking-based correlation filter network, CFNet [21] (correlation filter based
tracking), which introduces a correlation filter onto shallow features. The twin instance tracking
network, SINT [22] (Siamese instance search for tracking), combines optical flow information on the
basis of the twin network to achieve better performance. Although the above tracking algorithms
realize significant improvements in accuracy, when the target is deformed or occluded, it is still prone
to drift, and thus results in a decrease in algorithm accuracy. Danelljan et al. [23,24] proposed a method
of generating models based on the deep features of correlation filters, which increases the diversity of
training samples, optimizes the objective function, and improves accuracy. However, it is complex
and has a low tracking rate. Liu et al. [25] proposed a novel template-matching tracking algorithm.
The algorithm obtains the most accurate results from previous tracking results by using k-nearest
neighbors, but it simply uses a simple machine learning algorithm to classify samples, resulting in
poor performance and low accuracy. However, SiamFC simply pays attention to the color similarity
of the target, so only shallower features are obtained. The size of the marker box does not change;
for example, when the target in the video moves from far to near, the marker box will not grow as
the target gets larger. In the presence of interference from other objects, it is easy to detect the wrong
objects because of the single datum for feature extraction.

SiamRPN is a combination of Siamese Network and Region Proposal Network (RPN), which
proposes an end-to-end offline training method and regards the tracking process as one-shot detection.
The implementation of SiamRPN on relevant feature maps has achieved a leading position in real-time
evaluation, which proves its advantages in accuracy and efficiency [26]. Specifically, SiamRPN consists
of a conjoined sub-network for feature extraction and a regional suggestion sub-network including
classification and regression branches. The previous part of SiamRPN is the same as SiamFC: It
first extracts high-level features through a full convolutional network. The difference is that SiamFC
directly utilizes the output for correlation filtering, while SiamRPN accesses RPN. As a SiamRPN-based
algorithm, DaSiamRPN mainly aims at training data, enriches the number and type of samples, makes
the tracker more robust by utilizing better training methods, and proposes local-to-global ideas for
long-term tracking problems.

Histogram of Oriented Gradient (HOG) constructs features by calculating and counting the
gradient-direction histograms of local image area, and is usually utilized for object detection in
computer vision and image processing. Compared with other characterization methods, HOG has
many advantages, and it is particularly suitable for human detection. Firstly, HOG operates on the local
grid cells of the image, so it can keep invariance to deformation, including the geometric and optical
deformations in a larger spatial domain. Secondly, fine directional sampling and strong local optical
normalization are allowed to have some fine limb movements under the conditions of coarse spatial
sampling. These fine movements can be ignored without affecting the detection effect. Furthermore,
the HOG combined with an SVM classifier (HOG-SVM) has been widely implemented in the image
recognition field, especially in pedestrian detection [27].

Su et al. [28] presented an SVM-based tracking method applying the loop structure of samples to
process the first and second factors through the multi-core learning mechanism. Specifically, an SVM
classification model for visual tracking was developed. This model combines two types of matrix loop
kernels, and makes full use of the complementary features of color and HOG features to learn robust
target representation. Pang et al. [29] proposed a unified network (called JCS-Net) for small-scale
pedestrian detection based on HOG + LUV and JCS-Net, which constructs a multi-layer channel
feature (MCF) to train detectors. Qu et al. [30] proposed a machine learning algorithm for texture
information extraction from through-focus scanning optical microscopy (TSOM) images. Compared
with the results of the library matching method, the machine learning method has a much higher
measurement accuracy. However, HOG also has some disadvantages. Its descriptor generation process
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is lengthy, resulting in problems such as its slower speed, inability to handle occlusion, sensitivity to
noise, and proneness to error tracking.

Therefore, in order to avoid the problems caused by athletes’ follow-up squat-starting methods,
such as sudden changes in follow-up calibration frames, tracking failure, and over-dependence of
SiamRPN on the initial frame during the starting process, this paper proposes the use of the DaSiamRPN
and HOG methods for tracking. The accuracy and real-time advantage of the upper bodies of athletes
are matched with the trained model of HOG-SVM to detect the enlarged frame.

