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Abstract: This article reviews the nonlinear dynamical attributes, switching kinetics, bifurcation
analysis, and physical realization of a family of generic memristors, namely, Chua corsage memristors
(CCM). CCM family contains three 1-st order generic memristor dubbed as 2-lobe, 4-lobe, and 6-lobe
Chua corsage memristors and can be distinguished in accordance with their asymptotic stable states.
The 2-lobe CCM has two asymptotically stable equilibrium states and regarded as a binary memory
device. In contrast, the versatile 4-lobe CCM and 6-lobe CCM are regarded as a multi-bit-per-cell
memory device as they exhibit three and four asymptotic stable states, respectively, on their complex
and diversified dynamic routes. Due to the diversified dynamic routes, the CC memristors exhibit a
highly nonlinear DC V-I curve. Unlike most published highly-nonlinear DC V-I curves with several
disconnected branches, the DC V-I curves of CCMs are contiguous along with a locally active negative
slope region. Moreover, the DC V-I curves and parametric representations of the CCMs are explicitly
analytical. Switching kinetics of the CCM family can be demonstrated with universal formulas of
exponential state trajectories xn(t), time period tfn, and applied minimum pulse amplitude VA and
width ∆w. These formulas are regarded universal as they can be applied to any piecewise linear
dynamic routes for any DC or pulse input and with any number of segments. When local activity,
and bifurcation and chaos theorems are employed, CMMs exhibit unique stable limit cycles spawn
from a supercritical Hopf bifurcation along with static attractors. In addition, the nonlinear circuit
and system theoretic approach is applied to explain the asymptotic stability behavior of CCMs and to
design real memristor emulators using off-the-shelf circuit components.

Keywords: Asymptotical stability; generic memristor; Hopf bifurcation; local activity; memristive
system; memory device; nonlinear dynamics; parametric representation; switching kinetics

1. Introduction

Memristor is a nonlinear two-terminal electrical component that completes a theoretical quartet
of fundamental electrical components by relating electric charge and magnetic flux linkage. It was
postulated by Leon Chua [1] and later generalized to a broader class of dynamical circuit-theoretic
concept to a memristive system [2]. Memristor creates immense attention after the seminal paper
published by hp in 2008, which reveals that the electrical resistance of the device is not constant,
but depends on the history of previous inputs [3]. It is considered as one of the most promising
element in emerging memory sector [4–6] and neural applications [7,8], due to its propitious attributes
under DC or AC excitation and miniature nanoscale physical dimension along with synapse alike
operation. Recently, numerous research activities are ongoing on binary and multistate phenomena in
generic and extended memristors [9–16] which could lead to another stage of technical innovation
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in the memristor area. Nonlinear dynamics theory, and circuit and system theoretic concepts can be
devoted to explaining the principle of the multistate memristors [9].

This review paper presents an in-depth and rigorous nonlinear and bifurcation analysis, switching
kinetics, and physical realization of the three members of Chua corsage memristor (CCM) family.
The CC memristors exhibit a highly nonlinear DC V-I curves, due to the presence of a higher degree of
versatility in its dynamic route map (DRM) which has multiple stable equilibrium points. The DC V-I
curves of CCMs are contiguous compared to most published highly-nonlinear DC V-I curves which
have several disconnected branches. The DC V-I curves of CCMs have an explicit analytical equation
with its parametric representation that rarely happens. In addition, each member of CCM family
exhibits a negative slope region on its DC V-I curve which give rise to complexity by exploiting local
activity; and complex phenomenon and information processing might emerge over the parameter ranges of
CCMs either operating on or near the neighborhood of its edge of chaos domain [12–16].

The locally active CCM family exhibit asymptotical stability via the supercritical Hopf
bifurcation [13–16]. The state altering of CCMs follows the nonlinear dynamic route of a chosen initial
state xn(0) and repeats until the state reaches in a particularly stable state which is termed as an
“attractor”. The state space of CCMs contain various attractors, and each attractor has its own basin of
attraction [13–16]. The equilibrium state of these type of memristors moves by the amount of time
integral of applied inputs or noises that are applied at a stable equilibrium state. However, the state
of CCMs returns back to its original equilibrium state (attractor), unless the state moves beyond the
boundary of the current basin of attraction [13–16]. Therefore, it can be utilized as a robust bistable
or multistate memory device. However, the CC memristors lost a part of previous programming
history in this procedure, where such a phenomenon is known as “local fading memory” in bistable
and multistate memory devices [10,11].

Another feature of the multistate CCMs is the alteration of stable equilibria which requires an input
pulse, either a sufficiently large amplitude with a short pulse width or a minimum pulse amplitude
with lengthy pulse width. When input pulse is applied, the corsage memristors switch from one
stable equilibrium state to another stable state by converging into the basin of the new stable attractor.
The resistances or conductances of each attractor, i.e., stable equilibrium states, are distinguishably
different from each other [12–16]. The successful alteration of the stable equilibria of CCMs is dependent
on applied input pulse amplitude and width along with the initial condition. Trajectory movement
of the altering equilibria can be demonstrated by computing the time-dependent exponential state
trajectories xn(t) for an individual straight-line segment of PWL DRM where time t = tfn is required for
the trajectory of xn(t) to move from any initial point to the end point of that particular segment.

In spite of theoretical insights, concepts from circuit and system theory, and techniques from
nonlinear dynamics theory are devoted in this review to investigate the physical realization of the real
emulator circuits for CCM family. To design a physical emulator circuit for CCMs, at least a passive
nonlinear-resistive two-port along with a dynamic first-order one-port is required [10–12]. The passive
nonlinear-resistive two-port is designed with two parallel connected Graetz bridges [17]. In contrast,
the dynamic first-order one-port is designed with a capacitor in parallel with an active and locally active
resistor where the resistor must exhibit the behavioral attributes of piecewise linear CCMs.

Rest of the article is organized as follows: Introduction of CCM family and their nonlinear
dynamical attributes are presented in Section 2, followed by memory state switching kinetics in
Section 3. Local activity and Hopf bifurcation are analyzed in Section 4, and the physical realization of
CCM emulator is demonstrated in Section 5. Section 6 contains the concluding remarks.

