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Abstract: Discrete time dynamical chaotic systems obey a set of recurrence equations involving one
or more variables. Many chaotic maps have been proposed. None that simultaneously provides two
sine–cosine outputs has stationary mean and standard deviation, or is quite robust with respect to
the data format used in the hardware implementation. Here, we propose a chaotic oscillator based
on a complex phasor whose angular argument evolves according to a geometric progression that
is independent of the instantaneous amplitude. In order to maintain the oscillations, the phasor
magnitude is normalized at each iteration using an approximation factor. The statistical characteristics
of this oscillator are stationary in the short term, and do not depend on the initial conditions. The mean
and standard deviation of the two orthogonal sequences quickly approach 0 and 1/

√
2, respectively.

The resulting distribution is similar to that of a digital sine with a constant angular step. We also
present an FPGA architecture and its implementation results. This oscillator can be used in modulation
schemes, such as the chaotic shift keying one or for data and image encryption. Finally, we show an
original application that exploits the orthogonality of the two chaotic signals for the simultaneous
encryption of two digital images.

Keywords: chaotic oscillator; orthogonal chaotic sequences; FPGA; encryption; chaotic modulation

1. Introduction

Chaotic maps offer a mathematical approach that describes the dynamic behavior of systems
that are extremely sensitive to the initial conditions. Their study began in the 19th century with the
works of Cauchy, Poincaré, Van der Pol and Liapunov. In 1963, Lorenz made a practical use of it for
the forecasting of certain meteorological phenomena [1]. In continuous time, they can be represented
mathematically by a system of nonlinear differential equations of dimension ≥3. The dynamics of
Lorenz, Chen, Rössler and Lu are well-known examples [2]. Discrete time dynamical systems, such
as Bernoulli, Hénon and the logistic maps, obey a set of recurrence equations involving one or more
variables. More than 100 different chaotic maps have been proposed in the literature.

These systems generate aperiodic signals whose evolution, seen from the outside, lies on the
edges between random and deterministic worlds. Therefore, the chaotic oscillators are of major interest
for the generation of pseudo-random signals [3,4], or for the encryption of data [5–7], speech [8]
or images [9–12]. Various modulation schemes, like the chaos shift keying, use a chaotic carrier in
order to secure the transmission and to reinforce its confidentiality [13,14]. Chaotic sequences are
also used in compressive sensing to build a measurement matrix that satisfies the restricted isometry
property [15–17]. In the literature [18], the authors show that a chaotic generator can be used to create
a reliable and efficient wireless communication system. Finally, chaotic oscillators and, more generally,
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systems with nonlinear dynamics, are used to perform complex operations and design stochastic logic
systems [19].

Despite their abundance, there is no known chaotic system that simultaneously meets the following
criteria:

� jointly generates two orthogonal signals, i.e., the outputs are point by point in phase quadrature
and constitute a unit vector.

� presents statistical characteristics, such as stationary mean and standard deviation, that are also
independent of the initial conditions.

� is robust when one reduces the sample quantification format.

In an attempt to solve this problem, we looked for systems that implement circular functions that
are implicitly normalized. In 1979, Ikeda was one of the first researchers to propose a discrete-time
attractor using sine and cosine functions [20]. Then came the chaotic sine map (CSM) and chaotic cosine
map (CCM) [21,22]. In order to increase the chaotic complexity, recurrences of the type xk = G[F(xk−1)],
where G is a CCM and F a usual chaotic function, were studied more recently [23].

In all of these systems, the instantaneous phase is a function of the previous sample. Here, we
propose a chaotic oscillator based on a complex phasor whose angular argument evolves according to
a geometric progression that is independent of the instantaneous amplitude.

In the first part of this article, we review the most commonly cited discrete chaotic sequences and
highlight their drawbacks, with respect to the three previously mentioned criteria.

The synthesis process and the main properties of the proposed chaotic oscillator are presented in
the second part.

The third part analyzes the influence of the quantification on the performance of the oscillator.
Finally, a practical application for fast image cryptography is presented.

2. Usual Digital Chaotic Sequences

2.1. Recurrence Equations

In order to make digital oscillators, one solution is to discretize the differential equations.

Numerical differentiation according to the Euler transformation du(t)
dt →

uk−uk−1
h is often used. This

method requires a sufficiently fine step h, otherwise the sequence generated fades out or diverges
very quickly.

One- or multi-dimensional numerical sequences with a more or less pronounced chaotic character
according to the internal parameters have also been proposed in the literature. Table 1 provides a
synthesis of usual discrete chaotic sequences.

