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Abstract: With the recent development of small radars with high resolution, various human–computer
interaction (HCI) applications using them have been developed. In particular, a method of applying
a user’s hand gesture recognition using a short-range radar to an electronic device is being actively
studied. In general, the time delay and Doppler shift characteristics that occur when a transmitted
signal that is reflected off an object returns are classified through deep learning to recognize the
motion. However, the main obstacle in the commercialization of radar-based hand gesture recognition
is that even for the same type of hand gesture, recognition accuracy is degraded due to a slight
difference in movement for each individual user. To solve this problem, in this paper, the domain
adaptation is applied to hand gesture recognition to minimize the differences among users’ gesture
information in the learning and the use stage. To verify the effectiveness of domain adaptation,
a domain discriminator that cheats the classifier was applied to a deep learning network with a
convolutional neural network (CNN) structure. Seven different hand gesture data were collected for
10 participants and used for learning, and the hand gestures of 10 users that were not included in the
training data were input to confirm the recognition accuracy of an average of 98.8%.

Keywords: 60 GHz FMCW radar; deep learning; domain adaptation; hand gesture recognition;
human activity recognition (HAR)

1. Introduction

In recent years, with the remarkable development of smart devices, human activity recognition
(HAR) technology is being actively applied in various fields such as entertainment, healthcare, security,
public safety, industry, and autonomous vehicles [1]. Accordingly, user actions and gestures recognition
systems using signals from wireless communication technologies such as Wi-Fi, ultra-wide band (UWB),
and Bluetooth, as well as vision cameras, are being studied in various ways. Among them, the hand
gesture recognition system has been in the spotlight as an input device in HCI. It is being applied to
computer games, virtual reality (VR) contents, and non-contact appliance controllers. The traditional
hand gesture system using a vision camera [2–4] shows high recognition accuracy, but there is the
drawback of showing a sharp decline in accuracy in a low-light environment or when an obstacle
obstructs the camera. Another traditional method, a motion recognition system in which a wearable
device is attached to the body [5], makes the user feel uncomfortable.

In order to overcome the disadvantages of vision cameras and wearable devices, activity and
gesture recognition systems using wireless communication signals such as Wi-Fi, Bluetooth, UWB,
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and ZigBee have been attempted in various ways in recent years [6–13]. These wireless signals can
capture motions or gestures even when there are obstacles around the device due to characteristics
such as diffraction and penetration. However, a motion recognition system based on a wireless signal
is greatly affected by the surrounding environment such as signal attenuation and multipath fading
problems [14]. Furthermore, it does not have sufficient distance resolution to distinguish motion or
gesture due to a relatively narrow bandwidth. To solve this problem, a Wi-Fi device-based radar is
proposed to secure the resolution to distinguish hand movement in [15]. However, the maximum
bandwidth by the Wi-Fi standard and additional antenna requirements are still disadvantages.

Recently, problems with various conventional systems have been solved through deep learning.
Deep learning is one of the subsets of artificial intelligence and it extracts vast amounts of information
about the problem. Then, it plays a big role in finding a solution by grasping a very complex correlation
between the extracted information. Performance improvement through the application of deep learning
has successfully been applied to systems in various fields such as medical devices, indoor positioning,
and VR [16–19]. The DeepHandsVR [16] proposed hand interface to deep learning was applied. A deep
learning model based on CNN was designed. It learned the input of the VR controller and inferred
the gesture image quickly and accurately. In [17], a CNN-based deep learning model was also used,
and an imaged range of UWB signals was trained. Through this, improved localization accuracy was
shown. The PERI platform [18] analyzed users’ purchase intention, interest, and impact on purchase in
various ways using a deep learning model in an E-commerce platform. In [19], a scheme for arrhythmia
prediction through deep learning analysis of an electrocardiogram (ECG) heartbeat was proposed.
It used two types of auto-encoders in the training phase, and a fine-tuned deep neural network (DNN)
was used as a classifier. In this way, deep learning is applied to various applications to solve problems
that humans cannot easily analyze.

In addition, deep learning is being applied in various ways to small frequency modulated
continuous wave (FMCW) radar modules that are being actively developed in recent years. Accordingly,
motion and gesture recognition systems based on the high resolution of distance and velocity are being
studied using a very wide bandwidth of the FMCW radar [20–25]. Due to the characteristics of the radar
signal, it is free from the low-light problem of the vision camera, and the inconvenience experienced by
the user, which is a problem of wearable devices, can be solved. In addition, unlike a system based on
a wireless communication signal, very high bandwidth is used, and then, it has sufficient distance
and velocity resolution for distinguishing motion. Therefore, a small FMCW radar is suitable for
recognizing motions and gestures. In [20], user motion was classified by a deep learning model based
on a random forest algorithm using Doppler images of a 60 GHz radar. In [21], a radar operating at
5.8 GHz and a Doppler spectrogram were used. This system classified hand gestures through a deep
learning network composed of several CNN layers. It is similar to the previous system, but higher
gesture recognition accuracy was shown in [22] by using a 24 GHz radar. Latern [23] proposed a deep
learning model that combines 3D-CNN layers and Long Short Term Memory (LSTM) networks for
continuous hand gesture recognition. In [24] and [25], the temporal features of gestures based on
24 GHz radar signals were extracted. Using these as input data of the LSTM-based deep learning
model, the gesture recognition result was inferred. Additionally, a smartphone, called Google Pixel
4, with a built-in Soli radar module has been released, enabling device control, called MotionSense,
through hand gestures at close range.

For the above reasons, this paper proposed a hand gesture recognition system using an FMCW
radar, called Hatvan, operating in the 60 GHz band. Existing studies using an FMCW radar in the
24 GHz band [22–24] have relatively long object detection distances, but it is difficult to recognize precise
motion. In contrast, the 60 GHz FMCW radar used in this paper has sophisticated detection capability
for very small hand gesture changes by utilizing a higher bandwidth. In addition, the proposed gesture
recognition system used deep learning, a general framework for motion recognition method these
days. The Range–Doppler Matrix (RDM), a feature from the hand gesture movements, is learned
through a deep neural network with a CNN structure. When a hand gesture is provided as an input,
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RDM is extracted and the recognition result is inferred. However, such a general deep learning-based
gesture recognition system has a common problem. Even though the same types of hand gesture
are taken, the difference in movements that occur depending on the user affects the inference result.
In other words, due to the difference between the gesture information used in the learning stage and
the gesture information input from the user in actual use, the accuracy of classifying results by the
deep neural network is degraded.