2. CCM Family and their Nonlinear Dynamical Attributes

The versatile CCM family has three types of generic memristors, namely, 2-lobe CCM, 4-lobe CCM,
and 6-lobe CCM. The state-dependent Ohm’s law and the piecewise linear state equations of the CCMs
are defined as
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State–Dependent Ohm’s Law:
i = G(x) v, (1)

where
G(x) = G0 x2, (2)

and
State Equation:

dx/dt = fm(x) + v, (3)

where x, v, and I denote the memristor state, voltage, and current, respectively. The intrinsic
memductance scale of the memristor is fitted with scaling constant G0 and choose such a way so
that the parameters of small-signal equivalent circuit or the current of CCMs will not be excessive.
For simplicity in this review article, we choose G0 = 1. The state function fm(x) (“m = {2, 4, 6}” in
Equation (3) represents the lobe number of the CCMs and determines one of the member of CCM
family.) of the three types of CCM are different from each other and defined as

2− lobe CCM : f2(x) = 30− x + |x− 20| − |x− 40|, (4)

4− lobe CCM : f4(x) = 59− x + |x− 20| − |x− 40|+ |x− 65| − |x− 95|, (5)

and

6− lobe CCM : f6(x) = 33− x + |x− 6| − |x− 12|+ |x− 20| − |x− 30|+ |x− 42| − |x− 56|. (6)

The CCM family exhibits several interesting nonlinear dynamical attributes. Among them, this
section analyzes the dynamic route map (DRM), power-off plot (POP), multivalued DC V-I curves and
its explicit parametric representation.

2.1. Dynamic Route Map (DRM) and Power-off Plot (POP)

Any curve f(x, v) plotted in the phase plane, dx/dt vs. x plane, along with the direction of motion
from the representative points is called a dynamic route in nonlinear circuit theory. It prescribes the
dynamics of defining scalar nonlinear differential equation [18,19]. The dynamic route map (DRM) is the
most powerful tool for analyzing the dynamics of any first-order differential equation dx/dt = f (x, v)
despite its simplicity. It predicts the evolution of any initial state with increasing time [20]. However,
the short-circuited (v = 0) dynamic route is known as the Power-off-Plot (POP) and defined as

dx/dt
∣∣∣v=0 = f̂m(x, 0), (7)

where
f̂m(x, 0) = fm(x). (8)

The power-off plot of CCM family is shown in Figure 1a–c. Observe from Figure 1a–c that
any initial state x(0) on the upper half of the POP, where dx/dt > 0, the state variable x(t) must move
to the right as x(t) increases with time. Contrarily, any initial state x(0) on the lower half of the
POP, where dx/dt < 0, the state variable x(t) decreases with time and must move to the left. The
stationary points, where dx/dt = 0 (i.e., f̂m(x) intersects the x-axis), are known as equilibrium points in
the theory of nonlinear dynamics [21]. According to nonlinear dynamics theory, the 2-lobe CCM has
three equilibrium points (shown in Figure 1a), whereas, 4-lobe and 6-lobe CCMs contains five (shown
in Figure 1b) and seven (shown in Figure 1c) equilibrium points, respectively. Equilibrium points
Q1 (x = XQ1 = 3), Q3 (x = XQ3 = 15), Q5 (x = XQ5 = 35), and Q7 (x = XQ7 = 63), in Figure 1c, are stable,
whereas, Q2 (x = XQ2 = 9), Q4 (x = XQ4 = 25), and Q6 (x = XQ6 = 49) are unstable equilibrium points
because the state variable x(t) diverges away from Q2, Q4, and Q6. Similarly, equilibrium point Q2

(x = XQ2 = 30) in 2-lobe CCM, and the equilibrium points Q1 (x = XQ1 = 31) and Q3 (x = XQ3 = 81)
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in 4-lobe CCM are unstable equilibrium points, as shown in Figure 1a and b, respectively. Moreover,
the equilibrium points Q1, Q3, Q5, and Q7 of 6-lobe CCM (in Figure 1c), Q0, Q2, Q4 of 4-lobe CCM (in
Figure 1b), and Q0, Q1 of 2-lobe CCM (in Figure 1a) are stable as the corresponding eigenvalues of
those equilibrium points of the CCMs are negative real numbers. In contrast, the unstable equilibrium
points have positive real eigenvalues [22].
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Figure 1. Dynamic route map (DRM) and power-off plot (POP) of Chua corsage memristors (CCMs).
POP of (a) 2-lobe CCM, (b) 4-lobe CCM, (c) 6-lobe CCM, and (d) DRM of 6-lobe CCM.

The dynamic route map of the 6-lobe CCM is shown in Figure 1d for input voltages v = V = {−9
V, −7 V, −5 V, −3 V, 0 V, 3 V, 5 V, 7 V, 9 V}. Figure 1d shows that for any applied non-zero positive
voltage (v = +VA), the red curve f (x, 0) is translated upward by VA units. For example, for v = +3 V,
the corresponding DRM f(x, 3) (blue curve) is obtained by translating the red curve (parametrized by
v = 0) upwards by 3 units. In contrast, for any non-zero negative voltage (v = −VA), the red curve
f (x, 0) is translated downwards by VA units, as the DRM for f(x, −7) (burgundy curve) is obtained by
translating the red curve (f (x, 0)) downward by 7 units for an input voltage v = −7 V, as shown in
Figure 1d.

2.2. DC V-I Curve of CCM

DC V-I loci of the voltage-controlled CCMs are determined through circuit theoretic approach.
For each value of voltage V, all equilibria (“k” represents the number of equilibrium points of a CCM.)
x = Xk of the CCMs are calculated using state equation (3) where dx/dt = 0 and defined as

fm(x) = −V. (9)



Electronics 2020, 9, 369 5 of 19

Then, the DC current i = I of the CCMs are determined at each corresponding equilibrium points as

I = G(x) V = −G0X2 fm(x) (10)

The DC V-I curves of CCM family are drawn in Figure 2 by plotting the coordinates (V, I) computed
from Equations (9) and (10) for each value of X. The solid curves, in Figure 2, correspond to stable
equilibrium states, and the dash curves correspond to unstable equilibrium states. Since the DC V-I
curve, in Figure 2a, contains two contiguous lobes; hence, the V-I curve is called “two lobes corsage V-I
curve” and the generic memristor is named as 2-lobe CCM. Similarly, the DC V-I curves in Figure 2b,c
contain four and six contiguous lobes and known as “four lobes corsage V-I curve” and “six lobes corsage
V-I curve”, respectively, and the generic memristors are named as 4-lobe CCM and 6-lobe CCM.