Table 1. Usual chaotic numerical time series.

Dim. Model Recursive Equations Chaos Conditions

1D Logistic xk = µxk−1(1− xk−1)
x0 ∈ ]0, 1[

3.57 ≤ µ < 4

1D Bernoulli
xk =

2
1−α (xk−1 + 1) − 1 −1 < xk−1 < α

xk =
2

1−α (xk−1 − 1) + 1 α < xk−1 < 1
−1 < α < 1

2D Hénon xk = yk−1 + 1− ax2
k−1

yk = bxk−1

a = 1.4
b = 0.3

3D
Lorenz discrete
(Euler approx.

dt = h)

xk = xk−1 − σh(xk−1 − yk−1)
yk = yk−1 + h(ρxk−1 − yk−1 − xk−1zk−1)

zk = zk−1 + h(xk−1zk−1 − βzk−1)

σ = 10 ρ = 28
β = 8/3 h < 0.025
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2.2. Influence of the Data Format

Chaotic sequences are very sensitive to the data quantification format. In fact, without special
precautions, certain sequences fade very quickly. The Bernoulli map (also named the doubling map in
the case of α = 0) vanishes to zero after about 30 or 60 iterates with single precision or double precision
floating point computations, respectively. This can be easily demonstrated, as the recurrence relation
can be viewed as a left shift operation with the loss of the most significant bit [24].

The Logistic map does not suffer from the vanishing problem with floating point numbers of both
single or double precision; but with fixed point representation, there are always cycles in the sequence.
The cycles have a duration ranging from a few iterates to a maximum of about 300 iterates for µ = 4, as
well as a 2.21 fixed point format.

The sequences obtained by discretized differential equations are also very sensitive to the precision
of computations, as well as to rounding rules, which may differ from one processor to another. For
example, we show in Figure 1 the evolution over 60,000 points of the signal xk of the Lorenz sequence
discretized according to the Euler approximation. The parameters used are σ = 10, ρ = 28, β = 8/3, h
= 0.001, x0 = 1, y0 = 1 and z0 = 0.3. The first computation is carried out by a MATLAB script with
the double precision floating point format, using the three recurrence equations provided in Table 1
(Figure 1, left). A second computation is carried out according to the same mathematical approach and
with the same computer, but this time we used a Simulink diagram in discrete mode.
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Figure 1. Lorenz sequence computed with MATLAB (left) and Simulink (right).

According to Figure 2, very strong differences appear from the 45,000th iterate. This dependency
creates a problem when such sequences are used, for example, for cryptographic applications.
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Figure 2. Block diagram and signals of a digital sine–cosine oscillator.

2.3. Statistical Variability

The statistical characteristics of chaotic sequences such as the mean (m) and standard deviation
(std) may depend on the intrinsic parameters and initial conditions. This is particularly true for
discretized differential equations. The variations of the latter being slow with respect to h, and the
estimates of m and std require a large number of samples. Table 2, for example, shows the high
variability of the mean of the discrete Lorenz sequence on 100,000 xk samples.
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Table 2. Mean (m) and standard deviation (std) of the discrete Lorenz sequence for various
initial conditions.

x0; y0; z0 0.1; 0.1; 0.1 0.5; 0.5; 0.5 1; 1; 1 2; 2; 2

m −2.19 −0.64 −1.00 −1.44

std 7.72 8.00 7,94 7.86

The Logistic and Hénon sequences have m and std values, independent of the initial conditions.
Their values are 0.64 and 0.06, respectively, for the logistic sequence, with µ = 3.8 and 0.26 and 0.72 for
the Hénon sequence. Nevertheless, the standard deviation of the logistic suite is strongly influenced
by the parameter µ.

3. Proposed Orthogonal Chaotic Sequence

3.1. Theoretical Background

We consider a digital oscillator that simultaneously generates at time k the outputs xk and yk,
given by the following:

xk = cos(k∆θ) and yk = sin(k∆θ) (1)

where ∆θ is the angular step and (x0 = 1 and y0 = 1) are the initial conditions. Equation (1) corresponds
to the complex phasor, as follows:

Wk = xk + jyk = e jθk = e jk∆θ (2)

The recurrence relation Wk = e j∆θWk−1 leads to the following:

xk = cos(∆θ)xk−1 − sin(∆θ)yk−1
yk = sin(∆θ)xk−1 + cos(∆θ)yk−1

(3)

This oscillator uses the principle of the angular integration depicted in Figure 2.
We consider a phasor whose argument θk follows a geometric progression with a common ratio

of two. It follows the recurrence relations of Equation (4), as follows.

