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Abstract: This paper presents a computationally efficient soft detection scheme for massive
multiple-input multiple-output (MIMO) systems. The proposed scheme adopts joint iterative
detection and decoding (JIDD) methods for their capacity limiting performances. In addition, the
minimum mean square error parallel interference cancellation (MMSE-PIC)-based detection scheme is
used for soft information exchange. We propose a number of techniques to reduce the computational
complexity, while keeping almost the same performance as the conventional ones. First, a technique
is proposed to approximate the Gram matrix to a constant valued diagonal matrix. This proposal can
lead to elimination of complex matrix inversion process and multiple layer dependent estimations,
resulting in huge complexity reduction. Second, compact equations to estimate soft-symbol values
for M-ary (quadrature amplitude modulation) QAM are derived. From the investigation example of
28-QAM in this paper, this proposal showed more than two orders of less computations compared to
the conventional scheme. The simulation results demonstrate that the proposed method can achieve
approximating performance to the conventional method with a largely reduced computational
complexity.

Keywords: massive MIMO; soft detection; JIDD; coded MIMO; MMSE-PIC

1. Introduction

In recent years, the massive multiple-input multiple-output (MIMO) technology which utilizes
hundreds of antennas at the base station (BS) has attracted great interests due to its high data rates
for a given bandwidth [1]. In coded MIMO systems, the joint iterative detection and decoding
(JIDD) method can produce high performance gain [2]. The performance gain from the JIDD method
could be achieved by iteratively exchanging soft information between the maximum likelihood
(ML) detector and decoder, at the cost of computational complexity. Minimum mean square error
(MMSE)-based detection schemes were often considered for JIDD due to their reasonable complexity
and performance tradeoff. These were called the minimum mean square error parallel interference
cancellation (MMSE-PIC) methods [3].

A complexity reduced JIDD scheme with the MMSE-PIC was proposed in [4], and later JIDD with
three loops were proposed in [5]. Even though the MMSE-PIC method for JIDD provides a trade-off
between the performance and computational complexity, its computational complexity is still too
high for massive MIMO systems. The main computational burden during the MMSE-PIC process
is incurred from the estimation of the Gram matrix and matrix inversion [6]. Several attempts were
made to apply the MMSE-PIC based detection for massive MIMO systems. Large efforts were made to
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approximate matrix inversion process by using iteration based methods [7–10]. In addition, Neumann
series expansion (NSE) method [11] and Newton iteration method [12] were proposed.

Considering that the channel matrix is asymptotically orthogonal in massive MIMO systems [13],
a diagonal-like matrix was proposed to approximate the MMSE filtering matrix to reduce the
complexity [14]. However, these methods still suffer from too much complexity when the number of
antennas at the BS is massive. Not only the the complexity caused by calculating the Gram matrix and
the matrix inversion, but also the post-equalization signal-to-interference-plus-noise ratio (PE-SINR)
estimation at every layer causes a lot of computations [10]. For this reason, our previous study
presented a complexity reduced method to approximate PE-SINR, but the investigation was limited to
non-iterative detection and decoding schemes [15].

In this paper, we propose an efficient MMSE-PIC-based JIDD scheme with huge reduction in
computational complexity for coded massive MIMO systems. The proposed scheme first derives a
universal constant diagonal matrix which eventually results in a simplified filtering matrix as well as
compact PE-SINR estimation. In addition, an efficient soft-symbol estimation method is proposed to
reduce the number of computations. Especially, we present compact equations for M-ary quadrature
amplitude modulation (QAM) schemes which require less than 1% of the computational complexity
compared to the conventional scheme. Finally, soft bit information (SBI) to the decoder is extracted by
using a simple symbol mapping method to further reduce the complexity.

The remainder of this paper is organized as follows. In Section 2, we first review an existing
massive MIMO system with JIDD combined with MMSE-PIC, and introduce a simple soft demapping
method which can extract soft bit information with a linear-order complexity. Section 3 presents the
proposed MMSE-PIC-based JIDD scheme with a number of techniques to reduce the computational
complexity. In addition, the complexity reduced equations to estimate soft symbols for MMSE-PIC
process are derived. Simulation results are shown in Section 4, and Section 5 concludes the paper.

