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Abstract: Field Programmable Gate Arrays (FPGAs) based Ternary Content Addressable Memories
(TCAMs) are widely used in high-speed networking applications.However, TCAMs are not present
on state-of-the-art FPGAs and need to be emulated on SRAM-based memories (i.e., LUTRAMs and
Block RAMs) which requires a large amount of FPGA resources. In this paper, we present an efficient
methodology to implement FPGA-based TCAMs with significant resource savings compared to
existing schemes. The proposed methodology exploits the fracturable nature of Look Up Tables
(LUTs) and the built-in slice carry-chains for simultaneous mapping of two rules and its matching
logic to a single FPGA slice. Multiple slices can be stacked together to build deeper and wider TCAMs
in a modular way. The combination of all these techniques results in significant savings in resource
utilization compared to existing approaches.

Keywords: TCAMs; packet classification; FPGA; partial reconfiguration

1. Introduction

State-of-the-art FPGAs from Xilinx and Intel are increasingly finding their way in data plane
acceleration for Software Defined Networking (SDN) [1]. FPGA vendors are constantly spinning off
specialized software development toolkits for fast and flexible packet processing and classification
for example, SDNet from Xilinx [2]. Packet processing and classification are essential for Ethernet/IP
forwarding, Firewalls, and Quality of Service (QoS). Classification is performed using matching
techniques that is, Exact Matching (EM) [3], Longest Prefix Matching (LPM) [4] and Matching with
Wildcards [5]. Out of these, matching with wildcards is challenging and is usually performed with
Ternary Content Addressable Memories (TCAMs).

Unlike traditional memories, Content Addressable Memories (CAMs), take content as an input,
search for all the locations in memory in parallel and if found return the address of the found
location [6]. This requires extra hardware making CAMs more area and power hungry compared
to standard SRAM memories. When the stored bits in the memory can represent don’t care bits
(which can match a zero or a one), the memory is termed as a Ternary CAM or TCAM. The logic
required for TCAMs is more complex than that of binary CAMs. Due to the complexity and speed
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requirements, TCAMs are developed as Intellectual Property (IP) cores that are used in networking
ASICs [7]. FPGAs do not contain built-in hard macros for TCAMs, therefore, they have to be emulated
using the logic and memory resources. This usually results in huge resource overhead. Consequently,
reducing the resource overheads of FPGA-based TCAMs has been actively pursued by researchers
as will be discussed in details in the Related Works section. TCAMs have three main components
that is, storage memory, a match logic and a priority encoder. The storage memory contains the
actual TCAM contents that need to be searched and is the main cost of implementing TCAMs on
SRAM-based FPGAs. For optimizing the storage memory requirements of TCAMs, in Reference [8]
the authors combine dual-output LUTs and partial reconfiguration for significant savings in storage
memory resources. The match logic is responsible for generating a membership boolean check flag
for each incoming content lookup query and because this has to be done in parallel for all memory
locations with high-speed, this operation incurs significant resources. The recent work in Reference [9]
presents a novel idea for utilizing the available carry-chain resources for efficient mapping of the
matching logic in Xilinx FPGAs. Both the storage and matching logic requirement for TCAMs scales
up with the size that is, the number of bits in the key and the number of rules that are to be stored
in the TCAM. Therefore, simultaneous optimization of both storage and matching logic resources is
worth investigating.

In this paper, we present a novel approach to achieve a simultaneous reduction of storage and
matching logic resources of TCAMs mapped onto Xilinx SRAM-based FPGAs. The main idea is
to exploit dual-output LUTs for mapping two rules and then utilizing the built-in unused slice
carry-chain for implementing the match logic. The proposed methodology achieves a greater density
for rule mapping onto an FPGA SLICE, for example, compared to Reference [9], which is able to map
a 1 × 18 TCAM to a single slice, we are able to map a 2 × 16 TCAM to the same slice. This is a very
significant improvement in storage resources. Furthermore, our proposed mapping methodology,
implements the matching logic for dual-output LUTs by intelligently exploiting the carry-chain
structure compared to Reference [9] which is able to map only a single output LUTRAM matching
logic with it. Similarly, compared to the previous work in Reference [8], which did not use carry-chains
for matching logic reduction, the proposed methodology offers significant improvements. Therefore,
the main contribution of the paper is to present a TCAM emulation scheme that significantly reduces
the FPGA resources needed to emulate a given TCAM. In more detail, the number of normalized slices
needed to implement the FPGA configurations evaluated was reduced by at least 30% compared to
existing schemes with reductions larger than 50% in most cases.