Wk = W2
k−1
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xk = xk−1xk−1 − yk−1yk−1
yk = yk−1xk−1 − yk−1yk−1

(4)

This is equivalent to substituting functions yk−1 and yk−1 for coefficients cos(∆θ) and sin(∆θ),
respectively, in the previous diagram. If the initial phase θ0 is exactly equal to 0 or 2π/2N, the system
stabilizes itself in the states (xk = 1 and yk = 0) and (xk = 0 and yk = 1).

On the other hand, the oscillator is very sensitive to the initial phase conditions. For example,
Figure 3 shows the first 60 samples of xk and yk obtained for the two initial phases separated by a 0.001
rad (computations performed with MATLAB with double precision numbers).
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Figure 3. Oscillator outputs for very close initial conditions (θ0 = 0.999 in black and θ0 = 1.0 in red).
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3.2. Normalized Recurrence Equations

In practice, the phase errors due to the quantization accumulate and lead to the fade-out of signals.
In order to overcome this problem, it is necessary to ensure that the relation r2

k = x2
k + y2

k = 1 is satisfied
at each iteration. This can be achieved by using the normalized Equations (5).

xk =
x2

k−1 − y2
k−1

x2
k−1 − y2

k−1

and yk =
2xk−1yk−1

x2
k−1 + y2

k−1

(5)

Equations (5) allow for the use of initial conditions other than the pair (cosθ0 and sinθ0). The values
of x0 , 0 and y0 , 0, such as x0 , y0, can also ensure the start of the oscillator. The orthogonalization
and the normalization of the signals appear by the second iteration.

3.3. Approximation of Normalized Recurrence Equations

To eliminate the dividers in Equations (5), the following approximation is used:

x2
k−1 + y2

k−1 ≈ 1 + ε
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≈ 1− ε ≈ 2−
(
x2

k−1 + y2
k−1

)
(6)

Using this relation, we get the following:

r2
k =

[(
x2

k−1 − y2
k−1

)2
+ 4x2

k−1y2
k−1

][
2−

(
x2

k−1 + y2
k−1

)]2
=

[(
x2

k−1 + y2
k−1

)2
][

2−
(
x2

k−1 + y2
k−1

)]2
(7)

Thus,
rk = r2

k−1

(
2− r2

k−1

)
(8)

Finally,  xk =
(
x2

k−1 − y2
k−1

)(
2− (x2

k−1 + y2
k−1)

)
yk = 2xk−1yk−1

(
2− (x2

k−1 + y2
k−1)

) (9)

The asymptotic algorithmic complexity of our map is therefore O(n).
The magnitude of the generated points obeys Equation (8). Its evolution strongly depends on the

initial value r0. Only a convergence of rk towards 1 makes it possible to maintain a steady chaotic state.
The continuous function f (w) = w2

(
2−w2

)
corresponding to Equation (8) has three positive

roots, namely, 0, 1 and 1
ϕ =

√
5−1
2 = 0.618, where ϕ = 1.618 is the golden ratio.

The dynamic behavior of Equation (6) is analyzed by the mean of the function f (w). Values 0 and
1 are attractive points, and 1/ϕ is a repulsive point. The main convergence intervals are summarized
in Table 3.

In conclusion, the values x0 = cos(θ0) and y0 = sin(θ0), and more broadly, all the initial values
(x0, y0), whose magnitude corresponds to case number two in Table 3, make it possible to generate a
maintained chaotic oscillator.

3.4. Statistic Properties of the Chaotic Oscillator

As the proposed oscillator generates sine and cosine functions, its statistical characteristics are
stationary in the short term. The mean and standard deviation of the two sequences quickly approach
0 and 1/

√
2, respectively. The trajectories of the oscillator signals in different planes are presented in

Figure 4.
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Table 3. Convergence properties of the sequence of Equation (6).