Notation: Lowercase and uppercase boldface letters denote vectors and matrices, respectively,
lower and upper case letters denote scalars. Transpose, conjugate transpose, matrix inversion, and
norm operations are denoted by (·)T , (·)H , (·)−1 and | · |, respectively. In addition, M×M identity
matrix is represented by IM.

2. Related Works

2.1. Uplink System Model with JIDD

In this paper, we consider a coded massive MIMO system equipped with N receive antennas at
the BS for M transmit antennas (N >> M), as shown in Figure 1. At the transmitter, we encode
the information vector u to produce the codeword c. Then, M × K codewords are interleaved
by an interleaver and are modulated successively before going through the channel, where K
denotes the number of bits per transmitted symbol. Every MK bits from the interleaver, i.e.,
x = [x1,1, · · · , x1,K, x2,1, · · · , xm,k, · · · , xM,K] are grouped and modulated to the transmitted symbol
vector s = [s1, s2, · · · , sm, · · · , sM]T , where xm,k is the kth bit of the transmitted symbol from the mth
antenna, sm, which is independently mapped from a complex constellation O. The received symbol
vector y = [y1, y2, · · · , ym, · · · , yN ]

T can be represented as follows:

y = Hs + n, (1)

where H is an N ×M complex-valued channel matrix whose entries are independent and identically
distributed with zero mean and unit variance, and n is Gaussian noise vector whose elements are
independent zero-mean complex Gaussian random variables with variance σ2 per dimension.
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Figure 1. Coded multiple-input multiple-output (MIMO) system with minimum mean square error
parallel interference cancellation (MMSE-PIC)-based joint iterative detection and decoding (JIDD).

At the receiver with JIDD scheme, there are three loops working together to improve the overall
performance. Loop 1 denotes the iterations inside the channel decoder, Loop 2 is used to exchange soft
information between the detector and decoder, and Loop 3 is inside the MMSE-PIC detector. First,
SBI L is calculated by the MMSE-PIC detector. A detailed process to estimate L can be found in [4],
and it is briefly discussed in Section 2.2. Afterwards, L is subtracted by the a priori information, Ld

a
from the channel decoder. Then, the extrinsic information is produced; Lc

e = L− Ld
a . Lc

e is passed
through the de-interleaver and its de-interleaved version, Lc

a is used by the channel decoder as the a
priori information. After decoding, the soft output Lc

o is generated and the extrinsic information for
MMSE-PIC is calculated by Ld

e = Lc
o − Lc

a. In addition, its interleaved version, Ld
a , is fed back to the

MMSE-PIC detector as the a priori information.

2.2. MMSE-PIC Detection for MIMO System

The MMSE-PIC detector in Figure 1 needs to estimate soft symbol values in order to incorporate
soft information from the channel decoder. The first step is to estimate the expected soft-symbol value
s̃i and the variance Ei of the transmitted symbol si, by using the a priori information, as follows [3,14]:

s̃i = ∑
a∈O

a
2K

K

∏
k=1

(1 + x̃i,kζi,k), (2)

Ei = ∑
a∈O

|a|2
2K

K

∏
k=1

(1 + x̃i,kζi,k)− |s̃i|2, (3)

where a is a constellation symbol of O, x̃i,k is set to be −1 and 1 according to the kth bits of a, and ζi,k is
considered as zero at the first stage, and in the following iterations, ζi,k can be calculated as:

ζi,k = tanh((L(xi,k) + Ld
a(xi,k))/2). (4)

Then, we perform the parallel interference cancellation (PIC) process on the received symbol
vector to cancel the interference between layers, and the interference-cancelled symbol vector for the
ith layer, ŷi is calculated by using the following equation:

ŷi = y−∑
j 6=i

hj s̃j = hisi + ñ, (5)

where hi denotes the ith column of H, and ñ = ∑j 6=i hj(si − s̃i) + n.
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The next step is the suppression of noise plus interference (NPI) term in (5) with the
following equation:

ẑi = wH
i ŷi, (6)

where wH
i is the ith row of the MMSE filtering matrix, WH , which is calculated as follows [16]:

WH = (HHHΛ + σ2IM)−1HH = W̃
−1

HH , (7)

where Λ is a diagonal matrix whose diagonal element λi,i equals to Ei calculated in (3).
For the estimation of SBI in the form of log-likelihood ratio (LLR) to the decoder, the

channel-compensated value, zi = ẑi/(wH
i hi) needs to be used as follows [16], so that the SBI estimation

is not subject to the channel gain.

L(xi,k|y, H) ≈min
a∈O0

k

(
ρi |zi − a|2 +

K

∑
k=1

ln
(

1 + e(−xi,k Ld
a(xi,k))

))

−min
a∈O1

k

(
ρi |zi − a|2 +

K

∑
k=1

ln
(

1 + e(−xi,k Ld
a(xi,k))

))
,

(8)

where a ∈ O0
k and a ∈ O1

k represent the constellation symbols with the kth bit of 0 and 1, respectively,
and the PE-SINR for the ith transmitted symbol can be estimated as:

ρi =
µi

1− Eiµi
, (9)

where
µi = wH

i hi. (10)

Estimation of SBI using (8) requires exhaustive search to find the minima. A complexity reduced
scheme which eliminates the search process to find the minima can be used as follows [17]:

L(xi,k|y, H) ≈ ωi,kρi

(∣∣∣�(zi, ε0
k)− q0

k

∣∣∣2 − ∣∣∣�(zi, ε1
k)− q1

k

∣∣∣2) , (11)

where ωi,k is a sign function introduced by symbol mapping, and qb
k is the unique symbol nearest to

the mapped zi. In addition, �(zi, εb
k) = |zi| ejεb

k , where εb
k , b ∈ {0, 1} represents the phase of mapped

symbol for the kth bit of b.

3. Proposed Method

In this section, we propose to approximate the Gram matrix with a derived constant diagonal
matrix to reduce the computational complexity of the MMSE-PIC-based JIDD scheme. With the
proposed scheme, the computations of estimating the Gram-matrix, filtering matrix and PE-SINR
are highly reduced. In addition, we derive compact equations to estimate soft-symbol values, and
then expand the results for well-known M-ary QAM with highly reduced complexity, compared to (2)
and (3). Finally, the symbol mapping technique in (11) is tailored to the proposed scheme for further
complexity reduction.

3.1. MMSE-Filtering-Matrix Approximation

In this subsection, we focus on reducing the computational complexity of the MMSE-PIC-based
JIDD scheme caused by the calculation of the Gram matrix, filtering matrix, and PE-SINR. First, by
using the property that the Gram matrix, G = HHH, can be approximated to a diagonal-like matrix in
a massive MIMO system, WH can also be approximated as follow [13,14]:
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WH = (GΛ + σ2IM)−1HH

≈


w̃1,1 0 · · · 0

0 w̃2,2 · · · 0

0 0
. . . 0

0 0 0 w̃M,M


−1

HH ,
(12)

where w̃i,i = gi,iEi + σ2, and gi,i denotes the ith diagonal element of G. This method reduces the
complexity of calculating matrix inversion and produces an approximating performance to the
conventional MMSE-PIC-based JIDD system. Nevertheless, this method still requires not a small
amount of computational complexity to calculate diagonal elements of G.

