
electronics

Article

Genetic Algorithm-Based Tuning of Backstepping
Controller for a Quadrotor-Type Unmanned
Aerial Vehicle

Omar Rodríguez-Abreo *, Juan Manuel Garcia-Guendulain, Rodrigo Hernández-Alvarado,
Alejandro Flores Rangel and Carlos Fuentes-Silva

Industrial Technology Division, Polythecnic University of Queretaro, El Marques, Querétaro 76240, Mexico;
manuel.garcia@upq.edu.mx (J.M.G.-G.); rodrigo.hernandez@upq.edu.mx (R.H.-A.);
alejandro.flores@upq.edu.mx (A.F.R.); carlos.fuentes@upq.edu.mx (C.F.-S.)
* Correspondence: omar.rodriguez@upq.edu.mx

Received: 5 August 2020; Accepted: 30 September 2020; Published: 21 October 2020
����������
�������

Abstract: Backstepping is a control technique based on Lyapunov’s theory that has been successfully
implemented in the control of motors and robots by several nonlinear methods. However, there are
no standardized methods for tuning control gains (unlike the PIDs). This paper shows the tuning
gains of the backstepping controller, using Genetic Algorithms (GA), for an Unmanned Aerial
Vehicle (UAV), quadrotor type, designed for autonomous trajectory tracking. First, a dynamic model
of the vehicle is obtained through the Newton-Euler methodology. Then, the control law is obtained,
and self-tuning is performed, through which we can obtain suitable values of the gains in order to
achieve the design requirements. In this work, the establishment time and maximum impulse are
considered as such. The tuning and simulations of the system response were performed using the
MATLAB-Simulink environment, obtaining as a result the compliance of the design parameters and
the correct tracking of different trajectories. The results show that self-tuning by means of genetic
algorithms satisfactorily adjusts for the gains of a backstepping controller applied to a quadrotor
and allows for the implementation of a control system that responds appropriately to errors of
different magnitude.

Keywords: tuning; backstepping control; genetic algorithms; Unmanned Aerial Vehicle; quadrotor

1. Introduction

Nowadays, Unmanned Aerial Vehicles (UAV) enjoy great popularity in activities where video or
photo shots are required, particularly quadrotor models (with four rotors). Due to their configuration [1],
quadrotors can perform tasks that previously had to be performed from a helicopter or airplane by highly
qualified personnel, which implies a high cost in terms of the vehicle (helicopter) and personnel (pilot
and cameraman); furthermore, the risk to human life is eliminated with UAV. Current UAV can develop
different activities such as exploration, transportation, mapping, reconnaissance, environmental
monitoring, construction monitoring and surveillance [2–7] in civil, police or military activities [8,9].
The advances in robotics, mechatronics, and microelectronics facilitated the development of hardware
at a low cost, coupled with the development of real-time processing for navigation. Quadrotors
have very simple mechanics since the control of their position is determined by the changes in
speed in their motors and they are used when high maneuverability is required, since they are
capable of moving in any direction or flying at low speeds. Due to the complexity of the system,
different algorithms have been developed to achieve autonomous control in Unmanned Aerial Vehicles,
using techniques from linear control methodologies with PID [10,11], to nonlinear control techniques

Electronics 2020, 9, 1735; doi:10.3390/electronics9101735 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-9476-4129
http://www.mdpi.com/2079-9292/9/10/1735?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9101735
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 1735 2 of 24

such as Feedback Linearization control, model predictive control, adaptive control approaches [12],
fail-safe methodologies based on sliding mode control theory and backstepping control [13,14],
combinations such as Adaptive Sliding Backstepping Control [15–17], diffuse control in the proposal of
Geometric Control [18,19], Nonlinear Dynamic In-version (NDI) Control [20], the Robust Generalized
Dynamic Inversion (RGDI) Quadcopter Control System [21] and the Neural Network Control System
of UAV Altitude Dynamics [22–25]; most of these state-of-the-art nonlinear and adaptive control
techniques for quadrotors were discussed by Hongwei and Ghulam.

The mathematical model of the system to be controlled must have a solid basis to be able to
perform the controller design process in a safer and more reliable way, which are critical qualities
within the aviation industry. UAV systems have been studied as a whole or in subsystems (for example,
tilt control). The challenge of these vehicles is that they are nonlinear, subacted, and multivariable
systems, subject to unpredictable disturbances such as the interaction of the rotor flow with the
quadrotor chassis or atmospheric turbulence [26–39], so that classic control (linear and invariant over
time) has limited results where instabilities can occur when the system moves away from equilibrium.

Genetic algorithms have been used to tune the best solution in different control models, from the
classic PID control and in fields as diverse as industrial processes and finite element analysis thanks to
its versatility and adaptability. Genetic algorithms are based on stochastic optimization techniques
that emulate biological evolution and its genetic-molecular basis, inspired by Charles Darwin’s theory
of evolution whereby the fittest prevails. It starts with a randomly generated population and evaluates
the objective function with these values, organized in the form of vectors. Those that generate a greater
margin of error are discarded; in the next generation, new values are proposed as a combination
of those that obtain better results and random values within a predetermined range, emulating the
mechanisms of reproduction, crossing, mutation, and so on for a certain number of generations or
until the values of the gains obtain results within the values established as acceptable [40].

Since there is no standard for tuning the gains of a backstepping type controller, some reports indicated
that the gains were tuned manually, while others proposed automatic tuning using fuzzy methods.
That is why, in this work, we propose a tuning of the gains using genetic algorithms, which gives
greater possibilities to obtain an optimal tuning to control the system response. This work contributes
with an option to the lack of automatic tuning proposals with an automatic tuning for the gains of
the backstepping controller using genetic algorithms. This paper presents the tuning using genetic
algorithms for a nonlinear dynamic model with a backstepping control structure, tuned to find the
most appropriate control gains of a quadrotor-type unmanned aerial vehicle. In Section 2, by analyzing
the operation of the quadrotor, the kinematic equations and dynamic equations are obtained using the
Newton-Euler methodology for the Tait-Bryan navigation angles. Section 3 describes the design of
backstepping control based on Lyapunov’s theory. Finally, in Section 4, tuning is performed using
genetic algorithms. Section 3 shows the validation of the proposed control through simulations of the
controller’s response to different preplanned paths, and the results are discussed. Finally, conclusions
and proposals for improvement of future work are presented in Section 4.