The five different colored DC V-I branches in Figure 2b represent the equilibrium points of
corresponding colors in Figure 1b. The state variables at v = 0 V are x = 9 (red DC V-I curve Q0), x = 31
(green DC V-I curve Q1), x = 49 (blue DC V-I curve Q2), x = 81 (magenta DC V-I curve Q3), and x = 109
(purple DC V-I curve Q4) which reveals that the slopes (i.e., conductances G(x) = G0 x2) at origin are
different and eventually indicates the presence of multiple states. The tabulated upper left inset of
Figure 2b shows that the red DC V-I curve represents the lowest conductance state (resp., highest
resistance state), whereas, the purple DC V-I curve represents the highest conductance state (resp.,
lowest resistance state). Similar to 4-lobe CCM, 6-lobe and 2-lobe CCM also exhibit the presence of
multistate as shown in Figure 2c, and Figure 2a, respectively. However, the unstable dotted V-I curves
correspond to unstable equilibrium points are going to converge either to the upper stable solid V-I
curves (for any disturbance δx > XQn or δv > VQn) or lowering stable V-I curves (for δx < XQn or δv
< VQn), where n determines the number of unstable equilibrium points. This affirms that the 2-lobe
CCM has two stable states, whereas, 4-lobe and 6-lobe CCMs have three and four stable states. These
stable equilibrium states can be utilized as memory states in a binary or multi-bit-per-cell memory
device [12–16].

Moreover, Figure 2a and the lower right inset of Figure 2b and c show that each member of
CCM family contain a negative-slope region on its DC V-I curves which reveals that the CC memristors
are locally-active over its corresponding negative slope region as Re Z(iω) < 0 for DC input voltage
(ω = 0) [14]. The locally-active negative slope region of Chua corsage memristors are significant in
circuit theory as they might give rise to complexity through which complex phenomenon and information
processing might emerge [23,24].
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of figure (b) and (c) show the zoomed portion of red DC V-I curves and the upper left insets show the
slope and state variable X values at V = 0 V, respectively.

2.3. Explicit Parametric Representation of CCM

In contrast to DC V-I analysis, the parametric representation of CCMs can be derived for each DC
voltage v = V at the DC equilibrium state x = X, namely, dx

dt

∣∣∣
(v=V, x=X)

= fm(x) + v = 0. In particular,
substituting v = V, x = X, and dx/dt = 0 in (3), and solving for V, one can obtain

V = − fm(x) , v̂(X). (11)
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The parametric representation of the DC curreIt i = I of the CCMs can be derived by substituting
V given by (11) for v = V in (1); namely,

I = G(x) V = −G0X2 fm(x) , î(X). (12)

The parametric representations of 6-lobe CCM (Due to the page limit we only analyze the parameter
representation of the 6-lobe CCM.) are shown in Figure 3. Figure 3a, and b show the loci of parametric
representation of V = v̂(x) vs. X, and I = î(x) vs. X, respectively, and the loci of parametrically
represented V = v̂(x) vs. I = î(x) is shown in Figure 3c.

Observe from Figure 3a,b that the equilibrium state X spans the entire horizontal axis, namely,
−∞ < X <∞. For any value X ∈ (−∞,∞), one can calculate the corresponding DC voltage V, and DC
current I using the exact formulas in Equations (11) and (12), respectively. Each point on the DC V-I
curve, shown in Figure 3c, corresponds to an equilibrium state X, which may be stable (solid line), or
unstable (dotted line). Since, for voltage −7 V ≤ V ≤ 7 V, the DC V-I curve exhibits multiple values, due
to corresponding equilibrium states, hence, known as multivalued DC V-I curve.
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Figure 3. Parametric representation of the 6-lobe CCM. (a) Voltage V = v̂(X) vs. state variable X,
and (b) current I = î(x) vs. state variable X. (c) DC V-I plot, where the coordinates (V, I) of each point
are extracted from (a) and (b).

It is important to note that the DC V-I curve in Figure 3c is obtained without solving any algebraic,
or differential equations. Indeed, it is obtained by substituting any desired value of X, where −∞ < X <

∞, into the explicit analytical equations (11) for V = v̂(x) and (12) for I = î(x). This derivation of CCMs
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DC V-I curve by direct substitution into the explicit state-dependent Ohm’s law, and state equation is a
truly remarkable example for future researchers.

In addition, one of the most important features of CCMs is that the DC V-I curve is contiguous,
which is different from many other published nonlinear DC V-I curves which exhibit several disconnected
branches [18]. Another impressive feature is that the parametric representation and DC V-I curve of
the CCMs have an explicit analytical equation, which rarely happens.

3. Switching Kinetics of CCM Family

DC V-I analysis, in Figure 3, and power-off-plot, in Figure 2, explicitly indicate that the Chua
corsage memristors can be used as a binary and multistate memory device at v = 0 V. Conceptually,
the simplest way to switch the memory states of a memory device is to apply a pulse input with
an appropriate pulse amplitude VA, and pulse width ∆w. For successful switching between the
memory states of CCM, the square pulse should have a minimum pulse width ∆w for appropriate
pulse amplitude, VA. Any square pulse with less than the minimum pulse width results in switching
failure. The switching kinetics of CCMs can be represented through its dynamic route map where the
solution of each straight-line segments of DRM is an exponential function of state variable xn(t). The
complete solution of time-dependent x(t) is made of a sequence of the exponential waveforms joined
at the various breakpoints in the dynamic routes [12]. Due to complex and diversified dynamic routes
with multiple asymptotically stable equilibrium points, 6-lobe CCM is chosen to illustrate the successful
switching from lower conductance state (resp., higher resistance state) to higher conductance state
(resp., lower resistance state) or vice-versa along with switching failure.

Example 1. Successful switching from lower conductance state Q1 to higher conductance state Q5.