A previous study proposed a method to reduce the computational complexity of the PE-SINR
estimation, by approximating the diagonal elements of G with a universal constant value [15]. However,
this method cannot be directly applied to the JIDD system. To solve this problem, we propose an
approximating method in the calculation of both the Gram matrix and PE-SINR as follows. We use the
fact that the column vectors of the channel matrix are almost orthogonal as the number of antennas
increases [13]. Then G can be approximated by N/MIM, by considering transmit power normalization.
Consequently, the filtering matrix WH can be estimated without any matrix inversion as follows:

WH = (GΛ + σ2IM)−1HH

≈


N
M E1 + σ2 0 · · · 0

0 N
M E2 + σ2 · · · 0

0 0
. . . 0

0 0 0 N
M EM + σ2


−1

HH .

=


( N

M E1 + σ2)−1 0 · · · 0
0 ( N

M E2 + σ2)−1 · · · 0

0 0
. . . 0

0 0 0 ( N
M EM + σ2)−1

HH .

(13)

With the above approximation, wH
i in (6) can be expressed as follows:

wH
i ≈

1
N
M Ei + σ2

hH
i , (14)

where, hH
i is the ith row of HH . Therefore, (6) can be simplified as follows:

ẑi = wH
i ŷi ≈

1
N
M Ei + σ2

hH
i ŷi, (15)

Finally, we show that the PE-SINR estimation can be simplified to a layer independent universal
value. First, µi in (10) can be expressed as follows, by inserting (14).

µi = wH
i hi ≈

1
N
M Ei + σ2

hH
i hi =

N
M

N
M Ei + σ2

. (16)

Then, the layer dependent PE-SINR in (9) can be expressed as a constant value as follows:

ρi ≈
N

Mσ2 . (17)
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3.2. Soft-Symbol Value Estimation

Direct estimation of (2) and (3) requires exponentially increasing number of computations by the
number of bits in a symbol. If we use symmetric property of QAM constellations, then we can highly
reduce the complexity. For this, we first decompose the complex value s̃i into real and imaginary parts
as follows:

s̃i = <(s̃i) + j=(s̃i), (18)

where <(x) and =(x) are the real and imaginary parts of the complex number x.
With the above decomposition, computations in (2) is now performed with real number operations,

and <(s̃i) can be derived as follows.

<(s̃i) = ∑
a∈O

<(a)
2K

K

∏
k=1

(1 + x̃i,kζi,k)

= ∑
<(a)∈OR

∑
=(a)∈OI

<(a)
2K ∏

k∈κR

(1 + x̃i,kζi,k) ∏
k∈κ I

(1 + x̃i,kζi,k)

= ∑
<(a)∈OR

<(a)
2K ∏

k∈κR

(1 + x̃i,kζi,k) ∑
=(a)∈OI

∏
k∈κ I

(1 + x̃i,kζi,k)

= ∑
<(a)∈OR

<(a)
2K ∏

k∈κR

(1 + x̃i,kζi,k)2
K/2

= ∑
<(a)∈OR

<(a)
2K/2 ∏

k∈κR

(1 + x̃i,kζi,k),

(19)

where OR = {a|a is a symbol projected on to the real axis}, κR represents a set of bit indexes of
the symbols which are projected to real axis. As shown in (19), the number of computations in
∏K

k=1(1 + x̃i,kζi,k) of (2) is reduced from 2K to 2K/2.
We derive =(s̃i) with the same way as follows:

=(s̃i) = ∑
a∈O

=(a)
2K

K

∏
k=1

(1 + x̃i,kζi,k)

= ∑
=(a)∈OI

=(a)
2K/2 ∏

k∈κ I

(1 + x̃i,kζi,k),
(20)

where OI = {a|a is a symbol projected on to the imaginary axis}, κ I represent the bit indexes of the
symbols which are projected to imaginary axis.