2. Materials and Methods

2.1. Mathematical Model of A Six-Degrees-of-Freedom Air Vehicle

The aerial vehicle on which this work is based is a Draganflyer IV, which has the configuration of
four coplanar rotors (quadrotor), as shown in Figure 1. The movement of the quadrotor originates
from the speed changes of the rotors. Each rotor consists of a direct electric current motor, a gear
mechanism, and a blade rotor. To achieve movement on an axis, a speed difference must be created in
the rotors corresponding to that axis. The yaw movement is obtained from the difference in torque
between each pair of rotors—that is, it accelerates the two rotors clockwise while decelerating the
rotors counterclockwise, and vice versa.

Electronics 2020, 9, 1735 3 of 24
Electronics 2020, 9, x FOR PEER REVIEW 3 of 25

Figure 1. Unmanned Aerial Vehicle (UAV), quadrotor type, model: Draganflyer IV. The equations
proposed in this paper for modeling UAV are based on [41].

If the vehicle is considered as a rigid solid, the system has six degrees of freedom: three of them
define the position of a reference point in the body (the center of mass), and the other three define the
orientation of the body, so that, to obtain the model, the quadrotor is supposed to be a rigid body in
space, subject to a main force and three moments, which together represent the control inputs of the
system. This work will use the Tait‒Bryan navigation angles (𝛷, 𝜃, 𝜓) (Figure 2) to describe the
rotation of the system in three-dimensional space.

Figure 2. Navigation angles (𝛷, 𝜃, 𝜓) defined by Tait‒Bryan. 𝑌𝑎𝑤, 𝑝𝑖𝑡𝑐ℎ 𝑎𝑛𝑑 𝑟𝑜𝑙𝑙 angles for an aircraft.
The fixed frame 𝑥, 𝑦, 𝑧 has been moved backwards from center of gravity (preserving angles) for clarity.

The navigation angles, known in mathematics as Tait‒Bryan angles, are a set of three angles that
describe the orientation of a rigid body—in this case, the drone—with reference to a fixed system.
We considered two vector sets of a right-handed trihedron that belong to a fixed reference system 𝑃௜
and a body 𝑃௛. The body initially allows rotation about the 𝑥 axis through angle 𝜙; the other axes, 𝑦
and 𝑧, are carried along with the body, keeping their orthogonality. Now the drone rotates around
axis 𝑦′ about angle 𝜃. As before, the two axes 𝑥’ and 𝑧′ are carried along with the body. Finally, the
drone rotates about axis 𝑧′′ through angle 𝜓 such that axes 𝑥′′ and 𝑦′′ are carried along with the body.
In each rotation, the other two axes are carried along with the body, so that the set of axes around
which the rotations occur (𝑥, 𝑦ᇱ, 𝑧′′) are not orthogonal. However, the orientation of the drone can
now be described using the Tait‒Bryan angle set 𝜙, 𝜃, 𝜓.

This sequence is the preferred one to define the dynamics of air vehicles, and is defined with the
transformation (1), where s means sine and c means cosine.

𝑅 = ൥𝑐𝜓𝑐𝜃 cψsθsϕ − sψcϕ 𝑐𝜓𝑠𝜃𝑐𝜙 + 𝑠𝜓𝑠𝜙sψcθ sψsθsϕ + cψcϕ sψsθsϕ − cψcϕ−sθ cθsϕ cθcϕ ൩ (1)

Each rotation sequence defines a unique orientation of the drone. To solve for these angles, we
must place the angles in the correct quadrant. These angles are limited to the range described in
Equation (6):

Figure 1. Unmanned Aerial Vehicle (UAV), quadrotor type, model: Draganflyer IV. The equations
proposed in this paper for modeling UAV are based on [41].

If the vehicle is considered as a rigid solid, the system has six degrees of freedom: three of them
define the position of a reference point in the body (the center of mass), and the other three define
the orientation of the body, so that, to obtain the model, the quadrotor is supposed to be a rigid body
in space, subject to a main force and three moments, which together represent the control inputs of
the system. This work will use the Tait-Bryan navigation angles (Φ,θ,ψ) (Figure 2) to describe the
rotation of the system in three-dimensional space.

Electronics 2020, 9, x FOR PEER REVIEW 3 of 25

Figure 1. Unmanned Aerial Vehicle (UAV), quadrotor type, model: Draganflyer IV. The equations
proposed in this paper for modeling UAV are based on [41].

If the vehicle is considered as a rigid solid, the system has six degrees of freedom: three of them
define the position of a reference point in the body (the center of mass), and the other three define the
orientation of the body, so that, to obtain the model, the quadrotor is supposed to be a rigid body in
space, subject to a main force and three moments, which together represent the control inputs of the
system. This work will use the Tait‒Bryan navigation angles (𝛷, 𝜃, 𝜓) (Figure 2) to describe the
rotation of the system in three-dimensional space.

Figure 2. Navigation angles (𝛷, 𝜃, 𝜓) defined by Tait‒Bryan. 𝑌𝑎𝑤, 𝑝𝑖𝑡𝑐ℎ 𝑎𝑛𝑑 𝑟𝑜𝑙𝑙 angles for an aircraft.
The fixed frame 𝑥, 𝑦, 𝑧 has been moved backwards from center of gravity (preserving angles) for clarity.

