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Abstract: This paper presents a low-pass filter (LPF) for an ultra-high frequency (UHF) radio
frequency identification (RFID) reader transmitter in standard SMIC 0.18 µm CMOS technology.
The active-RC topology and Butterworth approximation function are employed mainly for high
linearity and high flatness respectively. Two cascaded fully-differential Tow-Thomas biquads are
chosen for low sensitivity to process errors and strong resistance to the imperfection of the involved
two-stage fully-differential operational amplifiers. Besides, the LPF is programmable in order to adapt
to the multiple data rate standards. Measurement results show that the LPF has the programmable
bandwidths of 605/870/1020/1330/1530/2150 kHz, the optimum input 1dB compression point of
−7.81 dBm, and the attenuation of 50 dB at 10 times cutoff frequency, with the overall power
consumption of 12.6 mW from a single supply voltage of 1.8 V. The silicon area of the LPF core is
0.17 mm2.
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1. Introduction

The ultra-high frequency (UHF) radio frequency identification (RFID) technology has been widely
applied in many fields because of its advantages such as wide readable range, large information storage
capacity, long recognition distance, and strong space penetration [1–3]. Within a direct-conversion
UHF RFID reader transceiver, the analog low-pass filter (LPF) is one of the critical blocks for analog
baseband signals. As for the transmitter, in order to suppress out-of-band emissions [4] and then
meet the requirement of the UHF RFID spectrum mask, the LPF is required to remove the undesired
high-frequency signals from the digital to analog converter (DAC).

The closed-loop Active-RC continuous-time LPF is chosen over its open-loop Gm-C counterpart,
because of its high linearity and large dynamic range [5–8]. Therefore, it is widely used for small
signal processing, such as suppressing interference, noise, unwanted frequency signal attenuation and
highlighting useful frequencies, to improve signal-to-noise ratio [9] and frequency selection [10]. Rather
than the Chebyshev, Elliptic, and Bessel approximation functions, the Butterworth approximation
function is employed for the LPF, due to its flat amplitude [11] and excellent group delay characteristics
in the passband and the acceptable out-of-band attenuation [12].

Although active LPFs can be designed and fabricated in any semiconductor processes, e.g., GaAs,
InP, and SiGe, the CMOS processes are more preferred because of its advantages such as low power,
high integration, and high compatibility. It is well known that CMOS processes evolve rapidly.
The advanced process enables the LPFs to work at higher frequencies, but at the same time, it also leads
to low linearity, low accuracy and other defects [6,7]. Besides, the LPFs are usually ones of transceivers
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or system-on-chips (SoCs), so the process choices for the LPFs are determined by the whole system
instead of the individual LPFs.

A programmable fourth-order active-RC Butterworth LPF for UHF RFID reader transmitter is
presented in SMIC 0.18 µm CMOS technology. This paper is organized as follows. The circuit design
is discussed in Section 2, and the measurement results are given in Section 3. Finally, the work is
concluded in Section 4.

2. Circuit Design

The active-RC Butterworth LPF is presented for a UHF RFID reader transmitter, which has many
advantages such as high linearity, dynamic range, flat gain, and excellent group delay.

The active-RC LPF consists mainly of operational amplifiers (OPAs), resistors and capacitors, and
its cutoff frequency is determined by the resistors and the capacitors. Therefore, it is easy to tune and
exhibits high linearity [13].

Because the Butterworth approximation function is the maximum flat one with excellent group
delay and acceptable out-of-band attenuation, it is chosen for the LPF. The amplitude frequency
function of the Butterworth LPF is as follows [14]:

H(jω) = H(0)/

√
1 + ε2

(
ω
ωc

)2n
, n = 1, 2, 3 . . . , (1)

whereωc is the boundary angular frequency of the LPF, n is the filter orders, and ε is a constant less
than 1. It is deduced easily from Equation (1) that the attenuation increases at a rate of 20 ndB/dec as
the order n of the LPF in the stop band.