Now we prove that Ei can be decomposed into ER
i and EI

i which are the variances estimated for
<(si) and =(si), respectively, as follows:

Ei = ∑
a∈O

|a|2
2K

K

∏
k=1

(1 + x̃i,kζi,k)− |s̃i|2

= ∑
<(a)∈OR

∑
=(a)∈OI

<(a)2 +=(a)2

2K ∏
k∈κR

(1 + x̃i,kζi,k) ∏
k∈κ I

(1 + x̃i,kζi,k)− |s̃i|2

= ∑
<(a)∈OR

∑
=(a)∈OI

<(a)2

2K ∏
k∈κR

(1 + x̃i,kζi,k) ∏
k∈κ I

(1 + x̃i,kζi,k)

+ ∑
<(a)∈OR

∑
=(a)∈OI

=(a)2

2K ∏
k∈κR

(1 + x̃i,kζi,k) ∏
k∈κ I

(1 + x̃i,kζi,k)− |s̃i|2

= ∑
<(a)∈OR

<(a)2

2K/2 ∏
k∈κR

(1 + x̃i,kζi,k)−<(s̃i)
2 + ∑

=(a)∈OI

=(a)2

2K/2 ∏
k∈κ I

(1 + x̃i,kζi,k)−=(s̃i)
2

= ER
i + EI

i ,

(21)
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where

ER
i = ∑

<(a)∈OR

<(a)2

2K/2 ∏
k∈κR

(1 + x̃i,kζi,k)−<(s̃i)
2,

EI
i = ∑

=(a)∈OI

=(a)2

2K/2 ∏
k∈κ I

(1 + x̃i,kζi,k)−=(s̃i)
2.

(22)

With the above decomposition, we further reduce the computational complexity of (22) by
expanding ER

i as follows:

ER
i = ∑

<(a)∈OR

<(a)2

2K/2 ∏
k∈κR

(1 + x̃i,kζi,k)−<(s̃i)
2

= ∑
<(a)∈OR+

<(a)2

2K/2 (1 + ζi,χ) ∏
k∈κR+

(1 + x̃i,kζi,k)

+ ∑
<(a)∈OR−

<(a)2

2K/2 (1− ζi,χ) ∏
k∈κR−

(1 + x̃i,kζi,k)−<(s̃i)
2

= ∑
<(a)∈OR+

<(a)2

2K/2 2 ∏
k∈κR+

(1 + x̃i,kζi,k)−<(s̃i)
2

= ∑
<(a)∈OR+

<(a)2

2K/2−1 ∏
k∈κR+

(1 + x̃i,kζi,k)−<(s̃i)
2,

(23)

where OR+
= {a|a is a symbol projected on to the real axis, <(a) > 0 }, OR− = {a|a is a symbol

projected on to the real axis, <(a) < 0 }, κR+
= κR− = {k|k ∈ κR, k 6= χ}, and χ is the bit index that

determines whether a is included in OR+
or OR− . Likewise,

EI
i = ∑

=(a)∈OI

=(a)2

2K/2 ∏
k∈κ I

(1 + x̃i,kζi,k)−=(s̃i)
2

= ∑
=(a)∈OI+

=(a)2

2K/2−1 ∏
k∈κ I+

(1 + x̃i,kζi,k)−=(s̃i)
2,

(24)

where OI+ = {a|a is a symbol projected on to the imaginary axis, =(a) > 0 }, and κ I+ = {k|k ∈ κ I , k 6=
χ}. By expanding (19)–(24) for a specific Gray coded QAM constellation, we could further reduce the
number of computations. Table 1 shows the results of the expansions using (19)–(24) for a Gray coded
16, 64, and 256-QAM constellations in [17].

Table 1. Complexity reduced estimations of s̃i and Ei by expanding (19)–(24) for a Gray coded
quadrature amplitude modulation (QAM).