To solve this problem, this paper introduced a domain adaptation algorithm to the hand gesture
recognition system. Domain adaptation adapts information of an existing domain when data are input
from a new domain (target domain) different from the existing domain (source domain) in which the
model was successfully operated [26–34]. In detail, deep domain confusion (DDC) [26] and Deep
CORAL [27] defined metrics representing distance between different two domains. Based on the
distance metric, DDC minimized the discrepancy on the feature space between the two domains by
using an additional fully connected adaptation layer. Similarly, Deep CORAL minimized the Frobenius
norm between the covariance matrices of the two domains. The most common method in domain
adaptation is to apply adversarial training. It uses a domain classifier that can distinguish between
two different domains. The gradient derived by the domain classifiers is transferred in reverse to the
feature extractor. As a result, the feature extractor is unable to distinguish between the two domains.
Accordingly, the entire deep learning network can well infer the results for any data. In [28–32],
they differ only in the method of deriving the loss of the domain classifier, but follow the general
method of adversarial training. Furthermore, studies to improve domain adaptation performance were
also conducted. Decision-boundary Iterative Refinement Training with a Teacher (DIRT-T) [33] used
entropy minimization to prevent the decision boundary of the classifier from violating the clustering
assumption. In [34], domain adaptation performance is improved by applying a self-supervision that
adds an auxiliary task of creating its own labels directly from the data. Representative methods for
domain adaptation will be covered in detail in Section 2.2.

In the hand gesture recognition system, the source domain corresponds to the gesture data
collected in the learning step, and the target domain corresponds to the gesture data from users
whose data are not used as training data to be classified through the learning model. Even though
each person makes the same gesture, there is a difference in movement such as swipe angle and
distance, rotation radius, and push intensity, so the distribution of data collected for each user varies,
and then, the extracted characteristics change accordingly. Therefore, the difference in fine motion
causes a difference in the feature space applied to the deep neural network model, and consequently,
the inference performance is degraded. Moreover, since it is impossible to learn all the differences
in motions that are different for each person, unsupervised domain adaptation is used to accurately
classify unlearned user gesture data.

The remainder of this paper is organized as follows. Section 2 introduces preliminaries related to
60 GHz FMCW radar signal processing and domain adaptation to facilitate understanding. In Section 3,
the hand gesture recognition system with improvement of classification accuracy through domain
adaptation is proposed. The gesture recognition experiment setup including 60 GHz FMCW radar and
data used in experiment are introduced in Section 4. In Section 5, we analyze the experiments and
evaluate the results. Finally, we conclude this paper in Section 6.

2. Preliminaries to Radar-Based Gesture Recognition and Domain Adaptation

2.1. 60 GHz FMCW Radar

2.1.1. Radar System Overview

The FMCW radar used for hand gesture recognition was a Hatvan module manufactured by
Infineon, which is similar to the Google Soli [35,36] module. The radar functions are mostly similar,
but Soli has four receiving antennas, whereas Hatvan has three receiving antennas with a transmitting
antenna. This radar module is operated in the 60 GHz unlicensed band and has a resolution in
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centimeters through the use of millimeter waves (mmWave), making it suitable for hand gesture
recognition. Since it is operating in the V-band and can transmit a chirp signal of up to 6 GHz
(57.5–63.5 GHz) bandwidth, it can secure a range resolution of 2.5 cm and a Doppler resolution of
about 122 cm/s can be obtained according to Equations (1) and (2), respectively.

∆r =
c

2B
= 2.5 cm, (1)

∆v =
c

2 fc
·

1
lT
� 122 cm/s, (2)

where c is the speed of light, approximately 3 × 108 m/s, and fc is set to 60 GHz, which is the center
frequency between 57.5 and 63.5 GHz. Accordingly, B is calculated as 6 GHz, which is the bandwidth
of a chirp signal. T is the sweep timing of the FMCW radar, l is the number of repeatedly transmitted
chirp signals in a shape group, and then these are set to 128 µs and 16, respectively.

The FMCW radar sends a periodic chirp signal through a transmitting antenna, and receives a
signal reflected from an object through multiple receiving antennas. The transmitted chirp signal is
frequency modulated by a periodic sawtooth wave function and a time delay τ and Doppler shift fd
occur with the signal received by reflection, as shown in Figure 1.
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Figure 1. Frequency modulated continuous wave (FMCW) waveform in the frequency domain for a
shape group.

In Figure 1, the blue solid line and the red dotted line represent the transmitted signal and reflected
signal, respectively. Sixty-four samples are acquired from a chirp signal, and 16 chirps from one shape
group. The four shape groups are repeatedly transmitted in one frame to obtain information reflected
from the object.

The time delay τ is caused by the distance between the radar and the object reflecting the signal,
and the Doppler shift fd is caused by the movement of the object moving away or closer to the radar [37].
Using these characteristics, the radar system can recognize which gesture the user took by analyzing
the time delay τ and Doppler shift fd changes that occur in accordance with the hand movement.

2.1.2. Radar Signal Processing for Gesture Recognition

In general, when using a wireless transceiver device, if raw signals are used as they are, it is very
difficult to extract the desired feature due to the surrounding environment or white noise. Particularly,
in the case of hand gesture recognition using an FMCW radar, the wave forms for different behaviors
based on raw signals expressed on the time–amplitude plane are not clearly distinguished. To solve
this problem, general radar-based motion recognition applications perform 2D fast Fourier transform
(FFT) to extract a distance–speed map of an object. Especially, if a zero-padding-based 2D FFT is
applied, more precise distance and Doppler shift accuracy can be obtained because more frequency
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bins are generated after transformation [38]. Accordingly, the resolution of the range and Doppler bins
after applying a 2D FFT may be defined as follows:

∆r f =
c

2B
·

fs
N/T

= 0.31 cm, (3)

∆v f =
c

2 fc
·

1
LT

= 7.63 cm/s, (4)

where fs is set to 500 kHz as the sampling frequency and the size of 2D FFT (N × L) is set to 512 × 256
so that the radar system has an appropriate resolution value to recognize the hand gesture.

