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Abstract: The growing interest towards thinner and conformable electronic systems has attracted
significant attention towards flexible hybrid electronics (FHE). Thin chip-foil packages fabricated by
integrating ultra-thin monocrystalline silicon integrated circuits (ICs) on/in flexible foils have the
potential to deliver high performance electrical functionalities at very low power requirements while
being mechanically flexible. However, only very limited information is available regarding the fatigue
or dynamic bending reliability of such chip-foil packages. This paper reports a series of experiments
where the influence of the type of metal constituting the interconnects on the foil substrates on their
dynamic bending reliability has been analyzed. The test results show that chip-foil packages with
interconnects fabricated from a highly flexible metal like gold endure the repeated bending tests better
than chip-foil packages with stiffer interconnects fabricated from copper or aluminum. We conclude
that further analysis work in this field will lead to new technical concepts and designs for reliable foil
based electronics.

Keywords: system-in-foil; flexible interposer; chip embedding; embedding in flex; fatigue reliability;
flip-chip; ultra-thin silicon; chip-on-foil; thin metal film

1. Introduction

Recently developed process technologies for the integration of thin semiconductor components
like state-of-the-art micro-controller ICs (integrated circuits) and sensor devices on or in flexible
foil substrates have paved the way for extremely thin and even bendable electronic systems [1–3].
This so-called flexible hybrid electronics (FHE) enables a wide spectrum of new applications in consumer
electronics, like for instance advanced wearable health monitoring devices such as smart watches and
sensor plasters [4–9] and bendable as well as foldable mobile phones [10,11]. Besides, niche applications
such as electronic skin for robotics as well as prosthetics [12–15] and ultra-thin IC packages [16–18]
for miniaturized electronic packages could also benefit from FHE. Recent advances in FHE are very
promising [19–25] and therefore, FHE is expected to play a vital role in further developments of these
applications. Furthermore, low cost production of FHE components such as chip-foil packages for
these applications could be achieved by implementing roll-to-roll (R2R) manufacturing processes [26].
A majority of the aforementioned applications require devices that are anticipated to bend repeatedly
during the device usage, for, e.g., sensors and actuators placed in smart plasters and electronic skin.
However, FHE is a relatively younger field of research that is still in its nascent stages of development and
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hence, information available regarding the static [27–32] as well as dynamic bending reliability [33–36]
of FHE components is rather very limited. Several studies have shown that the failure of chip-foil
packages during repeated bending occur mainly because of the cracking of interconnects rather than
the delamination of the chip from foil or chip fracture [34–36]. Hence, it is crucial to investigate various
factors influencing the dynamic bending reliability of interconnects and to devise techniques to enhance
the dynamic bending reliability of chip-foil packages. It is well known that the flexibility of metals
increase with a decrease in their Young’s modulus and increase in Poisson’s ratio [37–40]. However,
quantification of the influence of flexibility of the interconnect metal on the dynamic bending reliability
would serve as a key information for fabricating reliable FHE systems. In line with this objective, we
investigated the effect of flexibility of interconnects on the dynamic bending reliability of chip-foil
packages by conducting repeated bending tests on chip-foil packages having interconnects fabricated
from three metals with varying flexibility namely (i) copper, (ii) aluminum and (iii) gold.

This paper is organized as follows. The ensuing Section 2 explains the sample fabrication process.
Then, the experimental setup used for the investigations is described in the subsequent Section 3.
Next, the following Section 4 discusses the obtained test results. Finally, concluding remarks and our
outlook for future works are included in Section 5.

2. Sample Fabrication Process

The chip-foil package samples required for investigating the dynamic bending reliability were
fabricated by following various process steps that can be grouped as follows: 1. Interconnect fabrication
on the foil substrate, 2. thinning of the silicon chips and 3. integration of the ultra-thin silicon chips on
the foil substrates.