K A s̃i Ei
4 1/

√
10 A(−2ζi,1 + ζi,1ζi,3) + jA(−2ζi,2 + ζi,2ζi,4) A2(10− 4ζi,3 − 4ζi,4)− |s̃i|2

6 1/
√

42 A(−4ζi,1 + 2ζi,1ζi,3 − ζi,1ζi,3ζi,5) A2(42− 16ζi,3 − 4ζi,5 + 8ζi,3ζi,5
+jA(−4ζi,2 + 2ζi,2ζi,4 − ζi,2ζi,4ζi,6) −16ζi,4 − 4ζi,6 + 8ζi,4ζi,6)− |s̃i|2

8 1/
√

170 A(−8ζi,1 + 4ζi,1ζi,3 − 2ζi,1ζi,3ζi,5 + ζi,1ζi,3ζi,5ζi,7) A2(170− 64ζi,3 − 16ζi,5 − 4ζi,7
+jA(−8ζi,2 + 4ζi,2ζi,4 − 2ζi,2ζi,4ζi,6 + ζi,2ζi,4ζi,6ζi,8) +32ζi,3ζi,5 + 8ζi,5ζi,7 − 16ζi,3ζi,5ζi,7

−64ζi,4 − 16ζi,6 − 4ζi,8 + 32ζi,4ζi,6
+8ζi,6ζi,8 − 16ζi,4ζi,6ζi,8)− |s̃i|2

3.3. Algorithm for the Proposed Methods and Complexity Comparisons

With the proposed techniques, diagonal elements of the Gram matrix are approximately
represented by a universal constant value, and the estimation of soft-symbol values are performed with
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much lower complexity. Eventually, it results in that the computational complexity of matrix inversion
is greatly reduced to a linear order, and the estimation of the PE-SINR is also greatly simplified. The
complete process of the proposed method is summarized in Algorithm 1, where η and l denote the
number of iterations between the MMSE-PIC detector and decoder, and the number of iterations inside
the detector, respectively.

Algorithm 1 Pseudo-code for the proposed complexity reduced MMSE-PIC-based JIDD algorithm

Initialize: Ld
a = 0, L = 0

for 1 ≤ η ≤ ηmax do
for 1 ≤ l ≤ lmax do

Calculate ζi,k with (4), s̃i and Ei with Table 1
w̃i,i =

N
M Ei + σ2

ẑi = hH
i ŷi/w̃i,i

µi =
N
M

N
M Ei+σ2 , and ρi =

N
Mσ2

L(xi,k|y, H) estimation with (11)
end for
Iterative decoding, output Ld

a
end for

The computational complexity of the proposed method is compared with two conventional
schemes in terms of the number of multiplications per iteration, and the results are shown in Table 2.
We compare the computational complexity of major computations during the MMSE-PIC process,
which are matrix-inversion processes as well as calculating G, µi, s̃i, and Ei as listed in Table 2. As
shown in the table, the computational complexity of matrix-inversion is reduced to a linear order in
the proposed scheme, benefiting from the diagonal approximation. The complexity of the Gram-matrix
estimation in the proposed scheme is reduced to O(1) due to the further approximation with a universal
constant value. Given W−1 and G, the computational complexities of estimating µi in the conventional
schemes are O(M2), while that of the proposed scheme is reduced to O(M).

Table 2. Computational complexity comparisons.

Conventional [16] Conventional [4] Proposed
()−1 O(M3) O(M) O(M)

G O(M2N) O(MN) O(1)
µi, ρi O(M2),O(M) O(M),O(M) O(M),O(1)

s̃i O(K2K) O(K2K/2) O(K2K/2)
Ei O(K2K) O(K2K/2) O(K2K/2)

Especially, we compare the complexity of calculating s̃i and Ei in more details. Table 3 compares
the number of multiplications required in the conventional schemes using (2) and (3), with the
proposed compact methods using (19)–(24). To estimate s̃i with (2), we need K − 1 multiplications
in ∏K

k=1 for each constellation symbol a, in addition to three multiplications with <(a), =(a), and
1/2K, respectively, and thus in total we need (K − 1 + 3)2K multiplications. Similarly, to estimate
Ei in (3), we need K− 1 multiplications in ∏K

k=1 for each constellation symbol a, in addition to two
multiplications with 1/2K and |a|2, respectively, and then two multiplication for |s̃i|2. Therefore,
we need ((K − 1 + 2)2K + 2) multiplications in total. On the other hand, the proposed method
reduces the number of multiplications from O(K) to O(K/2), due to symbol projections to real and
imaginary axes, respectively. Therefore, we need 2(K/2− 1 + 2)2K/2 multiplications to estimate s̃i,
and (2(K/2− 2 + 2)2K/2−1 + 2) multiplications to estimate Ei. We note that if we use the expanded
results in Table 1, then the complexity is less than 1% of the direct estimation of (2) and (3).
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Table 3. Complexity of estimating s̃i and Ei in terms of the number of multiplications.