By applying 2D FFT to the reflected signal from the FMCW radar mentioned in the previous
subsection, a range–Doppler can be obtained [39], as shown in the following equation.

S(p, q, t) =
L∑

l=0

 n∑
i=0

s(n, l, t)e− j2πpn/N

e−2πql/L, (5)

RD(r, v, t) =

∣∣∣∣∣∣S
(

r
∆r f

,
v

∆v f
, t
)∣∣∣∣∣∣ , (6)

where s(n, l, t) is the beat signal [40], which is first transformed, corresponding to the transmitted
chirp signal and this signal is transformed to the frequency domain to obtain Doppler–FFT expressed
in S(p, q, t) [41]. In other words, S(p, q, t) is an output matrix at frame t in the frequency domain after
2D FFT and every axis represents the range and Doppler between the radar and an object.

The Range–Doppler Matrix (RDM) can be obtained from S(p, q, t) and expressed as Equation (6).
As a result, RDM that includes the range and radial velocity, which is derived from Doppler, of a target
object and undesired clutter or background noise can be expressed as follows:

RDM =


S̃(1, 1) S̃(1, 2)
S̃(1, 2) S̃(2, 2)

. . . S̃(NC, 1)

. . . S̃(NC, 2)
...

S̃(1, NS)

...
S̃(2, NS)

. . .
...

. . . S̃(NC, NS)

, (7)

where NC is the number of Doppler–FFT points and NS is the number of range–FFT points. Based on
Equation (5), qth Doppler–FFT output Š(q, k) using the index of range bins in the range domain k is
defined as follows:

S̃(q, k) =
NC∑
l=1

S(l, k)e−2π(l−1)(q−1)/NC , (8)

As mentioned above, the RDM expressed in Equation (7) includes information on signals reflected
by other uninterested objects as well as hand gesture. Generally, a hand gesture recognition environment
using radar assumes an environment in which the radar and the hand are at a relatively close distance.
This means that the RDM change according to the hand movement is the largest, and the RDM change
due to the uninterested object is very small. As a result, if a background subtraction method can
be applied to a stationary object, only clutter caused by hand movement can be extracted. For this
reason, an adaptive background model based on the most widely known Gaussian mixture model
was used [42]. After comparing the background model with the current frame of RDM, only clutter
caused by hand movement was extracted by performing background subtraction, which removes
clutter caused by static objects or the environment.

In addition to RDM extraction of the movement of interest through background subtraction,
an important consideration is to detect and classify only when there is actually a gesture. If this is not
taken into account, it tries to classify the RDM by a fine clutter close to it from the radar, which acts as a
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major cause of degrading the overall performance of the hand gesture recognition system. A constant
false alarm rate (CFAR) algorithm is commonly used in target detection and radar signal processing to
solve this problem [43–45]. In this paper, the CFAR algorithm used in [46] is applied to simplify signal
processing and reduce signal processing overload. This CFAR algorithm calculates the moving average
using an exponentially weighted moving average (EWMA) and determines that there is an actual hand
gesture only when the raw signal received by the radar module exceeds a certain threshold.

xt =
∑

i

‖RDi(r, v, t− 1)‖ , (9)

Mt = (1− α)Mt−1 + αxt, (10)

In Equation (9), xt is the sum of all pixel values on the RDM created by three channels through
receiving antennas and RDi is the matrix of RDM for ith channel based on Equation (6). Using xt with
constant smoothing factor α, moving average is derived. The mathematical expression of the condition
exceeding a certain threshold by comparing the moving average derived from Equation (10) and the
raw signal is as follows:

|xt −Mt| > θ·
(
Mt + Mo f f set

)
, (11)

where θ is a detection threshold, and Mo f f set is an offset parameter, and the radar system’s gesture
detection sensitivity is adjusted according to the settings of the two coefficients. As a result, only the
RDM extracted from the raw signal of the condition satisfying Equation (11) is used for gesture
classification and the raw signal corresponding to other conditions is ignored.

To summarize the overall operation of the radar module, it is shown in Figure 2. When a user moves
their hand at a close distance from the radar, the chirp signal from the transmitting antenna is reflected
by the hand. Then, the reflected raw signal is collected by the receiving antennas. Two-dimensional
FFT is applied to extract features of distance and radial velocity. Unnecessary information from
non-interested objects other than the hand is removed by background subtraction. The CFAR algorithm
finds the actual hand gesture, and RDMs to classify the type of gesture are extracted. Figure 3 shows
examples of the RDM snapshot related to each gesture class.
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Figure 3. RDM visualization example according to actual hand gestures in a 10–15 cm range. Horizontal axis
means target radial velocity, vertical axis means range, and color represents decibels relative to full
scale (dBFS): (a) Swipe; (b) Grab; (c) Push; (d) Clockwise; (e) Double-push.
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2.2. Domain Adaptation

Domain adaptation is used to effectively infer in the target domain where the label is insufficient or
does not exist [29]. When the distributions of training data (source domain) and test data (target domain)
are different, domain adaptation enables efficient inference by adjusting the discrepancy of the
new test data domain (target knowledge) to be similar to the training data domain distribution
(source knowledge). In other words, domain adaptation is a method of improving the inference
performance with relatively small labeled or unlabeled data collected in the target domain data by
using a source domain that has a rich label and is related to the target domain.

To express unsupervised domain adaption mathematically, every classifier η is defined as a
function that maps from input space X to label space Y as follows:

η: X→ Y, (12)

The source domain DS ⊂ X×Y is defined as a set of samples xS
i ∈ X sampled from the random

variable XS and labels yS
i ∈ Y as follows:

DS =
{(

xS
i , yS

i

)}N

i=1
, (13)

Similarly, the target domain DT ⊂ X × Y is defined as a set of unlabeled target samples from
random variable XT; then, the input of the target domain is expressed as

DX
T =

{
xT

i

}M

i=1
, (14)

Based on the above definition, as shown in Equation (15), the domain adaptation task is to find
a proper classifier η that can minimize the risk function RDT (η) for the target domain. This is made
possible by lowering the risk by training so that the target domain and the source domain cannot be
distinguished as much as possible. In other words, this method makes it possible to create a classifier
that works properly in test data sampled from the target domain.

RDT (η) = Pr(x,y)∼DT
(η(x) , y), (15)

As a result, for efficient classification using domain adaptation, it is necessary to create and train a
model that has high classification performance in the source domain and cannot distinguish between
the source domain and the target domain.