Case Initial Magnitude Convergence Behavior Examples

1 r0 < 1/ϕ rk
k→∞
→ 0

Chaotic
Transient
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where dx = xk − xk−1 and dy = yk − yk−1 are the differentials of x and y, respectively.
The first two diagrams show butterfly-shaped trajectories. The circular envelope of the (x, y)

points is characteristic of quadrature signals.
The observed dynamics are similar to the Ikeda attractor in the (x, y) plane and to the Hénon

attractor in the (dx and x) plane.
The histogram on 1000 points of x and y shows a non-uniform distribution of output values

(Figure 5). This distribution is similar to that of a digital sine with a constant angular step. On the
other hand, the instantaneous angular phase θk is uniformly distributed between −π and π, as shown
in the histogram of Figure 6, made from a million values.
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3.5. Chaotic Behavior Analysis

The recognition and quantification of chaos in a digital signal has been the subject of different
approaches. Among them, the estimate of Lyapunov’s largest exponent λ of the progression is one of
the most reliable. This parameter measures the average exponential rate of divergence or convergence
between two trajectories of the sequence resulting from very close initial conditions. Three situations
can occur, namely:

� λ < 0 corresponds to an orbital trajectory attracted by a stable fixed point. This situation is
representative of strongly deterministic, harmonic or random sequences.

� λ very close to 0 represents a steady state close to a chaotic transition.
� λ > 0 characterizes an unstable and chaotic orbit. The larger λ, the more chaotic character

is observed.

In order to study the dynamics of financial markets, A Bensaida developed a neuron network-based
chaos test algorithm that mimics the chronological behavior of the sequence to be analyzed [25]. We
used this algorithm because it requires no prior knowledge of the signal to be analyzed, and can also be
used on noisy data. Table 4 compares the Lyapunov coefficients recorded on the Logistic progression,
Hénon sequence and the signals delivered by the proposed oscillator. The estimates are made on 1000
points, with the same configuration of the neural network.

Table 4. Comparative of the Lyapunov coefficients.

Logistic Hénon Proposed Chaotic Oscillator

µ = 3.8
x0 = 0.2

a =1.4; b = 0.3
x0 = 1; y0 = 0 θ0 = 0.01 x0 = 0.5

y0 = 0.8

λx = 1.29 λx = 0.89
λy = 1.21

λx = 2.14
λy = 0.30

λx = 1.63
λy = 0.68

This comparison confirms the chaotic character of the signals xk and yk, with a higher grade of xk.

4. Hardware Implementation

The oscillator was also implemented on a Xilinx FPGA target (Zynq UltraScale+ MPSoC ZCU106).
The implementation diagram is given in Figure 7.
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As the dynamics of xk and yk are limited to the interval [−1; 1], a quantization format with 23
bits, of which 21 are reserved for the fractional part, is sufficient to sustain the oscillations and to
provide a reasonably large enough period (more than 2820 iterations), compared to a single precision
floating point implementation (more than 1920 iterations). Table 5 summarizes the necessary hardware
resources, power consumption and the maximum sampling frequency fs obtained for three different
calculation accuracies, namely, double precision floating point (IEEE754 64-bit), single precision floating
point (IEEE754 32-bit) and the custom defined fixed-point format, with two bits for the integer part
and 21 bits for the fractional part.

Table 5. Implementation results summary on the FPGA Xilinx board.

Data Format LUT FF DSP Dyn. Power fs max

Float 64 2999 128 40 35 mW 33
MHz

Float 32 1453 64 17 20 mW 50
MHz

Fix 23_21 33 32 6 6 mW 100
MHz

In this case, one can see that an algorithm architecture matching the methodology provides
a resulting architecture that lowers the necessary hardware resources, consumes less power, has a
greater throughput and has a similar or even better accuracy than its direct “translation” from a
software model.

5. Application to the Fast Image Encryption

5.1. Image Encryption/Decryption With Bitwise XOR Operation

Many authors use chaotic systems to encrypt digital images. Basically, the encryption processes
of an image plane of N*M pixels remain similar, and take place in three successive stages, namely:

� Elaboration of a sequence of N*M numerical coefficients of the chosen chaotic system in which
the precise initial conditions have been introduced.

� Quantification of the coefficients in a format identical to that of the pixels of the original image
(eight bits in most cases). Given the variability of the statistical characteristics of the sequence
with the initial conditions, this operation can only be carried out after the computation of the
entire sequence.

� Application of a bitwise XOR operation between the pixel values and the quantized coefficients.

The decryption of the image is carried out according to the same approach.
The use of this coding strategy with the proposed chaotic system is also possible. In this case,

the quantification is easy because of the statistical stability of the sequence. Indeed, the range of our
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sequence is [−1; 1], therefore it becomes very easy to convert it into, for example, a sequence of eight-bit
words. The hardware resources needed are very low, as it only requires a fixed-point increment whose
output is truncated to the eight most significant bits. The scheme of this method with the proposed
chaotic oscillator is shown in Figure 8.
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where the ordered pairs ( kx , ky ) are generated by the orthogonal outputs of the proposed chaotic 
oscillator. 
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This principle is similar to that of a synchronous modulation/demodulation with a random 
frequency. 
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Figure 8. Image encryption/decryption with a bitwise XOR operation.