3. Proposed Tracking Based on Distractor-Aware SiamRPN and HOG-SVM

3.1. Proposed Tracking Algorithm Structure

In this section, a novel detection and tracking framework combining distractor-aware SiamRPN
and HOG-SVM is proposed, which can track the dramatic changes of athletes’ bodies in running. To
reduce the tracking failure caused by body changes, the key frame is defined as the important stage.
The Haar feature-based cascade classifier is involved to obtain the bounding box of each athlete, and
the height/width ratio is taken as the representation of the dramatic change stage, from squatting to
standing to running. The proposed tracking algorithm structure consists of two stages. In the first
stage, DaSiamRPN is implemented to track athletes, and the bounding box is viewed as the tracking
results until the key frame is found. Then, a DaSiamRPN-based HOG-SVM tracker is proposed to
detect the athlete. The results of DaSiamRPN and HOG-SVM tracking will be combined, and the fusion
bounding box will be taken as the tracking result. The overall architecture of the proposed algorithm is
detailed in Figure 1.
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3.2. Haar Feature-Based Cascade Classifier for Catching the Convert Key Frame

To detect the changes of athletes in running, a Haar feature-based cascade classifier is utilized.
Each Haar-like feature is calculated by subtracting the sum of pixels under the white rectangle from
the sum of pixels under black rectangle, which results in a single value [31]. Haar-like features are
represented by the rectangle features for fast human body detection, as shown in Figure 2. To detect
the athlete through the Haar-like features, the image is scanned from its top left to bottom right corner
for several times.
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Figure 2. Examples of Haar-like features.

The integral image refers to the pixel values of the input image, which is used for fast feature
detection. It is mainly utilized to increase the operation speed of the box filter. The athlete detection
can be implemented by cascade-adopting Haar-like features. In a cascade, an image is assumed to
include athletes if it passes all stages, or to have no identified athlete if it fails in any stage. The Open
Source Computer Vision Library (OpenCV) [32] provides a training method or pretrained models,
and the necessary haarcascade_fullbody.xml file is loaded by adopting the cv::CascadeClassifier::load
method. Therefore, we directly used the cv::CascadeClassifier::detectMultiScale method to detect
athletes in sequence frames, which returns bounding boxes for identified athletes.

However, to track the dramatic changes of athletes in running, we used a bi-axial scale change in
two-dimensional space with the maximum value of change as the key frame. As the detection results
of the Haar feature-based cascade classifier, each athlete detected is given a bounding box, and the
aspect ratio of the bounding box in the same frame is calculated as

Rt
i =

ht
i

wt
i

(1)

where i represents the serial number of the identified athlete in the same frame, and t represents the
serial number of each frame. ht

i and wt
i represent the height and width of the bounding box, respectively.

To eliminate accidental errors, the average ratio Bt is formulated as:

Bt =

n∑
i=1

Rt
i

n
(2)

where n is the digital frame that includes the athletes identified by the Haar feature-based
cascade classifier.
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As shown in Figure 3, there are different postures and aspect ratios Rt
i in different frames. Finally,

we define the key frame by considering the number of consecutive frames, namely, the identified
average ratio Bt surpasses the threshold β for k times. The conversion key frame represents the
stage from squatting to standing. In consecutive frames after the key frame is caught, we use the
bounding box generated by DaSiamRPN as a benchmark to enlarge it as a detection window for
HOG-SVM tracking.
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3.3. DaSiamRPN-Based HOG-SVM Tracker

We devised an HOG-SVM tracking method based on the DaSiamRPN tracking results. HOG-SVM
tracking refers to a method combining HOG features and the linear SVM for tracking athletes. As
shown in Figure 4, the height and width of the DaSiamRPN tracking results in a bounding box Bt

o
are assumed to be hd and wd, respectively. Since the initial given bounding box of DaSiamRPN is the
upper body of an athlete changing from squatting to running, DaSiamRPN only tracks the upper body
in consecutive frames. To track the whole body of the athlete, we enlarge the bounding box Bt

o with
a scale parameter (αd, αh) and keep the upper left of the bounding box unchanged. Then, we use a
new bounding box Bt

o
′ as a detection window for body tracking. The HOG features present the rough

shape of the athlete by generating the histogram of the luminance-gradient vectors in the detection
window Bt

o
′. A linear Support-Vector Machine (SVM) is used as the learning model and a discriminant

function is used for pattern recognition.
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Figure 5 illustrates the whole image, detection window, block, cell, and image pixel. The whole
image is captured as a frame from the sport video. The linear SVM can learn the parameters of the
discriminant function; for instance, several images including the athlete Bolt were trained before the
detection. The training results are saved as a myHogDector.bin file, and this file can be loaded by
adopting the cv::hog::load method. Therefore, the cv::hog::detectMultiScale method is implemented to
detect the athlete Bolt in the detection window and to generate a bounding box.
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3.4. Proposed Tracking Algorithm Based on the Combination of DaSiamRPN and HOG-SVM