The dynamic route map, in Figure 4a, shows the example of a successful switching of the 6-lobe
CCM from low conductance state Q1 to high conductance state Q5 when a pulse input with an amplitude
VA= 5.5 V, and width ∆w = 7.48 s is applied. According to Sect. II-A, the applied pulse with VA = 5.5 V
is equivalent to translating the red curve f (x, 0) upwards by 5.5 units, as shown by the blue curve f (x,
5.5). The dynamic route starting from low conductance state Q1 (x = 3) at t = 0- would jump abruptly
from Q1 on red curve to a point directly above Q1 on the blue curve (yellow circle) at t = 0+ (shown
with upward green arrow) as the pulse input increases from 0 V to 5.5 V. Since the blue curve is located
above the x-axis (where dx/dt > 0), its motion can only move to the right until time t = ∆w. At t = ∆w,
the square pulse returns to zero and the point x∆w(t = ∆w) = 26.5 (shown with green circle) on the blue
curve (f (x, 5.5)) reverts back abruptly to the same point on the red curve (shown with light cyan circle
followed by a downward green arrowhead). On red curve (f (x, 0)), state variable x(t) = x∆w(t) diverges
away from unstable equilibrium point Q4 (x = 25) and must continue to move rightward along the
dynamical movement of DRM (i.e., dx/dt > 0) until it converges to the low-resistance memory state Q5

(x = 35), as indicated with black arrowheads in Figure 4a.
The exponential trajectories of xn(t) related to the individual piecewise linear segments are

shown in Figure 4b. The total time period needed for the x(t) (x(t) is the collective trajectory of all
exponential trajectories xn(t) that originated from each straight-line segments of DRM between Q1 and
Q5.) trajectory to reach to Q5 from Q1 is tfp = 17.2 s, although the applied pulse is removed at t = ∆w =

7.48 s. This phenomenon illustrates the local fading memory attributes of 6-lobe CCM, but reveals the
opportunity of utilizing it as a multistate memory device.

Example 2. Successful switching from higher conductance state Q5 to lower conductance state Q1.

To switch from high conductance state Q5 to low conductance state Q1 of the 6-lobe CCM, a
negative pulse with amplitude VA = −5.5 V and width ∆wb = 7.684 s is applied. The dynamic route
and the state trajectories x(t) of switching kinetics from Q5 to Q1 are shown in Figure 4c,d, respectively.
Figure 4c shows that the dynamic route starting from Q5 (x = 35) on red curve jumps abruptly
downward by −5.5 units at t = 0+, as shown with blue curve f (x, −5.5). The state variable x(t) then
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moves towards the lower conductance state Q1 as dx/dt < 0. At tb = ∆wb, when the negative input is
removed, state variable x∆wb (tb = ∆wb) = 8.9 on blue curve returns to the exact same position on the
red curve and continues to move towards Q1 (x = 3) as dx/dt < 0. The exponential trajectories of xn(t)
from memory state Q5 to Q1 is shown in Figure 4d where the xn(t) decreases as the time increases and
converges to x(tf1b) = 3 which is regarded as the Q1 memory state. The 6-lobe CCM exhibits dissimilar
switching time in spite of similar pulse amplitude and greater pulse width as the switching time from
higher to lower conductance states, tfpb = 20.701 s, is greater than tf = 17.2 s. This reveals that the
CCM exhibits similar anti-symmetrical switching complication like as other memristive multistate
memory devices.
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Figure 4. Memory states switching kinetics of the 6-lobe CCM. (a) Successful switching from lower
conductance state Q1 to higher conductance state Q5 and (b) movement of the exponential trajectories
of xn(t) with respect to time, t, for an input square pulse VA = 5.5 V and ∆w = 7.48 s. (c) Successful
switching from higher conductance state Q5 to lower conductance state Q1 and (d) movement of the
exponential trajectories of xn(t) with respect to time, t, for an input square pulse VA = −5.5 V and
∆wb = 7.684 s.

Example 3. Switching failure from lower conductance state Q1 to higher conductance state Q5.

Amplitude VA and pulse width ∆w of an applied input pulse plays a crucial role in the switching
kinetics of memory states of the 6-lobe CCM. An inappropriate pulse amplitude or pulse width may
result in switching failures which illustrated in Figure 5. An appropriate pulse amplitude VA = 5.5
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V with a pulse width ∆w = 7 s is applied to the 6-lobe CCM to switch the memory state from Q1 to
Q5. Figure 5 shows that the exponential trajectories are converging to memory state Q3 (x = 15) rather
than converging to memory state Q5 (x = 35). This switching failure happens as the state variable x(t)
fails to cover the distance of x(t) > XQ4 = 25 with a pulse width ∆w = 7 s. Before the removal of input,
the trajectories of state variable x(t) reaches to a point x∆w(t = ∆w) = 23.812 which lies in the left-hand
side of Q4 (x = 25), as shown in Figure 5a. According to Section 2.1, any point lies in the left-side of Q4

(x = 25) should follow the dynamic route dx/dt < 0 (as shown with black arrowhead in Figure 2) and
converges to equilibrium state Q3 and in this case, the state variable x(t) follows the same route dx/dt <

0 and converges to Q3 (x = 15) rather converging to memory state Q5 (x = 35), as shown in Figure 5b.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 19 

 

which is regarded as the Q1 memory state. The 6-lobe CCM exhibits dissimilar switching time in spite 
of similar pulse amplitude and greater pulse width as the switching time from higher to lower 
conductance states, tfpb = 20.701 s, is greater than tf = 17.2 s. This reveals that the CCM exhibits similar 
anti-symmetrical switching complication like as other memristive multistate memory devices 

Example 3: Switching failure from lower conductance state Q1 to higher conductance state Q5 
Amplitude VA and pulse width Δw of an applied input pulse plays a crucial role in the switching 

kinetics of memory states of the 6-lobe CCM. An inappropriate pulse amplitude or pulse width may 
result in switching failures which illustrated in Figure 5. An appropriate pulse amplitude VA = 5.5 V 
with a pulse width Δw = 7 s is applied to the 6-lobe CCM to switch the memory state from Q1 to Q5. 
Figure 5 shows that the exponential trajectories are converging to memory state Q3 (x = 15) rather 
than converging to memory state Q5 (x = 35). This switching failure happens as the state variable x(t) 
fails to cover the distance of x(t) > XQ4 = 25 with a pulse width Δw = 7 s. Before the removal of input, 
the trajectories of state variable x(t) reaches to a point xΔw(t = Δw) = 23.812 which lies in the left-hand 
side of Q4 (x = 25), as shown in Figure 5a. According to Section 2.1, any point lies in the left-side of Q4 
(x = 25) should follow the dynamic route dx/dt < 0 (as shown with black arrowhead in Figure 2) and 
converges to equilibrium state Q3 and in this case, the state variable x(t) follows the same route dx/dt 
< 0 and converges to Q3 (x = 15) rather converging to memory state Q5 (x = 35), as shown in Figure 5b. 