2.1. Fabrication of Interconnects on the Foil Substrate

We implemented semiconductor microfabrication processes such as sputter deposition, lithography
and wet etching for patterning the interconnects on the foil substrate. Commercially available UPILEX®

50S polyimide (PI) with a thickness of 50 µm was used as the substrate foil for fabricating the
interconnects. UPILEX® 50S was selected as the substrate due to its lower high-temperature shrinkage,
higher maximum operating temperature, higher glass transition temperature (Tg), lower permeability
to gas and water vapor, lower moisture uptake and lower coefficient of thermal expansion (CTE) [41–43].
The process was performed on the wafer level and therefore the first step in the process was to attach
the PI foil on a 6′′ carrier wafer. Next, the respective metals were sputter deposited on the PI foil using
a Balzers LLS vertical sputter tool. The first step in the sputter deposition process was the activation
of the substrate surface with argon plasma etching. Copper and gold exhibit poor adhesion to the
polyimide foil. Therefore, a titanium tungsten (Ti10W90) adhesion layer having a thickness of 15 nm
was sputter deposited prior to depositing copper and gold without breaking vacuum after deposition
of the adhesion layer. After deposition of the metals, a positive photoresist (AZ®1514) was spin coated
and then lithographically patterned to define the interconnects. Exposure was performed at a Süss
mask aligner MA6 using soft contact. Then, wet etching of the metals was executed using commercially
available etchants: K–KI based etchant for Au, Na2S2O8 solution for Cu and PWS etchant for Al.
Etch rates were adjusted by using the appropriate concentration and temperature to achieve etch rates
in the range of 180–270 nm/min. The TiW layer was then etched separately using H2O2. Finally, the
resist was stripped using suitable solvent-based media to pattern the interconnects. The layer thickness
of the fabricated interconnects was about 300 nm.

2.2. Fabrication and Thinning of Silicon Chips

The ultra-thin silicon chips consisting of daisy chain test patterns were fabricated following the
well-known dicing-by-thinning process that follows a subtractive approach [44]. In the first step,
daisy chain tests patterns were fabricated on prime silicon wafers having a thickness of approximately
700 µm. Then, grooves were scribed on the front side of the sample wafer using a wafer saw along
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the predefined boundaries of the test chips. After sawing, the sample wafer was bonded to a rigid
carrier wafer using a solvable glue. Next, the bonded stack was transferred to a wafer grinder where
the sample wafer was thinned down by grinding from its rear side using rotating diamond wheels
that remove material physically. Wafer grinding normally consists of a coarse and a fine grinding
step depending on the size of the diamonds used to remove material. The rear side of the wafer is
typically rough even after fine grinding having total thickness variation (TTV) in the range of 1–2 µm.
After completion of the grinding step, chemical mechanical polishing involving fine removal of wafer
(<1 µm/min) with abrasive medium was performed to improve the surface quality of the rear side of
the wafer thereby enhancing the fracture strength of the wafer [45]. Finally, the thinned down test chips
were released from the carrier wafer by dissolving the glue with an organic solvent. The thickness
of the released chips was about 20 µm. Further information about the dicing-by-thinning process is
available in [44].

2.3. Integration of Ultra-Thin Silicon Chips on Foil Substrates

The fabricated ultra-thin silicon chips were then bonded on to the interconnects of the foil
substrates using flip-chip bonding with an anisotropic conductive adhesive (ACA). ACA is an epoxy
consisting of suspended metal particles that establishes electrical interconnection between the chip
pads and the corresponding foil interconnect upon application of pressure. The salient feature of ACA
is that it is conductive in the Z-axis while remaining non-conductive in the X and Y-axes upon curing.
We used Delo Monopox AC 245 that has nickel particles having a diameter of 5.3 µm to bond the
chips in this work [46]. The flip-chip bonding process was performed in a programmable die bonding
equipment, Panasonic FCB3 at a temperature of ~200 ◦C and a bonding force of 5 N. Figure 1 presents
a scanning electron microscopy image of a typical example of the cross-section of single contact pad
interconnection of a flip-chip bonded chip-foil package. The fabricated chip-foil packages with copper,
aluminum and gold interconnects are shown in Figure 2.
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Figure 2. Chip-foil package test samples with copper, aluminum and gold interconnects.