The navigation angles, known in mathematics as Tait‒Bryan angles, are a set of three angles that
describe the orientation of a rigid body—in this case, the drone—with reference to a fixed system.
We considered two vector sets of a right-handed trihedron that belong to a fixed reference system 𝑃௜
and a body 𝑃௛. The body initially allows rotation about the 𝑥 axis through angle 𝜙; the other axes, 𝑦
and 𝑧, are carried along with the body, keeping their orthogonality. Now the drone rotates around
axis 𝑦′ about angle 𝜃. As before, the two axes 𝑥’ and 𝑧′ are carried along with the body. Finally, the
drone rotates about axis 𝑧′′ through angle 𝜓 such that axes 𝑥′′ and 𝑦′′ are carried along with the body.
In each rotation, the other two axes are carried along with the body, so that the set of axes around
which the rotations occur (𝑥, 𝑦ᇱ, 𝑧′′) are not orthogonal. However, the orientation of the drone can
now be described using the Tait‒Bryan angle set 𝜙, 𝜃, 𝜓.

This sequence is the preferred one to define the dynamics of air vehicles, and is defined with the
transformation (1), where s means sine and c means cosine.

𝑅 = ൥𝑐𝜓𝑐𝜃 cψsθsϕ − sψcϕ 𝑐𝜓𝑠𝜃𝑐𝜙 + 𝑠𝜓𝑠𝜙sψcθ sψsθsϕ + cψcϕ sψsθsϕ − cψcϕ−sθ cθsϕ cθcϕ ൩ (1)

Each rotation sequence defines a unique orientation of the drone. To solve for these angles, we
must place the angles in the correct quadrant. These angles are limited to the range described in
Equation (6):

Figure 2. Navigation angles (Φ,θ,ψ) defined by Tait-Bryan. Yaw, pitch and roll angles for an aircraft.
The fixed frame x, y, z has been moved backwards from center of gravity (preserving angles) for clarity.

The navigation angles, known in mathematics as Tait-Bryan angles, are a set of three angles that
describe the orientation of a rigid body—in this case, the drone—with reference to a fixed system.
We considered two vector sets of a right-handed trihedron that belong to a fixed reference system Pi and
a body Ph. The body initially allows rotation about the x axis through angle φ; the other axes, y and z,
are carried along with the body, keeping their orthogonality. Now the drone rotates around axis y′

about angle θ. As before, the two axes x′ and z′ are carried along with the body. Finally, the drone
rotates about axis z′′ through angle ψ such that axes x′′ and y′′ are carried along with the body. In each
rotation, the other two axes are carried along with the body, so that the set of axes around which
the rotations occur (x, y′, z′′) are not orthogonal. However, the orientation of the drone can now be
described using the Tait-Bryan angle set φ,θ,ψ.

This sequence is the preferred one to define the dynamics of air vehicles, and is defined with the
transformation (1), where s means sine and c means cosine.

R =


cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ
sψcθ sψsθsφ+ cψcφ sψsθsφ− cψcφ
−sθ cθsφ cθcφ

 (1)

Electronics 2020, 9, 1735 4 of 24

Each rotation sequence defines a unique orientation of the drone. To solve for these angles, we must
place the angles in the correct quadrant. These angles are limited to the range described in Equation (6):

p
q
r

=


1 0 −sθ
0 cθ cθsφ
0 −sθ cθcφ


.
φ
.
θ
.
ψ.

(2)

To end the kinematic analysis, Equation (2) shows the matrix that relates to the angular velocities,
where p, q, and r are the angular velocities in the fixed coordinate system in three-dimensional space.

Considering the above and using the Newton-Euler formulation, the forces and acting moments
are established with respect to the established coordinate system (Figure 3). The equations that describe
the dynamics of a rigid solid in space are as follows:

F + Fd = m
.
v +ωX(mv) (3)

τ+ τd = J
.
ω+ωX(Jω) (4)

Electronics 2020, 9, x FOR PEER REVIEW 4 of 25

𝑝𝑞𝑟 = ൥1 0 −sθ0 cθ cθsϕ0 −sθ cθcϕ൩ 𝜙ሶ𝜃ሶ𝜓ሶ . (2)

To end the kinematic analysis, Equation (2) shows the matrix that relates to the angular
velocities, where 𝑝, 𝑞 , and 𝑟 are the angular velocities in the fixed coordinate system in three-
dimensional space.

Considering the above and using the Newton‒Euler formulation, the forces and acting moments
are established with respect to the established coordinate system (Figure 3). The equations that
describe the dynamics of a rigid solid in space are as follows: 𝐹 + 𝐹ௗ = 𝑚𝑣ሶ + 𝜔𝑋(𝑚𝑣) (3) 𝜏 + 𝜏ௗ = 𝐽𝜔ሶ + 𝜔𝑋(𝐽𝜔) (4)

Figure 3. Reference frames and forces. The position and speed of the quadrotor are evaluated with
respect to an inertial frame located at a fixed station.

Given the following vectors: 𝜉 = [𝑥, 𝑦, 𝑧]ᇱ; 𝜂 = [𝜙, 𝜃, 𝜓]ᇱ ∴ 𝑣 = [𝑥ሶ , 𝑦ሶ , 𝑧ሶ]ᇱ; 𝜔 = ൣ𝜙ሶ , 𝜃ሶ , 𝜓ሶ ൧ᇱ, (5)

Since the vehicle is held with the pushing force, the angles must be bounded, that is: 𝜙 = 𝑅𝑜𝑙𝑙 ቀ− గଶ < 𝜙 < గଶቁ, 𝜃 = 𝑃𝑖𝑡𝑐ℎ ቀ− గଶ < 𝜃 < గଶቁ, 𝜓 = 𝑦𝑎𝑤(−𝜋 < 𝜓 < 𝜋). (6)