(a) (b) 

Figure 5. Switching failures of the 6-lobe corsage memristor from Q1 to Q5 for a pulse amplitude VA = 
5.5 V and pulse width Δw = 7 s. (a) Dynamic routes of the switching kinetics, (b) movement of the 
exponential trajectories of xn(t) with respect to time, t. The switching failure happens due to 
insufficient pulse width. 

To overcome the switching failure problem, this review article includes the universal formulas 
(For detail derivation and explanation regarding the universal formulas please refer to ref. [12] and its 
supplementary materials.) that is required to determine the appropriate pulse amplitude VA and pulse 
width Δw. To do so, the exponential trajectories of state variable xn(t) and the time tfn that required 
for the trajectorial movement from any initial point x(tin) to the end of straight-line segment of DRM 
are computed. The exponential trajectory of state variable xn(t) of a straight-line segment of the DRM 
at an equilibrium point Qn is determined as 

(ݐ)௡ݔ = ܳ௡ − ൫1(ݐ)ݒ݉ − ݁௠(௧ି௧೔೙)൯ − ൫ܳ௡ − ൯݁௠(௧ି௧೔೙), (13)(௜௡ݐ)ݔ

where, n represents the number of equilibrium points and m represents the sign value of the straight-
line slope, 

݉ = ݊݃ݏ ቆ
೏ೣ
೏೟ቚ

ೞ೟ೌೝ೟
ି ೏ೣ

೏೟ቚ
೐೙೏

௫ೞ೟ೌೝ೟ି ௫೐೙೏
ቇ, (14)

-15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

-15

-10

-5

5

10

15

20

Q1 Q3 Q5 Q7Q2 Q6Q4 x

xΔw (t = Δw) = 23.812

0 10 20
0

10

20

30

(t, xΔw (t = Δw)) = (7, 23.812) 

(t, x(t)) = (17.65, 15) 

7

23.812

x(t)

Time, 
t(s)

Δw = 7s

5.5 V

Figure 5. Switching failures of the 6-lobe corsage memristor from Q1 to Q5 for a pulse amplitude VA =

5.5 V and pulse width ∆w = 7 s. (a) Dynamic routes of the switching kinetics, (b) movement of the
exponential trajectories of xn(t) with respect to time, t. The switching failure happens due to insufficient
pulse width.

To overcome the switching failure problem, this review article includes the universal formulas
(For detail derivation and explanation regarding the universal formulas please refer to ref. [12] and its
supplementary materials.) that is required to determine the appropriate pulse amplitude VA and pulse
width ∆w. To do so, the exponential trajectories of state variable xn(t) and the time tfn that required for
the trajectorial movement from any initial point x(tin) to the end of straight-line segment of DRM are
computed. The exponential trajectory of state variable xn(t) of a straight-line segment of the DRM at an
equilibrium point Qn is determined as

xn(t) = Qn −mv(t)
(
1− em(t−tin)

)
− (Qn − x(tin))em(t−tin), (13)

where, n represents the number of equilibrium points and m represents the sign value of the
straight-line slope,

m = sgn

 dx
dt

∣∣∣
start −

dx
dt

∣∣∣
end

xstart − xend

, (14)

and tin is the initial time of the straight-line segment; whereas, x(tin) represents the initial state at tin.
The time (tfn), that required for the trajectory of xn(t) to move from any initial point x(tin) to the end of
the straight-line segment of DRM, can be defined as

t f n = tin +
1
m

ln


∣∣∣∣∣∣∣Qn −mv(t) − x

(
t f n

)
Qn −mv(t) − x(tin)

∣∣∣∣∣∣∣
︸                             ︷︷                             ︸

∆t f n

. (15)
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The complete movement of the exponential trajectories of state variable xn(t) can be determined
by accumulating all the individual exponential trajectories of the straight-line segments of DRM,

x(t) =
∑p

n=1
xn(t) (tin ≤ t < t f n), (16)

where there trajectories of xn(t) only valid over tin ≤ t < tfn and p represent the total number of PWL
segments of the DRM between initial point x(tin)and final converged equilibrium point Qn.

The appropriate pulse amplitude VA is determined as

VA > Q(n−1) − x
(
t0(n−1)

)
, (17)

where Q(n-1) and x(t0(n-1)) represent the immediate before equilibrium point and the initial state of the
resultant memory state Qn.

The pulse width ∆w is defined as

∆w =
∑q

n=0
t f n (x(tin) ≤ x(t) ≤ x∆w(t = ∆w))), (18)

where q represents the number of straight-line segments of the DRM over x(tin) ≤ x(t) ≤ x∆w (t = ∆w)
and x∆w is the user-defined state where the applied input is removed. The value of user-defined x∆w
determines whether the alteration of memory states is going to be successful or not. For example,
in spite choosing x∆w (t = ∆w) > X = 25(Q4) in Figure 4a, any user-define state value x∆w (t = ∆w) ≤ X
= 25(Q4) results in unsuccessful switching between Q1 and Q5 and the resultant exponential trajectory
converges to Q3 memory state, as shown in Figure 5.

These formulas (Equations (13)–(18)) are universal as they can be applicable to any piecewise
linear dynamic routes for any DC or pulse input and with any number of segments. Moreover, the
universal formulas in Equations (17) and (18) compute the minimum pulse amplitude and width,
which can be used to solve the anti-symmetrical switching complications, in Example 2. Unlike other
memristive multistate memory devices which require empirical approach, the CC memristors are
defined by universal analytical formulas to determine the appropriate pulse amplitude and width for
successful switching from lower conductance state to higher conductance state or vice-versa.

4. Local Activity and Bifurcation Analysis

Local activity principle predicts the presence of complex phenomena in a nonlinear dynamical
system [23]. Particularly it affirms that a nonlinear circuit made of 2-terminal circuit elements, and/or
more complicated 2-terminal devices, can exhibit complex bifurcation phenomena, such as oscillation and
chaos, if and only if the circuit contains at least one nonlinear locally-active element. The fundamental
deep mathematical theorem given in [23] allows testing the locally active phenomenon of a device about
some equilibrium points, i.e., DC operating points.

According to the theorem presented in [23], 2-lobe, 4-lobe and 6-lobe CCMs are locally active over
the interval −10 V < V < −3.334 V (in Figure 2a), −9 V < V < −3 V (in Figure 2b), and −3 V < V < −1 V
(Figure 2c), respectively, as the slope at any point Q over these intervals is negative, i.e., Re [Y(iω)] < 0
at Q and ω = 0 (DC input), which satisfies the locally active criterion of Re [Z(iω)] < 0, or Re [Y(iω)] < 0,
for at least one frequency ω [13–16]. Moreover, all the members of the CCM family exhibit an edge of
chaos domains (Edge of Chaos is a relatively small subclass of local activity [16]. For details regarding
local activity and edge of chaos please refer to ref. [23]) over the same voltage interval as that of local
activities [13–16].