The rest of the paper is organized as follows. Section 2 covers the related works on TCAM
emulation on FPGAs. Section 3 discusses how TCAMs are emulated on FPGAs. The proposed scheme
is described in Section 4. Section 5 presents the evaluation and comparison with existing techniques.
The paper ends with the conclusions in Section 6.

2. Related Work

Broadly, algorithmic level and circuit level techniques are used for optimizing TCAMs for
FPGA implementation. The algorithmic level techniques utilize decision tree, hierarchical trie,
cross-producting, bucket compression, field encoding, rule-set partitioning, pipelined and parallel
processing and are published in References [10–15]. Circuit-level techniques for TCAMs using
SRAM-based FPGA have been explored with four kinds of resources that is, Flip-Flops, Block
RAMs, LUT-RAMs and LUTs. For the Flip-Flop based TCAMs, the rules are stored in the FFs
while the comparison logic is implemented using the logical resources (LUTs) of the FPGA [16–19].
In Reference [16,17], the authors had implemented a 64 × 36 TCAM and BiCAM respectively. However,
utilizing FFs inside the slices in this manner increases the routing complexity of the implemented
design. Therefore, this kind of computational structure for a TCAM can lead to a large use of hardware
resources leaving no space for other hardware modules of the application at hand. Consequently,
scalability is a main issue with FF-based FPGA TCAMs.
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The second category of FPGA based TCAM utilizes the on-chip Block-RAM memory for TCAM
content storage [20–27]. In [20] the authors presented a TCAM architecture, however, implementing it
with BRAMs on an FPGA results in huge increase of resource as the width is increased. This problem
has been addressed by HP-TCAM [21] by dividing the whole TCAM into horizontal and vertical
blocks. Each block is stored separately in BRAMs. This way the information about the membership
checking and its address are stored in separate BRAMs resulting in inefficient utilization of BRAM
storage. E-TCAM [22] and Z-TCAM [23] incrementally improved upon the work in HP-TCAM [21].
However, all of them suffer from inefficient utilization of BRAM storage aggravated by the strict
ordering of rules imposed for storage. UE-TCAM [24] stores the membership checking and address
information in the same BRAM memory and alleviates the need for rules to be strictly ordered for
storage. A multi-pumping approach is used in Reference [26] to address BRAM storage inefficiency
by time-multiplexing BRAM resources. This has been achieved with lower frequency of BRAMs
compared to system frequency. However, this will reduce the emulated TCAM throughput. Another
work presented in Reference [27] utilized BRAMs and exploits don’t care bits to speed up update
latency. For BRAM-based TCAM some authors have focused on energy efficiency [28]. A completely
different approach is to rely hashing to implement algorithmic TCAMs that are able to store the rules
directly on Block RAMs providing an efficient solution when the set of rules has certain patterns of
regularity [29]. The BRAM-based FPGA TCAMs suffer from a higher SRAM/TCAM bits ratio of 29/9
for TCAM-emulation compared to Distributed RAM based TCAM emulation [30,31] which emulated
TCAMs with a SRAM/TCAM bit ratio of 26/6.

Distributed RAM or LUT-RAM based TCAM has recently gained attention due to its efficient
TCAM emulation capabilities [30–33]. In Reference [32] the authors presented an approach to emulate
TCAMs using the in-slice LUT-RAMs when configuration as serial shift registers. The downside to it is
that this will take several update cycles depending upon the shift register length. In Reference [30] the
authors used 6-input LUT-RAMs for emulation of TCAMs on Xilinx FPGAs. This paper demonstrated
the advantages of using LUT-RAMs over BRAMs that is, the lower SRAM/TCAM bit ratio. With
the introduction of Xilinx SDNet framework for dataplane acceleration, Xilinx introduced an IP
core for TCAMs [33]. In Reference [34] the authors present a stored TCAM table in LUTRAM and
uses multiplexer at the output, however, this approach suffers from slow search latency. The recent
work in Reference [9] optimizes the LUT-RAMs based TCAMs by cleverly utilizing the built-in
slice carry-chains for match-logic in TCAMs. They have achieved significant reduction in resources
requirements. The issue with LUT-RAM based approaches is that the number of LUT-RAMs on
modern FPGAs are small, utilizing the scarce resource of TCAM may lead to insufficient resources
of other system module. Furthermore, the scarcity of LUT-RAMs puts severe limits on the size of
TCAMs that can be emulated on FPGAs. Since, larger TCAMs are becoming a requirement in most of
networking applications, this approach can become unfeasible.