From the previous equations, it is clear that 𝑉 is the translational velocity vector with respect to
the fixed reference frame, 𝜔 is the angular velocity, m is the mass of the vehicle, 𝐹 represents the
vector of forces acting on the vehicle, 𝜏 represents the torques applied to the system, and 𝐽 𝜖 𝑅ଷ௫ଷ is
the inertia matrix. Using Newton’s second law, 𝐹 = 𝑚𝑎, we obtain: 𝑚𝑣ሶ = 𝑅ூ𝐹௉௛. (7)

where 𝑅ூ represents the transformation matrix between reference frames and 𝐹௣௛ represents the
external forces applied to the body of the vehicle, which can be represented by: 𝐹௘௫௧ = 𝐹௚ + 𝐹௘௠௣ + 𝐴் (8)

where 𝐹௚ is the force that occurs due to gravity, 𝑔 represents the gravity constant (𝑔 = 9.81 m/sଶ),
and 𝐴் is defined as the aerodynamic force: 𝐴் = 𝐾௧𝑉. (9)

where 𝐾௧ is a diagonal matrix that expresses the friction parameters. Knowing that 𝐹௘௠௣ is the force
produced by the thrust of the propellers, it can be represented by the vector shown in Equation (10),
which contains the forces 𝑓௜, which are the thrust forces generated by each motor and are determined
by: 𝑓 = 𝜌𝐶்𝐴𝑅ଶΩଶ, where 𝜌 is the air density, 𝐶் is the thrust coefficient, 𝐴 is the area of the rotor disk,

Figure 3. Reference frames and forces. The position and speed of the quadrotor are evaluated with
respect to an inertial frame located at a fixed station.

Given the following vectors:

ξ = [x, y, z]′ ; η = [φ,θ,ψ]′ ∴ v =
[.
x,

.
y,

.
z
]
′

;ω =
[.
φ,

.
θ,

.
ψ
]′

, (5)

Since the vehicle is held with the pushing force, the angles must be bounded, that is:

φ = Roll
(
−
π
2
< φ <

π
2

)
, θ = Pitch

(
−
π
2
< θ <

π
2

)
, ψ = yaw(−π < ψ < π). (6)

From the previous equations, it is clear that V is the translational velocity vector with respect
to the fixed reference frame, ω is the angular velocity, m is the mass of the vehicle, F represents the
vector of forces acting on the vehicle, τ represents the torques applied to the system, and J ε R3x3 is the
inertia matrix. Using Newton’s second law, F = ma, we obtain:

m
.
v = RIFPh. (7)

where RI represents the transformation matrix between reference frames and Fph represents the external
forces applied to the body of the vehicle, which can be represented by:

Fext = Fg + Femp + AT (8)

Electronics 2020, 9, 1735 5 of 24

where Fg is the force that occurs due to gravity, g represents the gravity constant (g = 9.81 m/s2),
and AT is defined as the aerodynamic force:

AT = KtV. (9)

where Kt is a diagonal matrix that expresses the friction parameters. Knowing that Femp is the force
produced by the thrust of the propellers, it can be represented by the vector shown in Equation (10),
which contains the forces fi, which are the thrust forces generated by each motor and are determined by:
f = ρCTAR2Ω2, where ρ is the air density, CT is the thrust coefficient, A is the area of the rotor disk,
R the radius of the propeller, and Ω is the angular velocity of each motor; since all values are constant
with the exception of Ω, the constant b can be defined as b = ρCTAR2.

Femp =


0
0

4∑
i=1

∣∣∣ fi∣∣∣
 =


0
0

4∑
i=1

∣∣∣bΩ2
i

∣∣∣
 (10)

Substituting the corresponding values and using the correct vector operation in the previous
equation, we obtain:

RIFb = −mg·Ee3 + RIEe3

4∑
i=1

bΩ2
i + AT (11)

Torques applied to the vehicle are obtained with a similar procedure, considering τb as the external
torque applied to the system that can be represented as follows:

τb = τa + AR (12)

where AR represents the aerodynamic torques and is determined by the expression:

AR = Krω. (13)

Given ω =
[.
∅

.
θ

.
ψ
]

and Kr represents torque’s friction coefficients produced by the motors, τa is a
matrix with the torques generated on each axis and is determined by Equation (14):


U2

U3

U4

 = τa =


l(f2 − f4)
l(f3 − f1)

4∑
i=1

(−1)i+1Qi

 (14)

where Qi represents the torques generated by each of the four engines and is represented by the
following expression: Qi = ρCqAR3ω2. Once the above equations have been determined, it is possible
to represent the dynamic behavior of the system through the following set of equations:

.
ε = v

m
.
v = −mg·E3 + RI

4∑
i=1

bΩ2
i + AT

.
η = ω

J
.
ω = −ωXJω+ τa + ARω = Rr

.
η.

(15)

Operating and simplifying Equation (15), we reach:

Electronics 2020, 9, 1735 6 of 24

..
x = (cosψ sinθ cosφ+ sinψ sinφ)U1

m + ATx
m

..
y = (sinψ sinθ cosφ− cosψ sinφ)U1

m +
ATy

m
..
z = −g + (cosθ cosφ)U1

m + ATz
m .

(16)

The procedure for obtaining angular accelerations is similar to that used to obtain the equations
that describe linear behavior, obtaining:

..
φ =

Ap
Ixx

+ lU2
Ixx

+
(Iyy−Izz)

Ixx

.
θ

.
ψ+ ARx

Ixx
..
θ =

Aq
Iyy

+ l
Iyy

U3 +
(Izz−Ixx)

Iyy

.
φ

.
ψ +

ARy
Iyy

..
ψ = Ar

Izz
+ 1

Izz
U4 +

(Ixx−Iyy)
Izz

.
θ

.
φ + ARz

Izz
.

(17)

Equation (16) represents the translational dynamics of the vehicle, while Equation (17) represents
the rotational dynamics of the vehicle; these equations provide a model that allows for studying and
simulating the dynamics of the system.