The proposed tracker can be divided into two stages: In the first stage, the tracking result bounding
box Bt

o of DaSiamRPN is taken as the final tracking result bounding box Bt
f method before the catching

of the key frame. After the key frame is caught, the combined tracking algorithm is adopted. The
tracking results of DaSiamRPN and HOG-SVM are fused in the combined tracking algorithm. The
whole procedure of this method is given in Algorithm 1. The combined tracking bounding box is
shown in Figure 6. As shown in Figure 6, the o-xy coordinate frame (Global coordinate frame) is fixed
to the whole image.
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Therefore, the final tracking result Bt
f can be generated by utilizing the combination of the results

of DaSiamRPN and HOG-SVM. In the bounding box Bt
f , the top left corner point Pt

Cl(x
C
l , yC

l ) and

bottom right corner point Pt
Cr(x

C
r , yC

r ) need to meet the following conditions:{
xC

l = xD
l

yC
l = yD

l
(3)

xC
r =

{
xD

r i f xD
r ≥ xH

r
xH

r i f xD
r < xH

r
(4)

yC
r =

{
yD

r i f yD
r ≥ yH

r
yH

r i f yD
r < yH

r
(5)
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where Pt
Dl(x

D
l , yD

l ) and Pt
Dr(x

D
r , yD

r ) are the top left corner point and bottom right corner point of the
DaSiamRPN tracking bounding box Bt

o, respectively. Pt
Hl(x

H
l , yH

l ) and Pt
Hr(x

H
r , yH

r ) are the top left
corner point and bottom right corner point of the HOG-SVM tracking bounding box Bt

h, respectively.

Algorithm 1. Athlete tracking with body dramatic change.

Input: N = {N1, N2, N3, . . . , Nn}, video sequence frames
Output: R =

{
Bt

o

}
, final tracking result sequence to frame t

1: Initialization: t = 0, key_frame_state = 0, input an initial bounding box of the athlete
2: for t = 0 to n do
3: Track the athlete in sequence Nt using DaSiamRPN
4: Predict a tracking result with a bounding box Bt

o
5: Bt

o(top left corner point Pt
Dl(x

D
l , yD

l ), bottom right corner point Pt
Dr(x

D
r , yD

r ))
6: Detect athletes in sequence Nt utilizing the Haar feature-based cascade classifier
7: Compute Rt

i = ht
i/wt

i and Bt as Equation (1), (2)
8: if continuous k frames with Bt > β then //means the key frame is found
9: return key_frame_state = 1 //change to another tracking mode

10: else
11: return key_frame_state = 0 //no key frame is found
12: end if
13: if key_frame_state = 1 then //the key frame is found
14: Generate a detection window Bt

o
′ = Bt

o ∗ scale parameter
15: Bt

h = HOG-SVM(Bt
o
′)

16: Bt
h(top left corner point Pt

Hl(x
H
l , yH

l ), bottom right corner point Pt
Hr(x

H
r , yH

r ))
17: Fusion of Bt

o and Bt
h as Equation (3), (4), (5), xC

l = xD
l , yC

l = yD
l

18: (xC
r , yC

r ) = (max(xD
r , xH

r ), max(yD
r , yH

r ))

19: return the final result bounding box Bt
f

20: else
21: The bounding box Bt

o is utilized as the final tracking result
22: return the final result bounding box Bt

f
23: end if
24: end for //reach the end of the video sequence

4. Experiments and Analysis

4.1. Experimental Setup

The testing dataset used included the videos of the men’s 100 m race at Rio 2016 (Video Sequence I,
including 510 frames) and London 2012 (Video Sequence II, including 380 frames) Olympic Games. We
transferred the videos into 890 frames and implemented them with the help of an Intel(R) Core (TM)
i7-9750H CPU, 2.60 GHz with 16 GB of memory and an NVIDIA GTX 1660 Ti GPU with 6 GB of memory.
The driver version of the graphics card was NVIDIA UNIX x86_64 Kernel Module 384.81. The code
was compiled by Python 3.6, and all code was performed on the operating system. The construction
and testing of the network were implemented by Python 3.6 + keras 2.1.5 + tensorflow 1.9.0.