To alleviate this problem in PR-TCAM [8] the authors introduced the first FPGA TCAM that uses
LUTs (instead of LUT-RAM which are clocked sequential elements) to store the TCAM rules. It uses
frame and LUT-level fine-grain partial reconfiguration to modify the TCAM rules [8]. This enables
a better utilization of the FPGA resources as LUTs are more abundant that LUT-RAMs and they can be
used to store more rules. The scheme proposed in this paper, BPR-TCAM optimizes over DURE [9]
and PR-TCAM [8]. It utilizes dual-outputs LUTs and Partial reconfiguration from PR-TCAM and
carry-chains for match-logic reduction from DURE. The challenge was to integrate carry-chains based
match-logic reduction with dual-output LUTs while adhering to slice architectural constraints. Our
work BPR-TCAM has proposed a method to overcome this issue and results in a better performance
per area than existing FPGA TCAMs.

3. Emulating TCAMs with Memories on FPGAs

Traditionally, TCAMs have been implemented in ASICs. A conceptual architectural view of
an ASIC-style 4 × 6 TCAM is depicted in Figure 1. This configuration supports four words or rules
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(i.e., N=4) and each rule has six bits (i.e., W = 6). Such a TCAM is usually denoted by NxW TCAM.
Each bit in the TCAM memory is stored in a TCAM cell which is implemented at transistor level [6].
The look-up operation for a TCAM starts with an input search key, that is received through the
input search key register. Then, this key is searched in parallel in all TCAM stored words or rules.
The matching rules generate a logic one value which are fed to a priority encoder and a reduction
OR gate to generate a matching word address and match binary flag to indicate if a key has matched
against a stored rule. The TCAM in Figure 1 implements four rules as shown in the figure. Note that
each rule translates to a row in TCAM while rule size (or key size) corresponds to TCAM columns.

Figure 1. A conceptual view of a 4 × 6 ASIC-style Ternary Content Addressable Memory (TCAM).

Now consider emulating the ASIC-style N × W TCAM using an SRAM on an FPGA.
The dimension of RAM required for emulating an N × W TCAM is 2W × N. With increasing size of W,
the RAM depth will increase exponentially making RAM-based TCAM emulation impractical. In order
to limit the exponential depth growth, the key W is split into several blocks, each sub-block indexes
a different RAM memory [30]. For example, in Figure 2, the six bit key, W, is split in two two parts. The
three upper bits index the upper 23 × 4 RAM block while the lower three bits index the lower 23 × 4
RAM block. Inside an individual 8 × 4 RAM block, each sub-rule is implemented through an 8 × 1
RAM. As an example, considering the mapping of r1 which is equal to 000xxx, in the upper 8 × 4
RAM block it is implemented by setting the RAM address 000 to 1, all other address locations are zero.
While in the lower 8 × 4 RAM block, the xxx part of r1 is implemented by setting all address locations
to 1. These two RAM blocks of r1 exits are combined with a chain of AND gates. Similarly, the same
scheme is used for all the four rules. Therefore, each RAM block contains four smaller 8 × 1 RAMs
generating four match line signals that are passed through the AND chains. Generally, the dimension
of the match lines will be equal to N. The match lines are fed to a reduction-OR gate which takes as
input an N bit vector and produces a single match output. Therefore, the dimension of AND gate
depends upon the number of blocks into which a key is divided while the dimension of reduction-OR
gate depends on the number of rules. There are two physical memories inside a Xilinx FPGA that can
implement the TCAM emulation scheme outlined above that is, BRAMs or LUTRAMs. The cost of
utilizing a BRAM-based TCAM is 29/9 = 56.8 while that of LUTRAM based TCAM is 25/5 = 6.4 that
is, 56.8 SRAM bits per TCAM bit vs 6.4 SRAM bits per TCAM bit [30]. LUTRAM-based approaches
have a lower cost per TCAM bit and support high-speed updates. Recent work in Reference [9] has
achieved significant resource savings by mapping matching logic to unused architectural resources
that is, carry-chains. However, the number of LUTRAMs (found in SLICEM) is quite small compared
to traditional LUTs (found in SLICEL). Therefore, using LUTRAMs for TCAMs may not support
large TCAM sizes. Similarly, using BRAMs for TCAMs may consume too many resources for large
TCAM sizes leaving no spare resources for other modules of the application. Therefore, deciding
on which option is best depends upon the context of design and the resource requirements [33].