When we try to control a system, the first step is to develop a mathematical model that is simple
enough to be able to represent it, but as close to reality as possible; the more real variables we consider,
the more complex the proposed mathematical model will be. When the system is too complex or
time-variant, it is difficult to develop a mathematical model that can represent it. In this case, there are
intelligent control techniques such as fuzzy control or neural networks, among others. Fuzzy control
builds on the experience of an operator to propose a set of rules that can help control the system,
and neural networks adjust to system changes regardless of the initial conditions. When there is
the possibility of mathematically modeling a system, different algorithms can be developed and
tested by means of simulations in software, which allows us to fine-tune the algorithm coefficients,
thus increasing the probability of success in field testing with software and hardware under real
conditions. This methodology has been tested in various investigations using specific software such
as BikeSim, TruckSim, or CarSim for specific simulations of motor vehicles [42], or HARFANG 3D
Framework for modern multimedia applications such as virtual reality [43], with MATLAB the most
commonly used software for general process simulations, including autonomous guided vehicles
(AGV) [44] and aerial autonomous guided vehicles (UAVs) [45–47].

2.2. Backstepping Control

Backstepping is a recursive control procedure based on Lyapunov’s theory and is useful in the
design of feedback control; it allows for the control of a nonlinear dynamic system and shows high
performance in the face of parametric uncertainties, which is why this technique has been selected for
the development of a controller that allows the quadrotor to track a preplanned path.

As a first step, the system is rewritten in state space
.

X =
.
f (X, U), Considering the vector of system

states X as X = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12).

x1 = φ , x2 =
.

x1 =
.
φx3 = θ , x4 =

.
x3 =

.
θ

x5 = ψ , x6 =
.

x5 =
.
ψx7 = z , x8 =

.
x7 =

.
z

x9 = x , x10 =
.

x9 =
.
xx11 = y , x12 =

.
x11 =

.
y

(18)

By substituting the relationships described in Equation (18) into Equations (16) and (17) and
neglecting the gyroscopic effects of the quadrotor, the system can be expressed as follows:

Electronics 2020, 9, 1735 7 of 24

.
X =



x2
lU2
lxx

+
(lyy−lzz)

lxx
x4x6

x4
l

lyy
U3 +

(lzz−lxx)
lyy

x2x6

x6

Ar
lzz

+ 1
lzz

U4 +
(lxx−lyy)

lzz

.

θ
.
ψ

x8

−g + (cos x3 cos x1)
U1
m

x10

ux
U1
m

x12

uy
U1
m



, (19)

where
ux = (sin x5 sin x3 cos x1 − cos x5 sin x1)

uy = (sin x5 sin x3 cos x1 + sin x5 sin x1).
(20)

The basis of the backstepping control strategy, like most control techniques, is based on reducing
the system error. Control signal U2 will be based on the system position error on the axis x:

z1 = x1d − x1, (21)

With its derivative being:
.

z1 =
.

x1d −
.

x1. (22)

A candidate function for Lyapunov V(z) is proposed; considering that it must be defined and
positive and its derivative with respect to time must be semidefined and negative, it is proposed
as follows:

V(z1) =
1
2

z 2
1 . (23)

The derivative of Equation (23) is:

.
V(z1) = z1

[.
x1d + x2

]
. (24)

To achieve the stabilization of z1, a virtual control input x2 must be proposed:

x2 =
.
x1d − α1z1 (25)

Given α1 > 0 represents a control gain, taking the value of x2 from Equation (25), we can rewrite
Equation (21) as follows:

.
V(z1) = z1

[.
x1d −

.
x1d − α1z1

]
(26)

.
V(z1) = −α1z2

1. (27)

We guarantee that the derivative of the proposed Lyapunov function is negative and semidefined.
Substituting Equation (25) into Equation (22), we have:

.
z1 =

.
x1d − α1z1 −

.
x1d. (28)

Solving
.
x1d of Equation (25) and substituting it into Equation (28) we reach:

.
z1 = x2 − α1z1 −

.
x1d + α1z1 (29)

Electronics 2020, 9, 1735 8 of 24

So that it can be modified in the previous equation, the expression of the initial system error
has been increased; to stabilize the new terms without modifying the previous system, the following
variable change is made:

z2 = x2 −
.
x1d − α1z1, (30)

With its derivative being:
.
z2 =

.
x2 −

..
x1d − α1

.
z1. (31)

To cancel this new error function, an increased Lyapunov function is proposed:

V(z1, z2) =
1
2

z2
1 +

1
2

z2
2. (32)

We derive Equation (32) as follows:

.
V(z1, z2) = z1,

.
z1 + z2,

.
z2. (33)

Substituting Equations (29) and (31) into Equation (33) and clearing the value of
.
x1d from Equation (30),

we obtain: .
V(z1, z2) = z1(− α1z1 − z2) − z2

(.
x2 −

..
x1d − α1(− α1z1 − z2)

)
. (34)

Considering Equation (16), we obtain the value of
..
φ as follows:

..
φ = α1x4x6 + b1U2, (35)

where:

a1 =
(lyy − lzz)

lxx
b1 =

l
lxx

. (36)

Substituting Equation (32) into Equation (31) and assuming the acceleration reference has a null
value (since it is assumed that the vehicle starts from a resting state), we obtain:

.
V(z1, z2) = z1(− α1z1 − z2) + z2(α1x4x6 + b1U2 − α1(− α1z1 − z2)) (37)

Considering Equation (30) and satisfying
.
v(z1, z2) ≤ 0, a control signal is proposed to guarantee it,

thus obtaining:

U2 =
l

b1
(z1 − α1x4x6 − α1(α1z1 + z2) − α2z2). (38)

If the control signal U2 proposed in Equation (34) is replaced, we obtain:

.
V(z1, z2) = − α1z2

1 − α1z2
2 (39)

This guarantees compliance with the Lyapunov criteria, a fact that establishes the expression
obtained for the control signal U2 as appropriate. The same procedure is performed to obtain the
control signals U3, which is related to z3 = x3d − x3 and z4 = x4 −

.
x3d − α3z3; U4, which stabilizes

error z5 = x5d − x5 and z6 = x6 −
.
x5d − α5z5; and U1, related to z7 = x7d − x7 and z8 = x8 −