In order to meet the system requirements, the attenuation of at least 50 dB at the frequency
of 10 times ωc is desired, which requires that the order n of the LPF is at least 3. The higher the
filter order n is, the larger the attenuation is, but the chip area and power consumption will also
increase. Considering all aspects of performance requirements, the fourth-order Butterworth Active-RC
fully-differential LPF is employed.

As shown in Figure 1, the presented LPF is composed of two cascaded fully-differential
Tow-Thomas biquads [15]. The Tow-Thomas biquad consists mainly of a lossless active integrator and
a lossy active integrator. The integrator comprises an OPA with passive capacitors and/or resistors.
Compared with the Sallen-Key biquad, the Tow-Thomas biquad is less sensitive to the process errors of
the resistors and capacitors and has stronger resistance to the imperfection of the OPA at the expense
of larger chip area and higher power consumption [16].
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Figure 1. Schematic diagram of the presented LPF based on the Tow-Thomas biquads. 

The transfer function of the Tow-Thomas biquad is given below: 
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The transfer function of the Tow-Thomas biquad is given below:

T(s) = −
1

R1R4C1C2

s2 + s
R2C1

+ 1
R3R4C1C2

. (2)

It can be derived from Equation (2) that the gain A, the cutoff frequency f0 and the quality factor
Q are as follows:

A =
R3

R1
; f0 =

ω0

2π
=

1
2π
√

R3R4C1C2
; Q =

R2
√

R3R4

√
C1

C2
. (3)

Make R1, R3 and R4 equal to R, and C1 and C2 equal to C, then Equations (3) can be simplified as:

A = 1; f0 =
1

2πRC
; Q =

R2

R
. (4)

It can be seen from Equation (4) that the cutoff frequency and the quality factor can be independently
adjusted by changing the resistors and/or the capacitors without affecting each other [17]. Finally, by
proper tuning and optimization, the desired Butterworth approximation of the LPF can be achieved.

The two-stage fully-differential OPA, shown in Figure 2, is the critical block of the presented LPF.
Miller compensation capacitors C0/C1 with nulling resistors R0/R1 are introduced to achieve a sufficient
phase margin. Besides, the sizes of C0/C1 should also consider the tradeoff between power consumption
and noise [18]. The sufficient gain-bandwidth product (GBW) of the OPA is required to suppress the
gain peaking around the cutoff frequencies, and then the amplitude-frequency characteristic of the
involved LPF will approach perfection [19]. The NMOS differential pair in the first stage is used instead
of the PMOS differential pair, which helps improve the GBW of the OPA. Moreover, a common-mode
feedback circuit is employed to ensure that the common-mode voltage of the output differential signals
is at the desired level.
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Figure 2. Schematic diagram of the two-stage operational amplifier. 

The frequency responses of the OPA under three representative process conditions (TT, SS, and 
FF) is simulated and given in Figure 3. It can be easily observed that the OPA has sufficient GBW 
and phase margin. 

Figure 2. Schematic diagram of the two-stage operational amplifier.

The frequency responses of the OPA under three representative process conditions (TT, SS, and
FF) is simulated and given in Figure 3. It can be easily observed that the OPA has sufficient GBW and
phase margin.
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frequencies of the LPF. It should be noted that the above-mentioned simulations are based on the 
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The amplitude-frequency responses of the LPF with different orders n (2, 4, and 6) is simulated
and shown in Figure 4. It verifies that the attenuation increases with orders n and the attenuation of
the fourth-order LPF is sufficient.
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In order to optimally adapt to the multiple data rate standards, the LPF should be programmable.
The digitally controlled resistor array shown in Figure 5 is used to adjust the cutoff frequencies of the
LPF. It should be noted that the above-mentioned simulations are based on the Spectre simulator.
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corresponding output waveforms with distinct different amplitudes of 102 mVpp @1MHz and 28 
mVpp @5MHz are given in Figure 7. Therefore, it can be easily concluded that the passband and 
stopband of the LPF can function normally. 