Electronics 2020, 9, 353 5 of 12

Recent work in Reference [8] converts the problem of emulating TCAM on FPGAs from a sequential
logic to pure combinational logic by leveraging LUT-level partial reconfiguration for TCAM updates.
This enables the traditional LUTs located in SLICEL to be used for storing the rules in configuration
memory. As lookup is a much more frequent operation in most TCAMs applications compared to the
less frequent updates, the run-time reconfiguration overhead required for LUT-level rule updates is
within bounds to support hundreds to thousands of rule updates per second with existing FPGAs.
This is enough for many of the SDN application workloads. If the run-time partial reconfiguration
integrates well with the overall system, it may be the best option as its RAM/TCAM bit ratio is same
as LUTRAM and modern FPGAs have a huge number of LUTs. The following section presents the
proposed methodology that improves the previously described TCAM emulation approaches.

Figure 2. Example of a 4 × 6 TCAM emulated using two 8 × 4 SRAMs.

4. Block and Partial Reconfiguration TCAM (BPR-TCAM)

This section presents the proposed BPR-TCAM approach by using in an unconventional manner
the Xilinx FPGA’s slice resources, in particular, the LUTs and carry-chains. The proposed methodology
terms the combination of LUTs and carry-chains in a slice as a “Block”. These Blocks are combined
vertically and horizontally along the Configurable Logic Block (CLB) columns according to TCAM size.
The vertical height depends upon the key bits while the horizontal width depends upon the number
of rules in the TCAM implementation. In order to better understand the block structure and its usage,
let us consider emulating a 2 × 66 TCAM. This can be optimally implemented by BPR-TCAM across
4 blocks. The first block in a CLB column is configured to implement a 2 × 20 TCAM, the middle
two blocks are configured to implement 2 × 16 TCAMs while the last block in a column is configured
to implement a 2 × 14 TCAM. The following paragraphs explain the first, middle and last blocks in
full details.

In order to better understand the details of the first block in a column, let us consider a TCAM
with two rules and a key with W = 20 bits that is, 2 × 20 TCAM emulated on a single FPGA slice
illustrated in Figure 3. The LUTs are configured in dual-output mode (that is, 5 × 2 LUTs) where each
LUT takes as input 5 bits of the key. Therefore, a total of 4 LUTs are required for 20 bit of the key housed
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entirely in a slice. However, it is worth mentioning that this arrangement supports storage memory
requirements for two rules. One rule resides in the O5 LUTs and the second rule resides in O6 LUTs.
Therefore, the entire slice is able to implement a Look Up Operation for a 2 × 20 TCAM. Interestingly,
the AND-cascading for the matching logic for one of the implemented rules can also be realized using
the built-in slice carry-chains as shown in Figure 3. Note that the O6 LUTs are AND-cascaded vertically
along the carry-chain resources while the O5 LUTs producing four output signals are taken to the slice
outputs. Therefore, a slice produces 5 outputs, a COUT output that represents the ANDed result of O6
LUTs and four O5 LUTs outputs. Note that the O5 outputs cannot be ANDed using the slice resources
and require and additional LUT resources for ANDing operation.

Figure 3. Mapping of a 2 × 20 TCAM to four 5 × 2 LUTs in a first slice.