.
x7d − α7z7;

therefore, the expressions defining said control signals are:

U3 =
l

b2
(z3 − α3x2x6 − α3(α3z3 + z4) − α4z4) (40)

U4 =
l

b3
(z5 − α5x2x4 − α5(α5z5 + z6) − α6z6) (41)

U1 =
m

cos x3 cos x1
(g + z7 − α7(α7z7 + z8) − α8z8. (42)

Electronics 2020, 9, 1735 9 of 24

Equation (17) defines the movement of the vehicle on the x-y plane, and it can be seen that the
only force that it depends on is the thrust U1. So Ux and Uy will be control signals used to calculate the
warping and pitch angle necessary to move the drone in the x-y plane and the Ux and Uy signals must
satisfy the condition V(z9, z10) < 0, where z9 = x9d − x9 and z10 = x10 −

.
x9d − α9z9, and V(z11, z12) < 0

where z11 = x11d − x11 and z12 = x12 −
.
x10d − α10z10, respectively, to ensure system stability. Following

the same methodology that was followed to obtain the control signal U2, we obtain:

Ux =
m
U1

(z9 − α9(α9z9 + z10) − α10z10) (43)

Uy =
m
U1

(z11 − α11(α11z11 + z12) − α12z12). (44)

Equations (34)–(37) represent the control signals necessary for path tracking. On the other hand,
Equations (38) and (39) are used to determine the warping and pitch angles necessary for tracking the
reference. The only value that remains unknown is α, so tuning of the controller is required.

2.3. Tuning the Backstepping Controller Using Genetic Algorithms

The response of a controller depends largely on the values of its gains; for PID-type controllers,
there are tuning methods that allow attainment of the values of Kp, Ki, and Kd, in order to obtain the
desired response. However, there is no established method for tuning the α gains of a backstepping
controller, which is due to one of the options being the so-called metaheuristic algorithms, within which
are the genetic algorithms, so named because they are bio-inspired by the way in which nature selects
the strongest genes.

Genetic algorithms will be used because they have greater capacity and adaptability as a universal
optimization method; due to their random nature, it is difficult to compare metaheuristic algorithms,
but some studies show that GA has a better speed-performance relationship [43], which is important
in the development of this work due to the computational weight of the simulations.

The algorithm used is the Fixed-state Genetic Algorithm, which uses a generational scheme
like that of mammals and other long-lived animals, where parents and their descendants coexist;
however, in the long run, competition between them is generated. In this model, two parents must
be selected, and certain members of the previous population must be eliminated to make space for
the descendants, so that, after each crossing, the new descendants are immediately available for
reproduction. This allows the model to use the characteristics of a promising individual as soon as it
is created. The algorithm is based on the flowchart shown in Figure 4 and is basically divided into
the following functions: create population, selection, reproduction, mutation, and reintegration into
the population.

The process shown in Figure 4 is the overall method of this paper. First, a random population is
proposed and the genetic algorithm selects the strongest genes (through reproduction and mutation)
for a predetermined number of iterations; then, final values are proposed. The first stage of the
implementation consists of defining the parameters used to search for profits. Using this algorithm,
these parameters are summarized in Table 1.

The parameter “size of the population” provides genetic diversity, so a large number is desired;
however, if the number is very large, the computational cost and the algorithm execution time also
increase. With this in mind, the parameter was chosen as 100 initial individuals; this number provides
adequate genetic variation without increasing the algorithm run time.

The parameter “generations” is eight and was selected experimentally, since when this number
of generations elapsed, it was found that most of the population complied with the genetic model.
The parameter “range” is the range of the gains αi and must by definition be greater than 0, so only
an upper limit must be defined; for this work it was 30, because with higher numbers a saturation is
observed in the torque.

Electronics 2020, 9, 1735 10 of 24

Electronics 2020, 9, x FOR PEER REVIEW 9 of 25

however, in the long run, competition between them is generated. In this model, two parents must
be selected, and certain members of the previous population must be eliminated to make space for the
descendants, so that, after each crossing, the new descendants are immediately available for reproduction.
This allows the model to use the characteristics of a promising individual as soon as it is created. The
algorithm is based on the flowchart shown in Figure 4 and is basically divided into the following
functions: create population, selection, reproduction, mutation, and reintegration into the population.

Figure 4. Flowchart of the genetic algorithm used.

The process shown in Figure 4 is the overall method of this paper. First, a random population is
proposed and the genetic algorithm selects the strongest genes (through reproduction and mutation)
for a predetermined number of iterations; then, final values are proposed. The first stage of the
implementation consists of defining the parameters used to search for profits. Using this algorithm,
these parameters are summarized in Table 1.

Table 1. Parameters of the genetic algorithm.

Parameter Value Description
Size of the
population

100 Quantity of initial α pairs.

Generations 8 Number of iterations in which the algorithm will search.
Range 30 Maximum value of each α.

Mutation probability 20% Probability that a selected gene will undergo a mutation.
Biological pressure 30% Percentage of genes that will reproduce.

Model [tୱ M୮] Vector that will use a genetic model to follow; tୱ is the establishment time <0.5 s and M୮ is the maximum over-impulse < 5%.
Individual [α୧ α୨ α୩ α୪] Vector with four random α gains.

Selection method Rank Selection
The individual with the best fitness gets rank N and the worst individual gets

rank 1. The selection probability is p(i) = ୰ୟ୬୩(୧)୬୶(୬ିଵ)

Figure 4. Flowchart of the genetic algorithm used.

Table 1. Parameters of the genetic algorithm.

Parameter Value Description

Size of the population 100 Quantity of initial α pairs.

Generations 8 Number of iterations in which the algorithm will search.

Range 30 Maximum value of each α.

Mutation probability 20% Probability that a selected gene will undergo a mutation.

Biological pressure 30% Percentage of genes that will reproduce.