In this way, methods of improving the data classification performance of the target domain by
applying domain adaptation in various fields have been studied. One way of domain adaptation
is training the models to minimize Euclidean distances or other metrics indicating the quantitative
difference between the source and target domain samples in feature space. Deep CORAL [27] is one
of such methods minimizing CORAL loss, a differentiable loss based on the second-order statistics.
Its integration is performed by adding a few adaptation layers at the end of the networks as shown
in Figure 4. The framework consists of two networks, one for the source domain and the other for
the target domain, and the networks are jointly optimized by the CORAL loss along with the typical
classification loss in an end-to-end manner.

Domain adaptation can be achieved by an adversarial training approach. Representatively,
the domain-adversarial neural network (DANN) [28] suggests domain adaptation by introducing a
domain discriminator and gradient reversal layer to the existing neural network structure including
a feature extractor and classifier as shown in Figure 5. The domain discriminator is a domain
classifier cheated by a gradient reversal layer that makes the source domain and the target domain
indistinguishable. The gradient of confusion alignment loss is propagated backwards through the
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gradient reversal layer and the feature map obtains negative feedback for the domain distinguishable
feature output, so that the source domain and the target domain cannot be distinguished.

Electronics 2020, 9, x FOR PEER REVIEW 7 of 23 

 

η: X → Y, (12) 

The source domain 𝐷𝑆 ⊂ X × Y is defined as a set of samples 𝑥𝑖
𝑆 ∈ X sampled from the random 

variable XS and labels 𝑦𝑖
𝑆 ∈ Y as follows: 

𝐷𝑆 = {(𝑥𝑖
𝑆, 𝑦𝑖

𝑆)}𝑖=1
𝑁 , (13) 

Similarly, the target domain 𝐷𝑇 ⊂ X × Y is defined as a set of unlabeled target samples from 

random variable XT; then, the input of the target domain is expressed as 

𝐷𝑇
𝑋 = {𝑥𝑖

𝑇}𝑖=1
𝑀 , (14) 

Based on the above definition, as shown in Equation (15), the domain adaptation task is to find 

a proper classifier η that can minimize the risk function 𝑅𝐷𝑇(𝜂) for the target domain. This is made 

possible by lowering the risk by training so that the target domain and the source domain cannot be 

distinguished as much as possible. In other words, this method makes it possible to create a classifier 

that works properly in test data sampled from the target domain. 

𝑅𝐷𝑇(𝜂) = 𝑃𝑟(𝑥,𝑦)~𝐷𝑇(𝜂(𝑥) ≠ 𝑦), (15) 

As a result, for efficient classification using domain adaptation, it is necessary to create and train 

a model that has high classification performance in the source domain and cannot distinguish 

between the source domain and the target domain. 

In this way, methods of improving the data classification performance of the target domain by 

applying domain adaptation in various fields have been studied. One way of domain adaptation is 

training the models to minimize Euclidean distances or other metrics indicating the quantitative 

difference between the source and target domain samples in feature space. Deep CORAL [27] is one 

of such methods minimizing CORAL loss, a differentiable loss based on the second-order statistics. 

Its integration is performed by adding a few adaptation layers at the end of the networks as shown 

in Figure 4. The framework consists of two networks, one for the source domain and the other for the 

target domain, and the networks are jointly optimized by the CORAL loss along with the typical 

classification loss in an end-to-end manner. 

 

Figure 4. The architecture of the Deep CORAL domain adaptation. 

Domain adaptation can be achieved by an adversarial training approach. Representatively, the 

domain-adversarial neural network (DANN) [28] suggests domain adaptation by introducing a 

domain discriminator and gradient reversal layer to the existing neural network structure including 

a feature extractor and classifier as shown in Figure 5. The domain discriminator is a domain classifier 

cheated by a gradient reversal layer that makes the source domain and the target domain 

indistinguishable. The gradient of confusion alignment loss is propagated backwards through the 

Figure 4. The architecture of the Deep CORAL domain adaptation.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 23 

 

gradient reversal layer and the feature map obtains negative feedback for the domain distinguishable 

feature output, so that the source domain and the target domain cannot be distinguished. 

 

Figure 5. The architecture of domain-adversarial neural network (DANN) domain adaptation. 

Decision-boundary Iterative Refinement Training with a Teacher (DIRT-T) [33] is introduced 

along with virtual adversarial domain adaptation (VADA) to resolve two critical issues and 

drastically improves target performance. DANN may fail to work if (1) the feature extractor has too 

high capacity or (2) the domain shift is too large to work well on both domains. Training with source 

domain data, VADA adopts the cluster assumption to prevent decision boundaries crossing a dense 

data region via entropy minimization and integrates with Lipschitz constraints for reliable prediction 

results. DIRT-T, as shown in Figure 6, iteratively refines the VADA-initialized decision boundary, 

updating one step from the previous step as a teacher, towards achieving the minimum value of 

conditional entropy. 

 

Figure 6. The architecture of Decision-boundary Iterative Refinement Training with a Teacher (DIRT-

T) domain adaptation. 

Recently, self-supervision provides a new direction for domain adaptation [34]. It proves that 

the self-supervision method with auxiliary tasks helps the target adaptation performance. It argues 

that well-designed auxiliary self-supervision tasks can help to capture the structural information of 

Figure 5. The architecture of domain-adversarial neural network (DANN) domain adaptation.

Decision-boundary Iterative Refinement Training with a Teacher (DIRT-T) [33] is introduced
along with virtual adversarial domain adaptation (VADA) to resolve two critical issues and drastically
improves target performance. DANN may fail to work if (1) the feature extractor has too high capacity
or (2) the domain shift is too large to work well on both domains. Training with source domain data,
VADA adopts the cluster assumption to prevent decision boundaries crossing a dense data region via
entropy minimization and integrates with Lipschitz constraints for reliable prediction results. DIRT-T,
as shown in Figure 6, iteratively refines the VADA-initialized decision boundary, updating one step
from the previous step as a teacher, towards achieving the minimum value of conditional entropy.