If the size of key is large, multiple slices can be stacked up to form a large AND-cascading along
the carry-chain column. For example, consider a 2 × 32 TCAM depicted in Figure 4 utilizing two slices
in 2 × 16 TCAM configuration mode implementing the middle slices of the proposed BPR-TCAM
methodology. Figure 4 illustrates how two Blocks are combined for a 2 × 32 TCAM implementation.
As before every 5 × 2 LUT implements two rules that is, “r1” through O6 and “r2” through O5. The r1’s
are merged along the MUXCY element of carry-chains while the r2’s are merged with a LUT inside the
next block. For example, consider LUT A of Slice A implementing Block 2, this LUT is configured to
merge 4 O5s from the previous slice plus a single bit of key. Thus, this LUT implements a 4-input AND
gate in O5, and a 1 × 1 TCAM in both O5 and O6. Such middle block forms the core of BPR-TCAM
method and can be stacked along the CLB column for increasing key sizes.
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Figure 4. Architecture of Proposed method for a 2 × 32 TCAM.

Finally, in order to understand the last block of a column, let us consider a 2 × 14 TCAM
implementation illustrated in Figure 5. Although, LUT A and LUT B implement normal 5 × 2 LUTs of
the BPR-TCAM, LUT C and LUT D are significantly different. This difference is introduced by the need
to merge the O5s along the CLB column and to generate two bit match signals representing “r1” and
“r2”. LUT D is configured to implement a 6 × 1 LUT, AND-merging 4 O5s from previous block and
two O5s from the current block that is, LUT A and LUT B. Thus generating a single O5-merged result
for “r2”. This merged r2 plus 4 key bits are combined in LUT C, configured in 5 × 2 mode to generate
the final column-wise “r1” and “r2” match signals. These two match signals can then be connected to
reduction-OR for final TCAM match signal.

Figure 5. Mapping of a 2 × 14 TCAM to four 5 × 2 LUTs in a last slice.
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In this way, the three different block types implement a 2 × 66 TCAM that is, first block
implementing 2 × 20, two middle blocks implementing 2 × 32 and the last block implementing
2 × 14 configuration. If the AND-merging for the 2 × 66 TCAM is implemented with 5 × 2 LUTs as
in the case of PR-TCAM but without carry-chains, it would incur an overhead of 3 6 × 1 LUTs per
rule required for merging 14 5 × 2 LUTs. Thus for two rule per CLB column 6 LUTs are saved per
four blocks of BPR-TCAM or a 1.5 LUTs saving per slice. This results in better FPGA slice utilization
compared to existing FPGA TCAM approaches as will be seen in the evaluation presented in the
next section.

5. Evaluation

This section presents the experimental results for different TCAM implementations on Xilinx
Artix 7-series 28 nm XC7A100TCSG324-1, Xilinx Virtex-7 28 nm XC7V2000TFHG1761-2L and Xilinx
Virtex-6 40 nm XC6VLX760 devices. The results are collected for 40, 80, 120 and 144 bits key sizes and
32, 64, 512 and 1024 number of rules and compared with existing work in literature. It should be noted
that Xilinx ISE 14.7 design suite is used for collected results on Virtex-6 device while all other results are
collected using Vivado HLx 16.3 design suite. It should be noted that the reported resource utilization
and timing performance are reported post place-and-route phase of FPGA design flows. BPR-TCAM
resource usage for the different key/rule sizes is given in Table 1. It is worth mentioning that the
resources correspond to the BPR-TCAM blocks without the match reduction logic or priority encoders.
The numbers can be related to the blocks used. For example, for a 32 × 40 TCAM, the first slice takes
20 key bits consuming 4 LUTs, the second takes 16 key bits plus 4 previous O5s consuming 4 LUTs and
the last slice takes 4 key bits and 4 O5s from previous slice consuming 2 LUTs. Therefore, in total the
32 × 40 configuration, takes 10 LUTs per column and a total of 16 columns that is, 160 LUTs. Similarly,
the slices count as 3 slices per column with a total of 16 columns making 48 slices in total. It can be seen
that the resources tend to scale propotionally with the number of rules. Instead, the growth is lower
with the key size. This is because large key sizes use more intermediate blocks that are more efficient.