Figure 5. Schematic diagram of the digital controlled resistor array.

3. Measurement Results

The low-pass filter is designed and fabricated in standard 0.18 µm CMOS technology from the
SMIC foundry, with a die area of 0.17 mm2. Due to the widely used differential circuits and architectures
in the presented LPF, the layout symmetry should be guaranteed as much as possible. Although due
to the lower operating frequencies, the effects from the stray capacitance are not serious, the layout is
also optimized in order to reduce the stray capacitance and resistance. The chip is measured with an
encapsulated chip-on-board from a voltage supply of 1.8 V. The photographs of the bonded chip and
the testing board for the LPF are given in Figure 6, respectively.
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In order to explore the performance of the LPF, the time-domain and frequency-domain
measurement configurations are established respectively. The time-domain measurement platform is
mainly made up of the RIGOL DP1308A power supply, the Anritsu MG3710A signal generator, and the
Agilent DSO1024A oscilloscope. The frequency-domain measurement platform is basically composed
of the DP1308A programmable DC power supply and the Agilent E5071C network analyzer.

Two single-tone signals with peak-to-peak amplitudes of 100 mV and frequencies of 1 MHz and
5 MHz are applied to the LPF with the cutoff frequency of 1.68 MHz, respectively. The two corresponding
output waveforms with distinct different amplitudes of 102 mVpp @1MHz and 28 mVpp @5MHz are
given in Figure 7. Therefore, it can be easily concluded that the passband and stopband of the LPF can
function normally.
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Figure 7. Measured time-domain responses with two single-tone input signals with amplitudes of
100 mVpp and frequencies of (a) 1 MHz and (b) 5 MHz respectively.

The measured amplitude-frequency responses with different bandwidths for the LPF are shown
in Figure 8. It can be observed that the LPF exhibits smoother passbands with sharp attenuation,
programmable cutoff frequencies of 605 kHz, 870 kHz, 1.02 MHz, 1.33 MHz, 1.53 MHz, and 2.15 MHz
respectively, and over 50 dB attenuation at the frequencies which are ten times the cutoff frequencies.
The comparison between the measured and simulated results of the filter with the lowest bandwidth
setting is shown in Figure 9. It can be easily observed that the measured passband gain is slightly
reduced, and the measured bandwidth is increased by about 120 kHz compared with its simulated
counterpart. The reason for the deviation is the inaccuracy of the used device models.
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In order to evaluate comprehensively a LPF, the figure of merit (FOM) is defined as follows [20]:

FOM = 10 log
(

fc ×ATT
Pdiss ×Adie

)
, (5)

where fc, ATT, Pdiss and Adie represent the cutoff frequency, the attenuation at 10fc, the power
consumption and die area, respectively.
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The performance summary of the presented LPF and comparison with other prior arts are given
in Table 1. It can be seen that the presented fourth-order filter achieves a smaller chip area and lower
power consumption, and then the most excellent FOM among these filters of the same process and
supply voltage. By contrast, it operates under lower frequencies due to the requirements from the
targeted applications.

Table 1. Performance summary and comparison with other prior arts.

Ref. [21] [22] [23] [20] This Work

Tech./nm 180 180 180 180 180
Supply(V) 1.8 1.8 1.8 1.8 1.8
Filter order 6 5 5 5 4
Power(mW) 15 11.7 18 44.2 12.6

fc(MHz) 1.5—12 0.52—3 10.2 8.72 0.605—2.15
Area(mm2) 0.83 0.85 0.41 0.90 0.17
Atte@10 fc 60 56 35 40 70

Input-referred
noise(nV/

√
Hz) / / / 56—146 9—206

FOM(dB) 17.6 12.2 16.8 9.45 18.5

4. Conclusions

A programmable fourth-order Butterworth active-RC low-pass filter is presented in standard
0.18µm CMOS technology. Two fully-differential Tow-Thomas biquads with two-stage fully-differential
OPAs are employed for the LPF. Simulated results show the LPF achieves the desired performance.
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