Recently, self-supervision provides a new direction for domain adaptation [34]. It proves that the
self-supervision method with auxiliary tasks helps the target adaptation performance. It argues that
well-designed auxiliary self-supervision tasks can help to capture the structural information of the
images. It manually constructs datasets for auxiliary tasks, such as rotation prediction, flip prediction,
and patch location prediction, from the given source and target image dataset. In Figure 7, the proposed
architecture has a feature extractor and it is shared by multiple heads, which are the supervised main
task classifier and self-supervised auxiliary task classifiers. The multi-task training is applied for
training them all at once.
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3. Hand Gesture Recognition System

3.1. System Overview

This paper proposes a network structure, as shown in Figure 8, to improve the accuracy of hand
gesture recognition based on 60 GHz FMCW radar. A set of the Range–Doppler matrix derived by
signal processing in the preliminaries section (Section 2.1.2) is input to the machine learning network.
Then, spatial–temporal features related to distance and radial velocity are extracted by a 3D-CNN-based
feature extractor. The extracted feature is input to a hand gesture recognizer to infer the gesture result
or input to a domain discriminator to learn the data on the target domain in an adversarial way.
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3.2. Input Dataset

In the FMCW radar-based hand gesture recognition system, gestures can be classified using
various types of input. In the case of Google Soli [32], range profiles and Doppler profiles are generated
from the Range–Doppler derived in Equation (6), and a motion profile is created by concatenating
them and is inputted to the CNN as follows:

RPi
t(r, t) =

∑
v

RDi(r, v, t), (16)

DPi
t(v, t) =

∑
r

RDi(r, v, t), (17)

MPt =
(
RP1

t , RP2
t , RP3

t , DP1
t , DP2

t , DP3
t

)
, (18)

where i = 1, 2, 3, which indicates the ith receiver antenna. RDi(r, v, t) is the Range–Doppler for ith
receiver at frame t. This solves the problem of requiring a lot of computation costs when using RDM
sequences directly and thus, making real-time gesture recognition applications. However, when a
motion profile with a relatively low computational load is used as an input, there is a disadvantage
that the gesture recognition accuracy is slightly degraded due to the increase in the number of types of
hand gesture or the ambiguous direction in operations such as rotation and drawing of a figure.

On the other hand, if the Doppler spectrogram as a micro-Doppler signature [21] is used as an
input for machine learning, the classification accuracy is very low unless the hand gesture is captured
at the exact point in time. That is, when the gesture recognition system captures the spectrogram from
the middle part of the gesture and the motion information is fragmented, it is difficult for the model to
properly infer the recognition result.

In order to compensate for the problems of the two types of inputs mentioned above, in this paper,
RDMs derived from raw signals received from each receiving antenna are concatenated to generate
one integrated RDM. By using the CFAR algorithm, the integrated RDMs during the time in which the
gesture occurs are input into the learning model, as shown in Equation (19).

RDMINT =
(
RDM1

t , RDM2
t , RDM3

t

)
, (19)

The process of generating the input dataset explained above can be described as shown in Figure 9.
During the frame time when the user makes a gesture close to the FMCW radar, three receiving
antennas derive RDM frames from raw signals. The RDMs from each frame are concatenated into one
integrated RDM, and an input dataset is formed by collecting the integrated RDMs for the time taken
by the gesture. The generated input data are fed to a CNN-based feature extractor.
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3.3. Feature Extractor

The network architecture for feature extraction is shown in Figure 10 in the hand gesture
recognition system. If the spatial movement as well as the distance and velocity of the hand movement
are considered, the accuracy of gesture recognition can be improved, and for this, a spatial–temporal
feature analysis of a gesture is required. Accordingly, the feature extractor in this paper is based on
a 3D-CNN structure for short spatial–temporal modeling. However, the commonly used 3D-CNN
structure is not suitable for applications requiring real-time performance such as motion recognition due
to the disadvantages of many parameters and excessive computation load. In general, 3D convolution
is the main cause of the most demanding computational load and parameter increase in the 3D-CNN
structure. Therefore, in this paper, a convolution block with an improved 3D convolution mechanism
is proposed and used as shown in Figure 11.
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In order to improve the 3D convolution operation speed and reduce the number of parameters,
the Inception structure used by GoogLeNet [47], which won the 2014 ImageNet classification
competition, was applied to a convolution filter to decompose it. The Inception structure is characterized
by the parallel use of various filters and convolution to reduce the number of channels, as shown in
Figure 12a. If the Inception structure is applied to the 3D convolution filter commonly used in 3D-CNN,
it can be decomposed, as shown in Figure 12b. Based on this, by extending the Inception structure
to 3D and introducing it to the 3D convolution filter structure, it can be made into a basic block of
3D-CNN, as shown in Figure 11, thereby increasing the feature extraction efficiency by reducing the
amount of computation required for the feature extractor network.
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The 3D-CNN-based feature extractor network (Figure 10) using basic blocks with improved
computation speed is used to learn the spatial and temporal features of consecutive short frames.
Even if the structure of the existing 3D convolution filter is modified, the effect of applying the
convolution kernel cube is the same because the output for the input of the basic block is the same.
Therefore, according to the general 3D convolution operation [48], the value at the (x, y, z) position in
each feature cube can be formulated as follows:

Y(x, y, z) = X(x, y, z) ⊗H(x, y, z)

Y(x, y, z) =
K1−1∑
i=0

K2−1∑
j=0

K3−1∑
k=0

X(x + i, y + j, z + k)H(i, j, k), (20)

where X(x, y, z) and Y(x, y, z) stand for the adjacent previous frame at the (x, y, z) position and each
feature cube, respectively. H(x, y, z) indicates a convolution kernel cube, and the basic block replaces
this general 3D kernel. K1, K2, and K3 denote the length, width, and height of the convolution kernel
cube, respectively. Like the general network structure of 2D-CNN, pooling is applied to 3D-CNN,
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and through this process, the same number of feature cubes with reduced spatial and temporal
resolution are created. In addition, batch normalization [49] is applied between the convolution layer
and the pooling layer as in [24] to accelerate the learning network, and an activation function follows
with the batch normalization layer. The feature extractor employs Rectified Linear Units (ReLU) to
introduce non-linearity. The feature obtained from the proposed 3D-CNN-based feature extractor is
expressed as the following with the input data x and parameters of feature extractor θd:

G f (x) = 3DCNN(x;θd), (21)

3.4. Gesture Recognizer

In the gesture recognizer, it trains a gesture classifier using the source domain features with
associated labels. The gesture recognizer is connected to the feature extractor and consists of three
fully connected layers and a dropout layer. Generally, the parameter increases excessively in the
fully connected layer, causing an overfitting problem, which significantly reduces the generalization
performance. Therefore, dropout [50] is applied to reduce generalization error. Since the last fully
connected layer performs the hand gesture recognition function and corresponds to the learning of the
source domain, the loss can be expressed in the form of cross-entropy as follows:

lossg = −
1
ns

∑
xsi∈DS

N∑
n=1

lsinlogGg
(
G f

(
xsi

))
, (22)

where ns, N, and lsin stand for the amount of data in the source domain, the number of gesture classes,
and binary variable which indicates whether sith data belong to the nth class. xsi is source domain data
with the corresponding label and DS indicates source domain. Gg denotes the gesture recognizer and
G f denotes the feature extractor.