K (2), (3) (19)+(20), (23)+(24) s̃i, Ei in Table 1
4 96, 82 24, 10 6, 5
6 512, 450 64, 26 12, 11
8 2560, 2306 160, 66 20, 23

4. Simulation Results

We simulated the performance of the coded MIMO system with 16 quadrature amplitude
modulation (QAM) over a frequency-flat Rayleigh fading channel. As a forward error correction
(FEC) scheme, low density parity check (LDPC) code with a length of 16,200 bits and a code rate
of 1/3 was used. We first compare the bit error rate (BER) performance of various coded MIMO
systems at the first iteration of MMSE-PIC detection. This is to see the performance behavior by the
number of iterations inside of the LDPC decoder, before we investigate the performances of JIDD
based detection schemes.

Figure 2 compares the BER performance of the proposed method with that of the conventional
scheme for M × N MIMO systems. The maximum number of iterations inside the LDPC decoder
is denoted by α. As shown in the figure, the performance of both methods improves as α increases,
regardless of the number of antennas. The performance gap between the conventional and proposed
methods at a given M × N MIMO system with α of 20 is almost the same as the one with α of 30.
Henceforth, the maximum number of iterations inside the decoder was limited to 20 for the remaining
simulations. This is because we are mainly targeting to see the performance behviour of the proposed
detection schemes, not that of the decoder.

-4 -2 0 2 4 6 8 10
10-6

10-5

10-4

10-3

10-2

10-1

 

 

B
E

R

E
b
/N

0
 (dB)

                        2X16          8X128          16X128          16X256
Conv(                                               
Prop(                                               
Conv(                                              
Prop(                                               
Conv(                                              
Prop(                                               

Figure 2. BER performance comparison according to α at the first iteration.

Figure 3 compares the BER performance of the 16× 128 MIMO system for different (η, l), where η

and l denote the number of joint iterations and the number of detector iterations, respectively. From the
simulation results in Figure 3, we can find that BER performance of the proposed method approximates
to that of the conventional method as η increases when l = 1. In addition, two iterations inside the
detector, i.e., l = 2, are shown to be sufficient to produce approximating performance to that of the
conventional method when η = 4. Hereafter, the maximum number of joint iterations and detector
iterations were limited to 4 and 2, respectively.
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Figure 3. BER performance comparison with various (η, l) for 16× 128 system.

Figure 4 compares the BER performance between the proposed and conventional methods with
various numbers of antennas. As shown in the figure, the performance of the proposed method
slightly degrades when the number of antennas is comparatively small. On the other hand, the
proposed method achieves an approximating performance to the conventional methods as the number
of antennas increases. We note that we can achieve greater reduction in computational complexity
with a larger number of antennas, as shown in Table 2.
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Figure 4. BER performance comparisons with various numbers of antennas when (η, l) = (4, 2).
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5. Conclusions

In this paper, we proposed an efficient method to reduce the computational complexity of the
MMSE-PIC-based JIDD scheme for a massive MIMO system. The proposed method approximates the
Gram matrix with a diagonal matrix composed of a universal value, and tailored it for efficient soft
MIMO detection. The proposed method does not require a complex matrix inversion process and layer
dependent PE-SINR estimation at every iteration, resulting in huge amount of complexity reduction.
In addition, we derived compact equations to estimate soft-symbol values for the MMSE-PIC process.
It was shown that the proposed method requires two orders less complexity than the conventional
one. The simulation results demonstrated that the proposed method can achieve approximating
performance to the conventional methods with a greatly reduced complexity.
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