5.2. Simultaneous Images Mixing Encryption/Decryption

We propose a second process, which can be used if the confidentiality of the information is not the
main criterion.

Let U and V be two different grayscale images of the same size N*M.
Let k be the position of a pixel in the image, according to the conventional scanning from left to

right and from top to bottom.
The uk and vk pixels of each image can be considered as the Cartesian coordinates of a point

P(uk, vk), respectively.
Let us apply a rotation of an angle θk to each point P.
This operation leads to point P′

(
u′k, v′k

)
, such that:

u′k = ukcos(θk) + vksin(θk)

v′k = −uksin(θk) + vkcos(θk)
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u′k = ukxk + vkyk
v′k = −ukyk + vkxk

(10)

where the ordered pairs (xk, yk) are generated by the orthogonal outputs of the proposed
chaotic oscillator.

The values u′k and v′k provide two encrypted images, named U’ and V’, respectively.
Two uniform images represented by a single point P are located after this transformation in a

different point P’, distributed randomly on a circle of the same radius.
The transformation is reversible. It is performed by a reverse rotation, as follows:

uk = u′kxk − v′kyk
vk = u′kyk + v′kxk

(11)

This principle is similar to that of a synchronous modulation/demodulation with a
random frequency.

The algorithm for the encryption is as follows:

Step 1: Read the two original images with size N*M, then convert them into one dimensional arrays U
and V, and assign the initial conditions x0 and y0.

Step 2: For each pair (uk and vk), compute the following:

u′k = ukxk + vkyk
v′k = −ukyk + vkxk
xk+1 =

(
x2

k − y2
k

)(
2− (x2

k + y2
k)

)
yk+1 = 2xkyk

(
2− (x2

k + y2
k)

)



Electronics 2020, 9, 264 10 of 12

Step 3: Convert the two arrays U’ and V’ into two images with the size N*M.

The algorithm for the decryption is as follows:

Step 1: Read the two encrypted images with size N*M, then convert them into one-dimensional arrays
U’ and V’, and assign initial conditions x0 and y0.

Step 2: For each pair (u’k and v’k), compute the following:

uk = u′kxk − v′kyk
vk = u′kyk + v′kxk

xk+1 =
(
x2

k − y2
k

)(
2− (x2

k + y2
k)

)
yk+1 = 2xkyk

(
2− (x2

k − y2
k)

)
Step 3: Convert the two arrays of U and V into two images with the size N*M.

The asymptotic algorithm complexity of both the encryption and decryption is O(N*M).
We applied this encryption method using the digital architecture described in the previous

paragraph. Figures 9 and 10 illustrate the encryption and decryption, respectively, of the original
images (Lena and the Pirate, respectively).
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However, the separation of the two images cannot be achieved without knowledge of the
chaotic sequence.

A practical application of this process is merging pairs of pages from a book in order to provide a
quick overview to the reader, who, if interested, can request the decryption key from the publisher.

6. Conclusions

We propose a chaotic oscillator using a complex phasor with phase doubling at each sampling
time. The recursive structure performs the angular integration and simultaneously generates two
orthogonal signals representative of the pair (cosine and sine). The nonlinear evolution of the phase is
responsible for the chaotic behavior that we confirmed by the positive Lyapunov coefficients evaluated
on the generated signals.

Thanks to the trigonometric properties related to the double angle, no direct computation of the
cosine and sine functions is necessary.

The permanence of the oscillations is obtained using a normalization of the magnitude of the
ordered pairs (xk and yk) carried out at each iteration.

In order to simplify the implementation of the system, the normalization ratio is replaced by an
approximation factor. The recurrence equations thus take a purely polynomial form.

The analysis of the dynamics of the system shows that any initial pair (x0 and y0) whose magnitude
is between 0.618 and 1.272 ensures a chaotic behavior.

The hardware implementation of this oscillator is presented and the influence of the quantification
format on the chaotic complexity is studied. A fixed point 23-bit format, including 21 bits for the
fractional part, allows for the generation of deterministic chaos with a periodicity greater than 2800.

This oscillator can be used in modulation schemes, such as the chaotic shift keying one and for
data and image encryption. We finally show an original application that exploits the orthogonality of
the two chaotic signals for the simultaneous encryption of two digital images.
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implementation, H.R., validation, Y.B., E.T., P.P. and H.R.; writing—original draft preparation, Y.B., E.T. and P.P.;
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