3.5. Domain Discriminator

The purpose of the domain discriminator is elimination of the discrepancy between the
source domain and target domain, thus a domainindependent feature is obtained for classification.
As explained in the preliminaries section (Section 2.2), in this paper, a domain discriminator learns
in an adversarial manner such as DANN [24] among various methods of domain adaptation.
Through adversarial learning, high recognition accuracy can be achieved even for unlabeled
target domain data by using features that are independent of the domain to cheat the classifier.
That is, feature FT, obtained by inputting target domain data into the feature extractor, is extracted,
and distinguished through feature FS for the source domain data. The output of the domain
discriminator is the probability that the input target domain data belongs to the source domain.
If the loss, which is based on output result, is back-propagated and trained in an adversarial manner,
the distinction between the source domain and target domain becomes ambiguous; the data from the
target domain can be properly classified.

Similar to the gesture recognizer, the domain discriminator consists of two fully connected layers
and the last fully connected layer performs the domain classification function. In addition, the loss of
the domain discriminator can be expressed in the form of cross-entropy as follows:

lossd = −
1

ns + nt

∑
xsi∈DS∪ DT

M∑
m=1

dimlogGd
(
G f

(
xsi

))
, (23)

where ns and nt stand for the amount of data in the source domain and target domain, respectively.
M is the number of domains and dim is a binary variable that indicates whether ith data belong to
the mth domain. DT, Gg, and G f denote target domain, the gesture recognizer, and feature extractor,
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accordingly. By combining Equations (22) and (23), overall loss of the network can be obtained as
follows:

loss = lossg − αlossd, (24)

where α is the trade-off coefficient and the final goal of the proposed hand gesture recognition system
is to minimize overall loss by minimize the lossg for maximum gesture recognition accuracy and
maximize the lossd to obtain domain-independent features.

4. Experiments

4.1. Experimental Setup

For the verification of the proposed hand gesture recognition system, we use a Hatvan radar
module manufactured by Infineon, which has a transmitting (Tx.) antenna and 3 receiving (Rx.)
antennas, as shown in Figure 13a. It operates in 60 GHz unlicensed band and covers from 57 to 64 GHz.
It has 3 ADC channels with 12 bits resolution and up to 3.3 MSps sampling rate to sample the RX-IF
channels. Its baseband chain consists of a high pass filter, low noise voltage gain amplifier (VGA),
and antialiasing filters. This FMCW radar is connected to a laptop via USB and delivers raw signal
information received from 3 Rx, as shown in Figure 13d,e. The laptop connected to the radar was a
Dell G3 model with NVIDIA GTX 1650 4 GB, which has a 896 CUDA core.
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Figure 13. Hardware for the hand gesture recognition system. (a) 60 GHz FMCW radar module;
(b) radar module with case (front); (c) radar module with case (back); (d) radar–laptop connection
without case; (e) radar-laptop connection with case.

Source and target domain data collection and experiments for gesture recognition were performed
in various environments, as shown in Figure 14. Source domain data were collected only at the office,
at which time the radar case was not installed. Each participant made 7 gestures at a height of about
10 cm from the radar. The source domain data are transformed into RDM through the signal processing
in Section 2.1.2, and trained through deep learning algorithms in Section 3. Target domain data were
collected in a lecture room, corridors, etc., including an office, and a case was mounted on the radar in
order to make sure there were changes in data between domains. Likewise, participants not included in
the source domain data collection made gestures at a height of about 10 cm from the radar. The target
domain data are also transformed into RDM through signal processing, and the gesture result is
inferred by being input to the deep learning network including the domain discriminator. Details of
the collected data are described in Section 4.3, and the classification results accordingly are shown in
Sections 5.1 and 5.2.

An experiment to confirm the real-time performance of the proposed system was conducted
in an exhibition hall. In the above data collection process, all participants sat down to conduct the
experiment, whereas in the real-time experiment, all participants stood and made a gesture. The results
for the real-time experiment are detailed in Section 5.3.

The software used in the experiment and the interaction between the software are described
in Section 4.2. Additionally, a demo video about the experiment setting for the data collection and
real-time experiment can referred to in [51].
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4.2. Implementation

In order to extract the reflected raw signal received by the antennas of the FMCW radar,
C language-based software was used. This software includes Infineon-manufactured headers required
for radar operation, and allows the laptop connected to the FMCW radar to extract the signal data stored
in the radar’s small buffer through the serial port. Through the FMCW radar setting, one chirp signal
has a bandwidth of 6 GHz (from 57.5 to 63.5 GHz). One shape group contains 16 chirp signals, and the
software extracts data in units of 4 shape groups. That is, 4 shape group data that are simultaneously
received from three receiving antennas are extracted and a total of 192 reflected chirp signals are stored
in the laptop.

C++ language-based software was used to process chirp signals stored in a laptop connected to
the FMCW radar. This signal processing software includes the 2D FFT, CFAR, background subtraction,
and RDM generation processes described in Section 2.1.2. NVIDIA’s cuFFT library was used to
accelerate computation through GPU processing of 2D FFT, and OpenCV’s MOG2 algorithm was used
for background subtraction. In addition, by implementing the processes from Equations (5) to (10),
only the RDM judging that the gesture has occurred is stored.