3. Experimental Setup and Procedure

3.1. Test Equipment

The dynamic bending tests on the fabricated chip-foil packages were performed in custom-built
test equipment (shown in Figure 3) that facilitates online measurement of the electrical characteristics of
the test samples. The equipment primarily consists of two parts: 1. a fixed platform and 2. a movable
arm. The samples were fixed to the test equipment with one end of the samples attached to the fixed
platform and the other end to the movable arm. The chip-foil package sample was attached to the
fixed platform through a zero-insertion force (ZIF) connector mounted on a Printed Circuit Board, PCB
(Figure 4). The PCB connects the test samples with a parameter analyzer (Keysight 4156C) via a ribbon
cable for measuring the electrical parameters of the samples. The resistance of daisy chain structures of
the chip-foil package samples was measured during the tests in this work and a change in the daisy
chain resistance was monitored to identify failure of the test samples. The movable arm was connected
to a stepper motor from Festo AG & Co. KG (Esslingen, Germany) that controlled the bending cycles
through a software interface. The number of bending cycles and the frequency of the bending cycles
can be defined via the software interface. A polytetrafluoroethylene (PTFE) mandrel was attached to
the fixed platform to define the bending radius and the samples were bent repeatedly back and forth
around the mandrel during the tests.
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Figure 4. A chip-foil package test sample connected to the PCB via the zero-insertion force (ZIF) connector.

3.2. Experimental Procedure

In this work, repeated bending tests under compressive stress were performed on the samples
at a bending radius of 5 mm. During the dynamic bending tests, the samples were placed on the
equipment in such a way that one end of the samples was attached to the fixed platform while their
other end was fixed to the movable arm. The tests were performed under laboratory conditions at a
temperature of 25 ◦C and a relative humidity of 38%. The back and forth movement of the movable
arm around the PTFE mandrel from 0 to 180◦ enabled by the stepper motor facilitated the repeated
bending of the test samples at a bending radius of 5 mm. Figure 5a,b shows the schematic of the
test procedure and a chip-foil package sample bent to 180◦ around the PTFE mandrel respectively.
Since the three investigated metals namely copper, gold and aluminum have different sheet resistance
values (Table 1), a relative increase in the daisy chain resistance of the chip-foil package samples was
compared up to 20,000 bending cycles (corresponds to 28 bending cycles per day for 2 years). The tests
were conducted at a relatively slow bending speed of 13.3 bending cycles per minute and the time
required for the completion of 20,000 bending cycles was about 25 h. A 100% relative increase in the
daisy chain resistance during the bending tests was defined as the failure criterion.
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Table 1. Material properties of the metals used for fabricating interconnects [47–49].

Metal Sheet Resistance (mΩ/sq) Young’s Modulus (GPa) Poisson’s Ratio

Copper 64–78 132 0.33
Aluminum 102–110 69 0.33

Gold 189–226 24.2–43.9 0.42
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4. Results and Discussion

Dynamic bending tests were performed on a total of 15 chip-foil package samples with five
samples per interconnect metal and it was found that none of the samples reached the predefined
failure criteria of 100% relative increase in daisy chain resistance. Figure 6 summarizes the results of
the tests where the mean values of relative change in daisy chain resistance were plotted after every
5000 bending cycles for the three sample types. It could be noticed that chip-foil packages with gold
interconnects showed the least increase in the resistance followed by aluminum and copper after
20,000 bending cycles. After 20,000 bending cycles, the mean relative increase in resistance for chip-foil
packages with copper, aluminum and gold interconnects was 87.6%, 47.38% and 25.12% respectively.
The least relative increase in resistance of chip-foil packages with gold interconnects could be directly
attributed to the superior flexibility of gold compared to copper and aluminum resulting from the
lower Young’s Modulus and higher Poisson’s ratio of gold.
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4.1. Optical Analysis