4.2. Search Results of the Key Frame

Figure 7 shows the person-tracking results on Video Sequence I using the algorithm of Section 3.
As shown in Figure 7, although the OpenCV detection method cannot identify all of the athletes in all
frames and the bounding box cannot cover the whole athlete’s profile, the aspect ratio is approximate
to the real. Therefore, a height/width scatter figure can be drawn, as shown in Figure 8. As depicted in
Section 3.2, β was set to 1.56 and k was set to 8. Figure 8 shows that the frames surrounded by red
dotted lines are the positions of the key frames of Video Sequence I.
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4.3. Performance Evaluation

We discuss the comparison with state-of-the-art tracking methods, such as the framework of
DaSiamRPN, the combination of DaSiamRPN and HOG-SVM algorithm without considering the key
frame, and the HOG-SVM algorithm on the Video Sequences.

The evaluation in this paper is based on two indicators: Success plots and precision plots. Figure 9
shows the overlapping precision scatter distribution diagram of the proposed algorithm compared
with three other real-time trackers. As shown in Figures 9 and 10, the points with overlapping precision
of less than the threshold of 0.5 are painted in red, and the other points are painted in green. Figures 9
and 10 demonstrate the visualizations of the final tracking results. As shown in Figures 9 and 10,
the proposed algorithm obtaining the most points in green represents that the proposed tracker can
achieve a stable tracking performance.

We also conducted ablation analysis to prove the effectiveness of the proposed algorithm. The
average overlap precision (OP) is defined as the percentage of frames in the video where the intersection
exceeds the threshold of 0.5. The area under the curve (AUC) is calculated from the success plots, where
the average OP of all frames is plotted within the threshold [0, 1]. The precision plots and success plots
are shown in Figures 11–14 and Table 1. The comparison shows that the proposed algorithm achieves
the best performance among these real-time trackers. The proposed tracker achieves a success-rate
AUC score of 0.64 at real-time speed (123 fps) on Video Sequence I and an AUC score of 0.62 at real-time
speed (133 fps) on Video Sequence II.



Electronics 2020, 9, 378 10 of 15

Electronics 2020, 9, x FOR PEER REVIEW 10 of 15 

 

4.3. Performance Evaluation 

We discuss the comparison with state-of-the-art tracking methods, such as the framework of 

DaSiamRPN, the combination of DaSiamRPN and HOG-SVM algorithm without considering the key 

frame, and the HOG-SVM algorithm on the Video Sequences. 

The evaluation in this paper is based on two indicators: Success plots and precision plots. Figure 

9 shows the overlapping precision scatter distribution diagram of the proposed algorithm compared 

with three other real-time trackers. As shown in Figures 9 and 10, the points with overlapping 

precision of less than the threshold of 0.5 are painted in red, and the other points are painted in green. 

Figures 9 and 10 demonstrate the visualizations of the final tracking results. As shown in Figures 9 

and 10, the proposed algorithm obtaining the most points in green represents that the proposed 

tracker can achieve a stable tracking performance. 

  

(a) DaSiamRPN tracking results (b) HOG+SVM tracking results 

  
(c) DaSiamRPN+HOG-SVM tracking results (d) Proposed algorithm tracking results 

Figure 9. The overlap precision scatter diagram of Video Sequence I with four different trackers. 

  

(a) DaSiamRPN tracking results (b) HOG+SVM tracking results 

Figure 9. The overlap precision scatter diagram of Video Sequence I with four different trackers.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 15 

 

4.3. Performance Evaluation 

We discuss the comparison with state-of-the-art tracking methods, such as the framework of 

DaSiamRPN, the combination of DaSiamRPN and HOG-SVM algorithm without considering the key 

frame, and the HOG-SVM algorithm on the Video Sequences. 

The evaluation in this paper is based on two indicators: Success plots and precision plots. Figure 

9 shows the overlapping precision scatter distribution diagram of the proposed algorithm compared 

with three other real-time trackers. As shown in Figures 9 and 10, the points with overlapping 

precision of less than the threshold of 0.5 are painted in red, and the other points are painted in green. 

Figures 9 and 10 demonstrate the visualizations of the final tracking results. As shown in Figures 9 

and 10, the proposed algorithm obtaining the most points in green represents that the proposed 

tracker can achieve a stable tracking performance. 

  

(a) DaSiamRPN tracking results (b) HOG+SVM tracking results 

  
(c) DaSiamRPN+HOG-SVM tracking results (d) Proposed algorithm tracking results 

Figure 9. The overlap precision scatter diagram of Video Sequence I with four different trackers. 

  

(a) DaSiamRPN tracking results (b) HOG+SVM tracking results Electronics 2020, 9, x FOR PEER REVIEW 11 of 15 

 

  
(c) DaSiamRPN+HOG-SVM tracking results (d) Proposed algorithm tracking results 

Figure 10. The overlap precision scatter diagram of Video Sequence II with four different trackers. 