The proposed AI model, as shown in Figure 8, for training and testing RDM input for gestures
was implemented based on Python and PyTorch libraries. This Python-based AI model is connected to
signal processing software through socket communication. For the 3D-CNN-based feature extractor
described in Section 3.3, the basic block employing the Inception structure shown in Figure 12 was
implemented using the Conv3D class of PyTorch. In addition, each class in torch.nn was used for batch
normalization, dropout, and activation functions. The basic building blocks of torch.nn were used to
implement the fully connected layer and cross-entropy loss function used in the gesture recognizer
and domain discriminator described in Sections 3.4 and 3.5, respectively.

Parameters for the 3D-CNN-based learning network proposed in Section 3 were heuristically
set that show optimal performance for the source domain through a number of experiments.
In consideration of the gesture recognition performance and the time required to derive the classification
result, the 2D FFT size was set to 512 × 256. The batch size, epochs, learning rate, dropout rate,
and momentum for optimizing the network parameters were set to 10, 500, 10−5, 0.5, and 0.9,
respectively. Finally, adaptive moment estimation (Adam) was used as the optimizer.

To evaluate the possibility of real-time utilization of the proposed system, an over the top (OTT)
service prototype that can be interworked with the above three software was implemented. This OTT
web application was implemented with the React web framework; the web page is manipulated
by gesture recognition results using Selenium, an automated web testing framework in Python.
Each gesture class is mapped to an interface for left/right, enter, play, and stop. Finally, users can
choose videos and play with the real-time hand gesture interface.

4.3. Dataset

To evaluate the performance of the proposed hand gesture recognition system, the datasets of 7
types of hand gestures were collected: (1) swipe left (SL), (2) swipe right (SR), (3) clockwise rotation
(CR), (4) counter-clockwise rotation (CCR), (5) grab (G), (6) push (P), and (7) double push (DP) as
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shown in Figure 15. Signal samples were collected through two recording sessions, 30 times per gesture,
from 10 participants in order to establish a source domain dataset. Ten participants of various ages
consisted of 3 females and 7 males, and had different physical conditions (height, weight, posture using
system, and distance to the radar, etc.) as well as gesture characteristics. The only constraint during
sample collection was to make the gesture within a distance of about 10~15 cm from the radar so that
the hand gesture could be recognized. Through this process, 4200 samples to construct the source
domain dataset were collected.
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In addition, to construct the target domain dataset, the above sampling process was the same,
but samples were collected from 10 new participants who did not participate in the source domain
data collection process. In order to sample various types of data, unlike the source domain dataset
that collected data without a case mounted, the case was not mounted in the first session of the target
domain data collection process, and the case was mounted in the remaining sessions. The collected
raw signal is attenuated or vanished when the reflected signal is very weak due to the case blocking
the FMCW radar antennas. This new group of target domains consisted of 2 females and 8 males with
different physical conditions at different ages. Through this process, 4200 samples were also collected
to construct a target domain dataset.

4.4. Compared Gesture Recognition Algorithm

We compared the proposed system with existing radar-based gesture recognition systems using
other machine learning algorithms to verify the classification accuracy performance. First, a motion
profile-based recurrent neural network (RNN) encoder was used to measure the gesture recognition
accuracy. The structure of the RNN encoder is simple, but it is suitable for learning the derived 2D
motion profile. The key insight of using the RNN encoder is to utilize the temporal locality of the
motion profile within a short period when a gesture is taken. For this, the motion profiles when the
gesture is input are extracted using Equations (15) to (17). The extracted motion profiles are input to
an RNN encoder with one hidden layer and 128 nodes. Since motion profiles for the K periods in
which the gesture occurs are extracted by the CFAR algorithm, the entire ENN structure has K stages.
The result of the input gesture is inferred through the softmax layer after the RNN in the last step.
In the training stage of the RNN encoder, the batch size, epochs, learning rate, epochs, dropout rate,
and momentum were set to 10, 500, 10−5, 0.5, and 0.9, respectively. This is the same as the values of the
hyperparameters used in the proposed system, and Adam was also used as the optimizer.

In addition to the RNN encoder-based machine learning algorithm, a gesture recognition system
based on 2D-CNN [17] was also compared. This system used a Doppler spectrogram expressed
in the time–frequency format as input data. This is compared to the proposed system using RDM,
which is expressed in terms of radial velocity and distance. Through this, the effect of the type of input
data on the classification result can be analyzed. In addition, it is possible to grasp the accuracy of
inference according to the difference between 2D-CNN and 3D-CNN structures. This 2D-CNN-based
system used down-sized Doppler spectrograms and extracted features using a 5 × 5 convolution filter.
Similar to the proposed system, the overall CNN structure includes three convolution layers. However,
it is mentioned that 5–20 convolution filters were used for each layer. For performance comparison,
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the number of convolution filters per layer was adjusted to approach the 93.1% accuracy derived by
the authors of the paper. Each convolution layer is combined with an activation function and a pooling
layer. ReLU is used as the activation function, and the results are finally classified through one fully
connected layer. Like the RNN encoder, the hyperparameters of the 2D-CNN are set the same as those
of the proposed system. However, the optimizer used stochastic gradient descent (SGD), as mentioned
in the 2D-CNN-based system.

5. Performance Evaluation

5.1. Offline Test with Source Domain Dataset

The accuracy of hand gesture recognition of the proposed system is measured through five-fold
cross-validation using the source domain dataset to confirm that the feature extractor and gesture
recognizer operate properly. For this, the source domain dataset was divided into five groups, and four
sets were used as training data and one set as testing data. Table 1 shows the gesture recognition
accuracy of three different systems derived through 10 learning processes for each fold. The proposed
system, taking into account the spatial–temporal features according to gestures, showed the highest
recognition accuracy at about 99%. Both RNN and 2D-CNN-based gesture recognition accuracy
showed more than 90% stable performance. Through this, it can be confirmed that each machine
learning algorithm is properly implemented and classifies data in the source domain accurately.

Table 1. Accuracy (%) comparison per fold and the average of the proposed hand gesture recognition
system with other machine learning-based systems using the source domain dataset.

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Avg. (std.)