Model
[
ts Mp

] Vector that will use a genetic model to follow; ts is the establishment
time < 0.5 s and Mp is the maximum over-impulse < 5%.

Individual
[
αi αj αk αl

]
Vector with four random α gains.

Selection method Rank Selection
The individual with the best fitness gets rank N and the worst

individual gets rank 1. The selection probability is p(i) = rank(i)
nx(n−1)

Crossover type Single Point Crossover A random point is selected for swapping chromosomes.

The mutation probability was fixed at 20% because a very high number causes the algorithm to
take longer to converge and a very low number causes stagnation. On the other hand, the biological
pressure was set to 30%, which allows 30% of individuals to reproduce and eliminates 30% of the worst
original population; this value allows for rapid convergence in each generation.

Finally, the strongest genes selected are those with the best fitness. This value was obtained by
calculating the Euclidean distance between the Mp value and the ts obtained by the evaluated genes and
the values provided by the genetic model. For evaluation, the system is divided into three subsystems,
one for each axis: the x subsystem has four associated α gains (α3, α4, α9, α10), the Y subsystem has

Electronics 2020, 9, 1735 11 of 24

four associated α gains (α1, α2, α11, α12), and the Z subsystem has four gains too (α5, α6, α7, α8);
this association is due to the displacement in the X axis caused by the roll angle; the movement in the
Y axis is caused by the pitch angle. So, the tuning is done in every subsystem, evaluated under the step
input as a reference. As in the design of control laws, the system is not tuned globally; instead, it takes
advantage of the natural subdivision of the system. Therefore, the tuning of the X axis subsystem
corresponds to the control law U2, which depends on the speed of rotors 1 and 3. The tuning of
the Y axis subsystem corresponds to the control law U3, which depends on rotors 2 and 4. Finally,
the subdivision of the Z axis system corresponds to the control laws U3 and U4, which depend on the
speed of the four rotors—that is why they are tuned together.

3. Results

In this section, numerical results are provided to facilitate the performance evaluation of the
tuning backstepping controller using genetic algorithms.

This algorithm was subjected to different tasks, which were split into two main sections. The first
one refers to ideal conditions—that is, disturbances were not included. In the second study, random
disturbances were considered to simulate the wind current effects.

Simulations were performed on Matlab/Simulink in order to test the validity of the proposed
controller. An accurate dynamic model for the four-rotor rotorcraft was used, and the model was
developed on the base of the Draganflyer. In addition, due to the inclusion of realistic effects on
simulations, the calculation of parameters such as inertia, propeller pitch, maximum rotor speeds,
and others was performed, and the information from the drone data sheet was used.

Parameters: mass, m = 0.55 kg, gravity , g = 9.81 m/s2 , and moments of inertia Ixx = 8.7e − 3 m4;
Iyy = 8.7e− 3 m4; Izz = 8.7e− 3 m4, length from the rotor to drone center l = 0.205 m.

A set of solutions obtained by the genetic algorithm is shown to show the performance of the
tuned controller. The selection was performed by means of the numerical simulation of the control law
and the drone dynamics. The results are summarized in Table 2.

Table 2. Results of the genetic algorithm.

Gain Result Gain Result

α1 25.64 α7 12.03
α2 15.50 α8 17.14
α3 10.52 α9 19.82
α4 23.37 α10 19.62
α5 13.58 α11 18.75
α6 14.68 α12 14.95

3.1. Experimental Validation

Using these gains, the final step response of the movements in the X, Y, and Z axes was simulated.
The responses obtained determine if the tuning fulfills the parameters of the genetic model.

For a validation of the controller performance tuned by the proposed method, the UAV was
subjected to a step input on each axis—that is, the system was subjected to the following reference inputs:

a. To prove x axis xr = 1; yr = zr = ψr = 0;
b. To prove y axis yr = 1; xr = zr = ψr = 0;
c. To prove z axis zr = 1; xr = yr = ψr = 0;

Figures 5–7 show the corresponding step response in each axis.

Electronics 2020, 9, 1735 12 of 24

Electronics 2020, 9, x FOR PEER REVIEW 11 of 25

Table 2. Results of the genetic algorithm.

Gain Result Gain Result αଵ 25.64 α଻ 12.03 αଶ 15.50 α଼ 17.14 αଷ 10.52 αଽ 19.82 αସ 23.37 αଵ଴ 19.62 αହ 13.58 αଵଵ 18.75 α଺ 14.68 αଵଶ 14.95

3.1. Experimental Validation

Using these gains, the final step response of the movements in the 𝑋, 𝑌, and 𝑍 axes was simulated.
The responses obtained determine if the tuning fulfills the parameters of the genetic model.

For a validation of the controller performance tuned by the proposed method, the UAV was
subjected to a step input on each axis—that is, the system was subjected to the following reference inputs:

a. To prove 𝑥 axis 𝑥௥ = 1; 𝑦௥ = 𝑧௥ = 𝜓௥ = 0;
b. To prove 𝑦 axis 𝑦௥ = 1; 𝑥௥ = 𝑧௥ = 𝜓௥ = 0;
c. To prove 𝑧 axis 𝑧௥ = 1; 𝑥௥ = 𝑦௥ = 𝜓௥ = 0;

Figures 5–7 show the corresponding step response in each axis.

Figure 5. System response in 𝑋 axis Figure 5. System response in X axis.Electronics 2020, 9, x FOR PEER REVIEW 12 of 25

Figure 6. System response in 𝑌 axis.

Figure 7. System response in 𝑍 axis.

Table 3 shows the numeric results, considering 𝑡௦ as the time necessary for the system response
to not vary by more than 5% of the final value.

Figure 6. System response in Y axis.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 25

Figure 6. System response in 𝑌 axis.

Figure 7. System response in 𝑍 axis.

Table 3 shows the numeric results, considering 𝑡௦ as the time necessary for the system response
to not vary by more than 5% of the final value.

Figure 7. System response in Z axis.