Nonlinear dynamical systems satisfying the edge of chaos criterion can exhibit bifurcation from a
stable equilibrium point regime to a chaotic regime by forced excitation [25]. In a local bifurcation,
called the Hopf bifurcation, an equilibrium point of the system’s differential equations loses its stability
as a pair of complex conjugate eigenvalues, or equivalently poles of its associated admittance Y(s, V)
or impedance Z(s, I), cross the imaginary axis of the complex plane at some critical parameter value
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µc [26]. Hopf bifurcation theorem asserts that under a relatively general situation, a small-amplitude
sinusoidal oscillation will emerge for the control parameter µ > µc, and whose amplitude A increases
proportional to

√
µ− µc, for µ close to µc [26,27]. The oscillators made from Chua corsage memristors

exhibits Hopf bifurcation as it is endowed with a pair of complex conjugate poles on the imaginary axis
(known as Hopf bifurcation points) of the complex plane [13–16].

The Hopf bifurcation exhibited in the CCM oscillator circuits (The CCM oscillator circuits are
designed by connecting the corsage memristors in series with an external inductor and a battery [13–16].)

are classified as supercritical because the typical supercritical amplitude Av(V) =

√
x2 + i

2
L at Hopf

bifurcation points, shown in Figure 6a,b, is quite similar to the curve computed from the analytical
formulas (To avoid the emergence of complex number, the absolute value of (µ − µc) is used in the
analytical formulas. The critical parameters are µc1 = −2.25 V and µc2 = −1.75 V for 6-lobe CCM and
constants k1 = 2.65 and k2 = 8.75 are determined empirically for 6-lobe CCM oscillator circuit [16].)

Am1(V) = k1

[√∣∣∣V + µc1
∣∣∣] and Am2(V) = k2

[√∣∣∣V + µc2
∣∣∣] with control parameter µ = V and critical

parameter µc1 and µc2 [16]. In this review article, the supercritical Hopf bifurcation theorem is analyzed
using 6-lobe CCM oscillator circuit. However, the same bifurcation analogies and amplitude equations
hold for 2-lobe and 4-lobe CCM oscillator circuits except for the critical parameter of µc1 and µc2, and
constants k1 and k2.

According to the supercritical Hopf bifurcation theorem [26,27], the 6-lobe CCM oscillator circuit
must exhibit a small stable near-sinusoidal oscillation, i.e., a limit cycle, over a small range of V beyond
the critical parameter value (For better understanding about the choice of critical parameters µc1 =

−2.25 V and µc2 = −1.75 V please refer to Sect. 4.3 and Figure 13 of ref. [16]) µc1 = V = −2.25 V.
Figure 7a and d show that the transient waveforms converge to 2 asymptotically stable equilibrium
points Q1

0(0.7, −1.127) for the parameter value V = −2.3 V, (which is near, but to the left of the first
Hopf bifurcation point µc1 = V = −2.25 V (see inset of Figure 13 in ref. [16])), and Q2

0(1.3, −2.873) for
V = −1.7 V (which is near, but to the left of the second Hopf bifurcation point µc2 = V = −1.75 V),
respectively. However, the transient waveforms generated by 6-lobe CCM from two different initial
states (x(0) = 0.95, iL (0) = −2.031) and (x(0) = 0.8, iL (0) = −1.43) in Figure 7b converge to the yellow
stable limit cycle for V = −2.23 V (which is near, but to the right of the first Hopf bifurcation point
µc1 = V = −2.25 V). Moreover, transient waveforms generated from two different initial states (x(0) =

1.1, iL (0) = −2.431) and (x(0) = 1.2, iL (0) = −3.53) for V = −1.77 (which is near, but to the right of the
second Hopf bifurcation point µc2 = V = −1.75 V (see inset of Figure 13 in ref. [16])) converge to a larger
yellow limit cycle shown in Figure 7c. The numerical simulation results shown in Figure 7 affirm that
the 6-lobe CCM oscillator circuit exhibits a stable limit cycle when the bifurcation parameter µ = V is
chosen between the Hopf bifurcation points at µc1 = V = −2.25 V and µc1 = V = −1.75 V, as predicted
by the supercritical Hopf bifurcation theorem [16]. Similar supercritical Hopf bifurcation analogies
also exhibits in 2-lobe and 4-lobe CCM oscillator circuits [13–15].
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Figure 6. Numerical verification of supercritical Hopf bifurcation of the 6-lobe CCM oscillator circuit.
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Verification of supercritical Hopf bifurcation as a parameter µ = V near (a) first Hopf bifurcation point
µc1 = V = −2.25 V, and (b) second Hopf bifurcation point µc2 = V = −1.75 V where k1 = 2.65 and k2 =

8.75 obtained empirically [16].
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Figure 7. Numerical simulation results of supercritical Hopf bifurcation theorem of 6-lobe CCM oscillator
circuit with external inductor L* = 355.5 mH. (a) Transient waveform converges to Q1

0( 0.7, −1.127) for V
= −2.3 V with initial condition (x(0), iL(0)) = (0.95, −2.031), (b) Transient waveforms generated from two
different initial states (x(0), iL(0)) = (0.95, −2.031) and (x(0), iL (0)) = (0.8, −1.43) converge to a yellow
limit cycle for V = −2.23 V, (c) Transient waveforms generated from two different initial states (x(0),
iL(0)) = (1.1, −2.431) and (x(0), iL(0)) = (1.2, −3.53) converge to a large yellow limit cycle for V = −1.77
V, and (d) Transient waveform converges to Q2

0(1.3, −2.873) for V = −1.7V with initial condition (x(0),
iL(0)) = (0.95, −2.031).
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5. Physical Realization of CCM Family

Chua corsage memristors, shown in Figure 8a, can be physically realized in circuit by including
the switching kinetics closer to the behavioral attributes of each segment of PWL dynamic route map.
A passive nonlinear-resistive two-port and a dynamic first-order one-port are cascaded to design
an emulator circuit for CCM memristor [10], as shown in Figure 8b. The passive nonlinear-resistive
two-port is composed of parallel connected Graetz bridges [17] with anti-serial diodes and the dynamic
first-order one-port is made up of a C-R parallel circuit. Two set of Graetz bridge are used to supply
double amount of input current to the dynamic first-order one-port, i.e., C-R parallel circuit, for faster
switching of memory states.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 19 

 

waveforms generated from two different initial states (x(0), iL (0)) = (0.95, −2.031) and (x(0), iL (0)) = 
(0.8, −1.43) converge to a yellow limit cycle for V = −2.23 V, (c) Transient waveforms generated from 
two different initial states (x(0), iL (0)) = (1.1, −2.431) and (x(0), iL (0)) = (1.2, −3.53) converge to a large 
yellow limit cycle for V = −1.77 V, and (d) Transient waveform converges to ܳ଴

ଶ(1.3, −2.873) for V = 
−1.7V with initial condition (x(0), iL(0)) = (0.95, −2.031). 