RNN 91.72 90.19 89.98 90.52 88.97 90.27 (±0.89)
2D-CNN 92.54 94.41 93.53 91.83 95.61 93.58 (±1.34)
3D-CNN 98.79 99.14 99.07 99.38 98.91 99.06 (±0.20)

Figure 16 illustrates the accuracy of gesture recognition for each participant. All recognition
systems show an average accuracy of over 90%, but the proposed system shows high accuracy and
low deviation. Figure 17 shows the gesture recognition confusion matrix for each machine learning
algorithm, which means that RNN and 2D-CNN cannot properly classify directional motions such
as swipe and rotation, or motions in which spatial information changes over time such as push and
double push. On the other hand, the proposed system generally shows high classification performance
for all hand gestures.
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5.2. Offline Test with Target Domain Dataset

Similar to the offline test using the source domain dataset, five-fold cross-validation using the
target domain dataset was performed. This evaluation is to confirm whether the proposed system
can properly classify target domain data with different features by a new participant. In the target
domain dataset, the features collected are changed due to the new participant’s gesture, the presence of
a radar case, and the data sampling location. Unlike the previous test process, the performance of the
proposed system without the domain discriminator was also measured to verify the effect of domain
adaptation. Table 2 represents the classification accuracy of the four gesture recognition systems.

Table 2. Accuracy (%) comparison per fold and the average of the proposed hand gesture recognition
system with other machine learning-based systems using the target domain dataset.

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Avg. (std.)

RNN 81.61 77.63 78.16 76.82 80.85 79.01 (±1.87)
2D-CNN 72.12 73.59 75.40 71.48 71.65 72.85 (±1.47)
3D-CNN 98.66 98.75 99.10 98.55 99.04 98.82 (±0.21)
(w/o DA) 84.47 82.18 83.67 81.80 83.58 83.14 (±0.99)
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The proposed system to which domain adaptation is applied showed a very high recognition
accuracy of 98.82% for the target domain dataset. RNN and 2D-CNN-based machine learning algorithms
have significantly reduced the classification accuracy for the target domain dataset. Three-dimensional
CNN to which domain adaptation is not applied could prevent sharp performance degradation due to
proper classification of spatial–temporal features according to hand gestures. In the proposed system,
the domain discriminator works properly in an adversarial manner, and it can be seen that gestures are
accurately recognized by extracting domain-independent features for target domain data.

Figure 18 illustrates the accuracy of gesture recognition for each participant in the target domain
group. The sharp degradation of 2D-CNN is noticeable, and the biggest factor for this is that similar
Doppler spectrograms are extracted from different motions depending on the participant. On the other
hand, RNN and 3D-CNN without the domain discriminator showed an accuracy of about 80% because
the distinction was relatively clear. In addition, the proposed system showed the highest recognition
accuracy because it can extract features only related to gestures, that is, it cannot distinguish from
which domain the features extracted from the classifier are generated.
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The confusion matrices of four machine learning algorithms are shown in Figure 19. In the case of
using the target domain dataset, the feature map is changed not only by the gesture but also by the
surrounding environment or user. Then, the result of misclassification is represented regardless of the
gesture type. Despite these difficulties, the proposed system showed very little misclassification only
between similar operations (e.g., CW–CCW, SL–SR, and P–DP), and overall high classification accuracy.

5.3. Online Test

We implemented an application that can control an OTT streaming service using the proposed
hand gesture recognition system and tested it in a real environment, as shown in Figure 20. For this,
the hyperparameters were adjusted and the domain discriminator was optimized so that the response
speed to recognize gestures was within 0.5 s so as not to degrade the user experience. The OTT control
service based on the proposed system was exhibited at the demonstration to confirm the performance
of gesture recognition in various environments, for example, a crowded situation, a case of several
people existing near the radar, etc. In the demo process, 50 different users participated, and each user
entered 17–22 gestures into the OTT application. Through this, a total of 992 input data were obtained.
At this time, gestures taken by each user were separately recorded as ground truth in order to compare
the results inferred by the proposed system. As a result, 901 gestures inferred by the proposed system
matched the gestures actually taken by the user. Considering that some parameters are lighter to
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guarantee real-time performance and target domain data are used, it can be seen that the inference
success rate of 90.8% is quite high performance.
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6. Conclusions

This paper proposed a 60 GHz FMCW radar-based hand gesture recognition system and a
method to improve recognition accuracy. Instead of the motion profile data adopted by Google Soli,
the range–Doppler matrix was used as an input to extract more precise spatial–temporal features
for hand gestures. However, this type of input requires a large amount of computation and is
not efficient for the gesture recognition system. The proposed system introduced a 3D-CNN with
an Inception structure to process the sequence of the range–Doppler matrix. Thus, it accelerated
the feature extraction process. Through the improved 3D-CNN-based machine learning network,
precise spatial–temporal features of various hand gestures could be extracted.
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In addition, motion recognition systems have a common problem, which is that recognition
accuracy is degraded due to differences in features between training data and actual test data. In other
words, the difference between the user and the surrounding environment in the training data collection
stage and the actual use stage occurs. It causes different feature extraction for the same gesture.
Therefore, the classifier cannot properly infer the target gesture. To solve this problem, in this paper,
a domain adaptation algorithm is applied to minimize the discrepancy between the source domain
and the target domain. The domain discriminator was implemented to learn the loss of domain
classification in an adversarial manner so that the two domains were not distinguished as much
as possible. Finally, domain-independent features were extracted from the input signal so that the
learning network using source domain data could operate properly. Then, improved recognition
accuracy could be achieved.

Gesture samples were collected from two groups with 20 users (one in the source domain and
the other in the target domain) to verify the classification accuracy of the proposed hand gesture
system. As a result, the classification accuracy of the proposed system was 98.8% on average for
the target domain dataset, while the accuracies of other machine learning algorithms were lowered.
In the real-time online test using an optimized network to improve the response speed of the proposed
system, the hand gestures of 50 users were successfully recognized with an accuracy of about 90%.

The biggest advantage of the proposed system is that it can maximize the generalization
performance with only a small number of training data. Furthermore, it is also an advantage
to be able to extract elaborate spatiotemporal features within a relatively fast time compared to the
existing 3D-CNN. Features extracted through the proposed convolution process are more effective
in inference than the motion profile or Doppler spectrogram. These advantages were demonstrated
through comparative experiments and service application.

In future work, we intend to design a lightweight learning network while ensuring decent
classification accuracy. After that, the unsupervised-based domain adaptation most suitable for this
learning model is designed and applied. Accordingly, it will ensure maximum real-time classification
accuracy without adjustment of hyperparameters. Furthermore, the domain adaptation module will
function sufficiently to further reduce the gap between the source domain and the target domain.
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