After the completion of 20,000 bending cycles, the chip-foil package test samples were inspected
with optical as well as scanning electron microscopy. The analyses revealed that the bonded ultra-thin
chips were devoid of any cracks or delamination and the increase in resistance during the tests resulted
from the formation of hillocks in the interconnects perpendicular to the direction of bending. Figure 7
shows the hillocks formed on the copper interconnects. Section analysis performed with atomic force
microscopy (AFM) revealed that the hillocks had a height of about 250 nm (Figure 8). Similar hillocks
were found also on aluminum and gold interconnects (Figures 9 and 10). Several studies indicate that
hillocks are created on thin metal layers deposited on foil substrates under repeated bending due to
uneven stress distribution arising from thermal and mechanical stresses [50–55]. Various mechanisms
such as surface roughening and localized differential stress relaxation occurring in the thin metal layer
when subjected to repeated mechanical stress have been reported to induce hillocks in thin metal
layers [51–55].
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Figure 7. SEM image showing the hillocks created on the copper interconnect after 20,000 bending cycles.

The height of hillocks was found to be almost the same (approximately 250 nm) for all three metals
(Figures 8 and 10). Therefore, the difference in the increase in daisy chain resistance could plausibly be
attributed to the number of hillocks formed in the interconnects since the number of hillocks found
on copper interconnects was comparatively higher than the number of hillocks on aluminum and
gold interconnects (Figures 7 and 9). Lee et al. have observed that the formation of dislocations and
vacancies in thin copper films during bending results in resistance increase [56]. Similar vacancies
and dislocations plausibly formed underneath the hillocks could act as electron scattering centers
thus increasing the daisy chain resistance. This hypothesis could conceivably be exemplified by
correlating the daisy chain resistance increase and the number of hillocks formed in the interconnects.
Copper interconnects with the relatively higher number of hillocks exhibited the highest increase
in daisy chain resistance whereas gold interconnects with the relatively lower number of hillocks
demonstrated the lowest increase in daisy chain resistance. Hence, it could arguably be concluded that
the number of hillocks formed on the interconnects is directly proportional to the increase in daisy chain
resistance. However, further in-depth investigations are necessary to support this hypothesis. Besides,
extensive analysis to determine the exact mechanism behind the formation of hillocks observed in this
work is required and this will be comprehensively analyzed in a separate study.
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4.2. Choice of Metal for Fabrication of Interconnects

The results of the dynamic bending tests showed that chip-foil packages with gold interconnects
are the most flexible followed by aluminum and copper implying that gold could be the favored metal
for fabricating interconnects for FHE. However, the higher sheet resistance together with the higher
cost of gold compared to copper and aluminum indicate that aluminum could be preferred over gold
owing to the decent electrical conductivity as well as good dynamic bending reliability of aluminum.

5. Conclusions

Dynamic bending tests conducted on chip-foil packages revealed a strong influence of flexibility
of the metals constituting the interconnects on their dynamic bending reliability. Under repeated
bending, the daisy chain resistance of the chip-foil packages increased as the bending cycles progressed.
Optical analysis indicated that the increase in daisy chain resistance could plausibly be attributed to
the formation and the number of hillocks formed in the interconnects. Test results showed that the
chip-foil packages with gold interconnects endured the 20,000 repeated bending cycles at least 3 times
better than the chip-foil packages with copper interconnects with a mean increase in resistance of
25.2% compared to 87.6% mean increase for copper interconnects and about 2 times better than the
chip-foil package with aluminum interconnects (47.38% mean increase in resistance). However, the
higher sheet resistance as well as higher cost of gold indicate that aluminum could instead be favored
for fabricating the interconnects due to the decent electrical conductivity and good dynamic bending
reliability apart from the relatively lower cost of aluminum.

In the next step, we intend to conduct an in-depth analysis to understand the exact mechanism
behind the formation of hillocks. In particular, the influence of the adhesion layer and the foil substrate
on the formation of hillocks will be investigated. Afterwards, measures to avoid the formation of
hillocks must be devised to improve the dynamic bending reliability of chip-foil packages. Besides, the
effect of repeated tensile stress on the dynamic bending reliability of chip-foil packages will also be
studied in detail. Furthermore, the reliability of chip-foil packages under torsional bending must be
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investigated. Finally, environmental tests to examine the corrosion resistance of the chip-foil packages
are pivotal for fabricating reliable FHE systems.
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