5. Physical Realization of CCM Family 

Chua corsage memristors, shown in Figure 8a, can be physically realized in circuit by including 
the switching kinetics closer to the behavioral attributes of each segment of PWL dynamic route map. 
A passive nonlinear-resistive two-port and a dynamic first-order one-port are cascaded to design an 
emulator circuit for CCM memristor [10], as shown in Figure 8b. The passive nonlinear-resistive two-
port is composed of parallel connected Graetz bridges [17] with anti-serial diodes and the dynamic 
first-order one-port is made up of a C-R parallel circuit. Two set of Graetz bridge are used to supply 
double amount of input current to the dynamic first-order one-port, i.e., C-R parallel circuit, for faster 
switching of memory states. 

The DC V-I curve of active and locally active resistor R0 in dynamic one-port, in Figure 8b, should 
exhibit the same number of contiguous breakpoints to that of the DC V-I curves of CCMs. For 
example, the DC V-I curve of R0 for 2-lobe CCM emulator must have two breakpoints, whereas, for 4-
lobe and 6-lobe emulator the DC V-I curve of R0 should exhibit four and six contiguous breakpoints, 
respectively. 

Figure 8. Circuit diagram of (a) Chua corsage memristors and (b) Chua corsage memristor emulators 
with bi-stability or multi-stability input dynamics. 

To design the nonlinear resistor R0 for CCM emulators, circuit theoretic analysis is conducted on 
opamps to obtain the desired DC V-I breakpoints at specific voltages to that of CC memristors. The 
driving point characteristic of a single positive and negative feedback op-amp circuit provides two 
breakpoints on its piecewise linear DC V-I curve [28]. Therefore, only a single positive and negative 
feedback op-amp circuit is sufficient to design an active and locally active R0 for 2-lobe CCM 
emulator, as shown in Figure 9a. However, two and three parallel-connected opamp circuits are 
required to design a four and six breakpoint piecewise linear DC V-I curves for 4-lobe and 6-lobe 
CCMs, respectively, as shown in Figure 9b–c. The circuit theoretic analysis for designing the CCM 
emulator circuit is conducted on 6-lobe CC memristor, as it has the highest number of breakpoints on 
its contiguous six lobes corsage DC V-I curve. 

D4
D1

D2D3

D5
D8

D7D6

vm

+

-

+

-

vi ≡ v1

im ii ii1

ii2

+

-

v2

+

-

+

-

≡ v0

i01 i02

i0

+

-

+

-

Chua Corsage Memristors 
(CCMs) 

im

G(x) = G0 x2vm

+

̶

Chua Corsage Memristor Emulator  

(a)

(b)

Figure 8. Circuit diagram of (a) Chua corsage memristors and (b) Chua corsage memristor emulators
with bi-stability or multi-stability input dynamics.

The DC V-I curve of active and locally active resistor R0 in dynamic one-port, in Figure 8b, should
exhibit the same number of contiguous breakpoints to that of the DC V-I curves of CCMs. For example,
the DC V-I curve of R0 for 2-lobe CCM emulator must have two breakpoints, whereas, for 4-lobe and
6-lobe emulator the DC V-I curve of R0 should exhibit four and six contiguous breakpoints, respectively.

To design the nonlinear resistor R0 for CCM emulators, circuit theoretic analysis is conducted on
opamps to obtain the desired DC V-I breakpoints at specific voltages to that of CC memristors. The
driving point characteristic of a single positive and negative feedback op-amp circuit provides two
breakpoints on its piecewise linear DC V-I curve [28]. Therefore, only a single positive and negative
feedback op-amp circuit is sufficient to design an active and locally active R0 for 2-lobe CCM emulator,
as shown in Figure 9a. However, two and three parallel-connected opamp circuits are required to
design a four and six breakpoint piecewise linear DC V-I curves for 4-lobe and 6-lobe CCMs, respectively,
as shown in Figure 9b,c. The circuit theoretic analysis for designing the CCM emulator circuit is
conducted on 6-lobe CC memristor, as it has the highest number of breakpoints on its contiguous six
lobes corsage DC V-I curve.
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where n = {1, 2, and 3} denotes the operating opamp circuit. Figure 10a shows the mathematically 
computed V-in plots of the individual currents of opamp circuits. Observe that each V-I curves has 
two breakpoints at specific voltage at V = ± 2.82 V, V = ± 4.95 V, and V = ± 6.99 V. The value of the 
breakpoints are a bit dissimilar to that of 6-lobe CCM (V = {±3 V, ±5 V, ±7 V}) as the measured resistive 
parameters (R631 = R632 = R633 = 0.985K, R661 = R662 =R663 = 100.5K, R671 = R672 =R673 = 1.001K, R641 =3.888K, 
R642 = 1.797K, R643 = 0.987K) are used in simulation. 
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Figure 9. Circuit diagram of the active and locally active nonlinear resistor R0 for (a) 2-lobe CCM, (b)
4-lobe CCM, and (c) 6-lobe CCM.