We also conducted ablation analysis to prove the effectiveness of the proposed algorithm. The 

average overlap precision (OP) is defined as the percentage of frames in the video where the 

intersection exceeds the threshold of 0.5. The area under the curve (AUC) is calculated from the 

success plots, where the average OP of all frames is plotted within the threshold [0, 1]. The precision 

plots and success plots are shown in Figures 11–14 and Table 1. The comparison shows that the 

proposed algorithm achieves the best performance among these real-time trackers. The proposed 

tracker achieves a success-rate AUC score of 0.64 at real-time speed (123 fps) on Video Sequence I 

and an AUC score of 0.62 at real-time speed (133 fps) on Video Sequence II. 

Compared with DaSiamRPN, HOG-SVM, and DaSiamRPN+HOG-SVM without the key frame 

detection tracker, our tracker obtains significant success-rate AUC gains of 33.3%, 10.3%, and 6.7% 

on Video Sequence I, and obtains significant success-rate AUC gains of 29.2%, 17.0%, and 8.8% on 

Video Sequence II, respectively. Our tracker also generates significant precision AUC gains of 45.8%, 

8.2%, and 9.1% on Video Sequence I, and generates significant precision AUC gains of 10.9%, 25.3%, 

and 10.4% on Video Sequence II, respectively. The results demonstrate that the proposed tracking 

method is stable and accurate. 

 

Figure 11. The success plots of Video Sequence I. 

Table 1. Comparison of the tracking speed (fps) and area under the curve (AUC) with different trackers. 

Dataset Tracker AUC↑ FPS 

Video Sequence I 

DaSiamRPN 0.48 201 

HOG-SVM 0.58 327 

DaSiamRPN+HOG-SVM 0.60 124 

Ours 0.64 123 

Video Sequence II 

DaSiamRPN 0.48 195 

HOG-SVM 0.53 324 

DaSiamRPN+HOG-SVM 0.57 135 

Figure 10. The overlap precision scatter diagram of Video Sequence II with four different trackers.



Electronics 2020, 9, 378 11 of 15

Compared with DaSiamRPN, HOG-SVM, and DaSiamRPN+HOG-SVM without the key frame
detection tracker, our tracker obtains significant success-rate AUC gains of 33.3%, 10.3%, and 6.7% on
Video Sequence I, and obtains significant success-rate AUC gains of 29.2%, 17.0%, and 8.8% on Video
Sequence II, respectively. Our tracker also generates significant precision AUC gains of 45.8%, 8.2%,
and 9.1% on Video Sequence I, and generates significant precision AUC gains of 10.9%, 25.3%, and
10.4% on Video Sequence II, respectively. The results demonstrate that the proposed tracking method
is stable and accurate.
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Table 1. Comparison of the tracking speed (fps) and area under the curve (AUC) with different trackers.

Dataset Tracker AUC↑ FPS

Video Sequence I

DaSiamRPN 0.48 201
HOG-SVM 0.58 327

DaSiamRPN+HOG-SVM 0.60 124
Ours 0.64 123

Video Sequence II

DaSiamRPN 0.48 195
HOG-SVM 0.53 324

DaSiamRPN+HOG-SVM 0.57 135
Ours 0.62 133

5. Conclusions

A detection and tracking method combining DaSiamRPN and HOG-SVM with a key frame is
proposed for detecting and tracking the athletes in races. The key frame determination method is
presented to detect the frames with dramatic body changes. The proposed algorithm consists of two
stages depending on the key frame. Before the key frame is found, the DaSiamRPN is selected as the
tracking method. In each frame after the key frame, the detection window is enlarged based on the
bounding box generated by the DaSiamRPN tracker. In the new detection window, a fusion method,
HOG-SVM, is implemented for detecting the athlete, and the tracking results are updated by fusing the
tracking results of DaSiamRPN and HOG-SVM in real-time. The experimental results demonstrate that
our proposed method achieves state-of-the-art performance on men’s 100 m race video sequences. The
evaluation results show that the algorithm is stable, accurate, and has excellent real-time performance.
Additionally, both the Haar feature-based cascade classifier and HOG-SVM can be directly performed
with the OpenCV library. In the future, we plan to focus on the following two directions. First, we
plan to construct a data association algorithm to solve the occlusion problem in the race. Second, we
plan to improve our method for real-time tracking application in embedded systems of mobile robots.
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