Table 1. Resource and Delay (in nanoseconds) Results for BPR-TCAM on Artix-7 XC7A100T and
Virtex-7 XC7V2000TFHG1761-2L.

KEY PARAMETER
RULES

32 64 512 1024

40

LUTS 160 320 2560 5120
FFs 145 209 1105 2129

SLICES 48 96 768 1536
DELAY-V7 2.52 2.61 2.78 3.21
DELAY-A7 4.70 5.25 5.38 6.00

80

LUTS 320 640 5120 10,240
FFs 225 289 1185 2209

SLICES 80 160 1280 2560
DELAY-V7 4.24 4.79 5.32 5.82
DELAY-A7 8.10 8.67 10.16 10.36

120

LUTS 480 960 7680 15,360
FFs 305 369 1265 2289

SLICES 128 256 2048 4096
DELAY-V7 5.76 6.16 6.82 7.66
DELAY-A7 11.40 12.18 13.53 14.98

BPR-TCAM delay on two different devices (i.e., Artix-7 denoted by Delay A7 and Virtex-7
denoted by V7) is also given in Table 1. It should be noted that the results for Artix-7 are collected
with a speed grade of -1 while results for Virtex-7 correspond to speed grade −2. It should further be
noted that the BPR-TCAM is implemented with registers in between different individual models, for
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example, registers are inserted between input and BPR-TCAM block and between BPR-TCAM block
and Reduction-OR gate. This helps in isolating the delay results and confining the measurements
only to the proposed BPR-TCAM structure. It can be noted that the delay for Virtex-7 increases by
1.72 ns as we move from 32 × 40 to 32 × 80 configuration and by 1.52 ns while moving from 32 × 80
to 32 × 120. Similarly, the delay increases by 2.61 ns as we move from 1024 × 40 to 1024 × 80 and by
1.84 ns while moving from 1024 × 80 to 1024 × 120. Therefore, the delay degradation while moving to
larger configurations is moderate and does not double as the key size doubles. Although, the reported
delay for Artix-7 is higher compared to Virtex-7 due to difference in speed grades, a similar trend can
be observed when the key size increases for a constant rule size. Thus, the delay of BPR-TCAM scales
well with size of TCAM.

Table 2 compares existing works with the proposed BPR-TCAM in terms of resource usage
and speed. It can be seen that BPR-TCAM-I is 54% and 41% efficient than DURE-I and PR-TCAM
respectively in slice resource utilization. However, BPR-TCAM-I is 52.8% worse in speed comparison
to DURE-I. The reason being that DURE is based on LUTRAMs which are clocked-sequential elements
compared LUTs which are combinational logic elements. It can be noted that BPR-TCAM-I is 62.5%
better is speed performance than PR-TCAM because of pipelined registers.

Table 2. Resource and Speed (MHz) comparison of BPR-TCAM with state-of-the-art TCAMs.

Architecture Device Size LUTRAMs LUTs FFs BRAMs Slices Speed

HP-TCAM [21] XC6VLX760 512 × 36 0 6546 2670 56 1637 118
Z-TCAM [22] XC6VLX760 512 × 36 0 4462 2178 40 1116 159

UE-TCAM [24] XC6VLX760 512 × 36 0 3652 1758 32 913 202
Syed [27] XC6VLX760 512 × 36 0 3013 552 32 754 101

DURE-I [9] XC6VLX760 512 × 36 4096 1605 1174 0 1668 335
PR-TCAM [8] XC7A100T 512 × 40 0 3574 0 0 1085 82
BPR-TCAM I XC6VLX760 512 × 40 0 2560 793 0 768 219.2

Xilinx [33] XC7V2000T 512 × 128 8875 27,559 35,068 3 12,011 171
DURE-II [9] XC6VLX760 1024 × 144 32,768 3039 2700 0 9654 175

BPR-TCAM II XC6VLX760 1024 × 144 0 18,432 3029 0 4608 111.49
Jiang [30] XC7V2000T 1024 × 150 20,480 61,624 37,556 0 20,526 199

Table 3 gives a comparison of existing FPGA TACMs and BPR-TCAM irrespective of the FPGA
device technology. This has been achieved by utilizing normalization according to well-know equations
from the literature. For example, Equation (1) gives the normalized slices and is useful when a design
uses BRAMs. This actually converts the number of utilized BRAMs into corresponding LUT resources
and calculates the resultant slices.