The circuit components and parameters of the parallel-connected opamps, in Figure 9c, are
exactly same except the negative feedback resistances (R641, R642, and R643). The effective saturation
voltage (βEsat) of an individual op-amp circuit is determine by the negative feedback resistance which
plays a crucial role to achieve the desired V-I breakpoints at specified voltages, such as V= ±3 V, V=

±5 V, and V= ±7 V (The 6-lobe CCM has six breakpoints on its DC V-I curve at V = {±3 V, ±5 V,
±7 V} as shown in Figure 2c). However, the positive feedback path of the op-amp circuits might
arise difficulties with the driving-point and transfer function. Such complication can be resolved by
replacing the op-amp circuit with three ideal models, such as “– Saturation region”, “Linear region”,
and “+ Saturation region”. According to the circuit theoretic approach presented in [12], the three
ideal models generate the following combine current (in) of an individual opamp circuit for an input
voltage v,

in =

[
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(19)

where n = {1, 2, and 3} denotes the operating opamp circuit. Figure 10a shows the mathematically
computed V-in plots of the individual currents of opamp circuits. Observe that each V-I curves has
two breakpoints at specific voltage at V = ± 2.82 V, V = ± 4.95 V, and V = ± 6.99 V. The value of the
breakpoints are a bit dissimilar to that of 6-lobe CCM (V = {±3 V, ±5 V, ±7 V}) as the measured resistive
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parameters (R631 = R632 = R633 = 0.985K, R661 = R662 = R663 = 100.5K, R671 = R672 = R673 = 1.001K, R641

= 3.888K, R642 = 1.797K, R643 = 0.987K) are used in simulation.
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Figure 10. (a) DC voltage V vs. current i1, i2, and i3 diagram, (b) I vs. V and R0 vs. V plot of
mathematical model, (c) I vs. V and R0 vs. V plot of spice circuit simulation, and (d) I vs. V and R0

vs. V plot of the actual circuit implementation of the active and locally active resistor of the 6-lobe
CCM emulator.

The total current of parallel-connected opamp circuit is equal to the summation of all individual

opamp currents, i =
3∑

n=1
in. The mathematical simulation of V-I curve and the resistance of active

and locally active R0 (R0 = V/I) are shown in Figure 10b, whereas, the SPICE simulation and circuit
implementation waveforms are shown in Figure 10c, and d, respectively. Observe from circuit
implementation waveforms, in Figure 10d, that the locally active R0 remains almost constant at R01

= 137Ω over an input voltage range −2.16 V < V < 2.16 V, except for a tiny interval at the origin.
For ±2.16 V < V < ± 4.05 V, ±4.05 V < V < ±5.74 V, and V > ±5.74 V, R0 increase from 137 Ω to 204 Ω,
204 Ω to 312 Ω, and 312 Ω to Rmax (very large resistance value), respectively. However, the increment
rate of R0 is dissimilar for each voltage range which reveals that the slope is constant in a particular
voltage range, but inconstant for different voltage ranges. This suggests that the active and locally
active R0 exhibits four distinct memory states, namely, R01, R02, R03, and R04 as shown in Figure 10b–d.

The numerical values of DC V-I breakpoints and the resistance ranges of nonlinear resistor R0 (in
Figure 10b–d) for mathematical modeling, SPICE simulation, and circuit implementation are unequal.
The reason behind such inequality is the non-ideal circuit components of the SPICE module and
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the non-ideal characteristic of the implemented opamps along with noise induction from DC power
supply and oscilloscope probe. Although the breakpoints of DC V-I curves in Figures 2c and 10b–d are
quantitatively different, but qualitatively same. This reveals that the DC V-I curve of any real nonlinear
resistor can be converted into a memristor by applying the basic method explained in [10–12] and [18].

However, unlike a passive nonlinear-resistive two-port emulator circuit, the bi-stability and
multi-stability phenomena of Chua Corsage Memristors can be realized by a single device as
demonstrated in recent literature [29–31]. The NbO2 Mott memristor [29,30] exhibits an analogous
dynamic route to that of 2-lobe CCM which has two stable and one unstable equilibrium points on its
dynamic route map (dT/dt vs. T (Figure 1 [29])). The state switching attributes of NbO2 memristor
are identical to 2-lobe CCM and regarded as bi-stable device. The universal formulas of switching
kinetics (in Section 3) can be applicable to NbO2 Mott memristor as the PWL dynamic route, and
switching kinetics are explicitly similar to 2-lobe CCM. In addition, HfOx/AlOy-based homeothermic
memristor [31] has a similar number of stable equilibrium states (i.e., four temperature-dependent
equilibrium states corresponding to its four dynamic conductances (Figure 3 in [31])) to that of 6-lobe
CCM. When driven by DC input, the homeothermic memristor exhibits four distinct DC V-I curves
corresponding to its four temperature-dependent dynamic conductances (Figure 3e and f in [31]) which
is identical to 6-lobe CCM (shown in Figures 2c and 10). In spite of the quantitative dissimilarities,
the NbO2 Mott memristor and homeothermic memristor qualitative exhibit the bi-stability and
multi-stability phenomena of CC memristors.

6. Concluding Remarks

This review article presents an in-depth and rigorous analysis of the nonlinear dynamical attributes,
switching kinetics, and physical realization of Chua corsage memristors (CCMs). The versatile CCMs
exhibit multiple stable equilibria on their complex and diversified, dynamic route map (DRM)
and power-off plot (POP). Due to the presence of a higher degree of versatility in DRM, the CC
memristors have a variety of dynamic paths in response to different initial conditions which reveals a
highly nonlinear DC V-I curves. Unlike most published highly-nonlinear DC V-I curves which have
several disconnected branches, the DC V-I curves of CCMs are contiguous. Moreover, the parametric
representation and DC V-I curves of CCMs have an explicit analytical equation, which rarely happens.

The multiple stable equilibria on the DRM of CCMs reveal that it can be utilized as binary and
multistate memory device whose exponential state trajectories for a particular linear piecewise segment,
time period that required for the state trajectorial movement of the particular PWL segment, and the
appropriate pulse amplitude and width that required for successful memory state switching can
easily be determined from the universal formulas presented in Sect. 3. These universal formulas are
applicable to any PWL DRM curves with any number of segments for any DC or pulse input.

Another impressive feature of CCMs is the locally active negative slope region of the DC V-I
curves which gives rise to complex phenomenon, such as oscillation, by exploiting the edge of chaos and
supercritical Hopf bifurcation theorem.

Last, but not least, the off-the-shelf active and locally active resistor (R0) in CCM emulators (designed
with opamp or parallel-connected opamp circuits) is capable of emulating the attributes of the CCM
DC V-I curves and proved that a memristor could be implemented using any real nonlinear resistor.
Moreover, NbO2 Mott memristor and HfOx/AlOy-based homeothermic memristor reveals that the
bi-stability and multi-stability phenomena of Chua corsage memristors can also be realized with a
single physical device.
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