NormalizedArea(slices) = Numbero f FPGAslices + [Numbero f 36kbitBRAMs ∗ 24]. (1)

Similarly, to take care of different technology nodes, Equation (2) maps the results from FPGAs in
any technology into 40 nm equivalent ones since most of the existing literature was implemented in
40 nm technology FPGAs.

NormalizedSpeed = Speed ∗ Technology(nm)

40(nm)
∗ 1.0

VDD
(2)

Also, throughput is given by Equation (3) which represents the capacity of data transfer to and
from the TCAM. It can be noted from Table 3 that BPR-TCAM-I has a throughput of 8.77 Gbit/sec
which outperforms all of the existing works except DURE-I which has a throughput of 12.06 Gbit/sec.

Throughput(Gbit/s) = Clockrate(MHz) ∗ Widtho f theTCAMwords. (3)
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A single metric to compare different TCAM implementations is Performance Per Area (PA) given
by Equation (4).

Per f ormance
Area

=
Throughput(Mbit/s)

NormalizedArea (slices)
Deptho f theTCAMtable

(4)

The PA has been defined in [9] as a metric that captures the performance versus the resource
usage regardless of the implementation approach used. This is done by normalizing the speed and
the resources (also shown in the table) and assigning a cost to each normalized resource type so that
an aggregated normalized resource usage can be computed. It can be observed that BPR-TCAM
outperforms all the existing implementations in terms of PA. The main contributing factor to this
gain is a lower resource usage of BPR-TCAM that compensates its slightly worse delay compared to
some of the existing schemes. For example, consider DURE 512 × 36 configuration and BPR-TCAM
512 × 40 configuration, it can be observed that although DURE offers a higher clock rate, due to
significant resource savings, BPR-TCAM has a higher PA 5.85 compared to 3.7 for DURE. Similarly,
comparing PR-TCAM 512 × 40 and BPR-TCAM 512 × 40, it can be observed that BPR-TCAM has a PA
of 5.85 compared to 1.08 of PR-TCAM. These results show that the proposed TCAM implementation
outperforms existing work by a considerable margin.

Table 3. Throughput (Throughput in Gbit/s) and Performance Per Area (PA in (Mbit/s)/Slice)
comparison of BPR-TCAM with state-of-the-art TCAMs.

Architecture Device Size N.Slices N. Speed Throughput PA

HP-TCAM [21] XC6VLX760 512 × 36 2981 118 4.25 0.73
Z-TCAM [22] XC6VLX760 512 × 36 2076 159 5.72 1.41

UE-TCAM [24] XC6VLX760 512 × 36 1681 202 7.26 2.21
Syed [27] XC6VLX760 512 × 36 1522 101 3.64 1.22

DURE-I [9] XC6VLX760 512 × 36 1668 335 12.06 3.7
PR-TCAM [8] XC7A100T 512 × 40 1085 57.4 2.3 1.08
BPR-TCAM I XC6VLX760 512 × 40 768 219.2 8.77 5.85

Xilinx [33] XC7V2000T 512 × 128 12,083 120 15.36 0.65
DURE-II [9] XC6VLX760 1024 × 144 9654 175 25.2 2.67

BPR-TCAM II XC6VLX760 1024 × 144 4608 111.49 16.05 3.57
Jiang [30] XC7V2000T 1024 × 150 20,526 139 20.9 1.04

6. Conclusions and Future Work

In this paper, BPR-TCAM, an efficient methodology is presented for mapping the logic needed to
emulate TCAMs to the FPGA slice structure. This is achieved by an unconventional utilization of slice
carry-chain resources for implementing the AND-cascading required for matching logic. Combined
with the dual-output LUTs and the use of partial reconfiguration, carry-chain based AND-cascading
results in more than a single LUT saving per slice, thereby, significantly reducing the matching logic
overhead.The evaluation and comparison with existing implementations show that the proposed
BPR-TCAM can significantly reduce the cost of emulating TCAMs on FPGAs. In particular, savings
of more than 30% in the number of normalized slices required to implement a given TCAM were
achieved compared to existing schemes.
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