Electronics 2020, 9, 1735 13 of 24

Table 3 shows the numeric results, considering ts as the time necessary for the system response to
not vary by more than 5% of the final value.

Table 3. Numeric results for step response.

Axis Ts Mp

X Time: 0.49
Value: 0.95

Percentage: 0
Max Value: 0.99

Y Time: 0.48
Value: 0.95

Percentage: 0
Max Value: 0.99

Z Time: 0.49
Value: 0.99

Percentage: 0
Max Value: 0.99

Remembering that the genetic model is ts < 0.5 s and Mp < 5%, we can observe that the values
obtained by the GA fulfill these parameters for a step input. Subsequently, the system was tested
with various trajectories, obtaining favorable results in each of the tests. The most relevant results are
as follows:

Task 1: xr =
(

1
2

)
∗ cos

(
1
2 ∗ t

)
−

1
2 ; yr =

(
1
2

)
∗ sin

(
1
2 ∗ t

)
; zr =

(
t

30

)
;ψr = π

3 ;

Task 2: xr = (3) ∗ cos(0.35 ∗ t) ∗ cos(0.35 ∗ t); yr = (3) ∗ cos(0.35 ∗ t) ∗ sin(0.35 ∗ t);
zr = (0.000875 ∗ t);ψr = π/9; with random disturbances (simulation of wind effects).

Task 1. The system was tested with a clover-shaped reference. In this test, the quadrotor starts with
an initial error of 1 m in position as shown in Figure 8, which is a challenge given the characteristics of
the vehicle.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 25

Table 3. Numeric results for step response.

Axis 𝐓𝐬 𝐌𝐩

X Time: 0.49 Value: 0.95
Percentage: 0 Max Value: 0.99 𝐘 Time: 0.48 Value: 0.95
Percentage: 0 Max Value: 0.99 𝐙 Time: 0.49 Value: 0.99
Percentage: 0 Max Value: 0.99

Remembering that the genetic model is 𝑡௦ < 0.5 𝑠 and 𝑀௣ < 5%, we can observe that the values
obtained by the GA fulfill these parameters for a step input. Subsequently, the system was tested
with various trajectories, obtaining favorable results in each of the tests. The most relevant results are
as follows:

Task 1: 𝑥𝑟 = ቀଵଶቁ ∗ 𝑐𝑜𝑠 ቀଵଶ ∗ 𝑡ቁ − ଵଶ ; 𝑦𝑟 = ቀଵଶቁ ∗ 𝑠𝑖𝑛 ቀଵଶ ∗ 𝑡ቁ ; 𝑧𝑟 = ቀ ௧ଷ଴ቁ ; 𝜓௥ = గଷ ;
Task 2: 𝑥𝑟 = (3) ∗ 𝑐𝑜𝑠(0.35 ∗ 𝑡) ∗ 𝑐𝑜𝑠(0.35 ∗ 𝑡); 𝑦𝑟 = (3) ∗ 𝑐𝑜𝑠(0.35 ∗ 𝑡) ∗ 𝑠𝑖𝑛(0.35 ∗ 𝑡); 𝑧𝑟 = (0.000875 ∗ 𝑡); 𝜓௥ = 𝜋/9; with random disturbances (simulation of wind effects).
Task 1. The system was tested with a clover-shaped reference. In this test, the quadrotor starts

with an initial error of 1 m in position as shown in Figure 8, which is a challenge given the
characteristics of the vehicle.

Figure 8. Real trajectory (𝑋 𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) vs. desired trajectory (𝑋𝑑 𝑅𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒).

The results obtained as a response of reference from task 1 show that the tracking reference is
appropriate. Figures 9–11 show the behavior of the drone in each axis.

Figure 8. Real trajectory (X Blue Solid line) vs. desired trajectory (Xd Red dotted line).

The results obtained as a response of reference from task 1 show that the tracking reference is
appropriate. Figures 9–11 show the behavior of the drone in each axis.

Electronics 2020, 9, 1735 14 of 24

Electronics 2020, 9, x FOR PEER REVIEW 14 of 25

Figure 9. 𝑋 real (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) vs. 𝑋 (𝑅𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒) desired.

Figure 10. 𝑌 real (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) vs. 𝑌(𝑅𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒) reference.

Figure 9. X real (Blue Solid line) vs. X (Red dotted line) desired.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 25

Figure 9. 𝑋 real (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) vs. 𝑋 (𝑅𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒) desired.

Figure 10. 𝑌 real (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) vs. 𝑌(𝑅𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒) reference. Figure 10. Y real (Blue Solid line) vs. Y (Red dotted line) reference.

Electronics 2020, 9, 1735 15 of 24

Electronics 2020, 9, x FOR PEER REVIEW 15 of 25

Figure 11. 𝑍 (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) real vs. 𝑍 (𝑟𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒) desired.

The functioning of the system can be analyzed by observing the tracking errors in position and
orientation, shown in Figures 12 and 13, respectively.

Figure 12. Relative displacement errors vs. time from task 1.

Figure 11. Z (Blue Solid line) real vs. Z (red dotted line) desired.

The functioning of the system can be analyzed by observing the tracking errors in position and
orientation, shown in Figures 12 and 13, respectively.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 25

Figure 11. 𝑍 (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) real vs. 𝑍 (𝑟𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒) desired.

The functioning of the system can be analyzed by observing the tracking errors in position and
orientation, shown in Figures 12 and 13, respectively.

Figure 12. Relative displacement errors vs. time from task 1. Figure 12. Relative displacement errors vs. time from task 1.

Electronics 2020, 9, 1735 16 of 24

Electronics 2020, 9, x FOR PEER REVIEW 16 of 25

Figure 13. Relative orientation errors vs. time from task 1.

As can be seen, the errors of the position and orientation tracking tend to 0 quickly and remain
at that value throughout the 90 s of the analysis.

Task 2. Helical-type trajectory in which the quadrotor starts at an initial error of 0; additionally,
a random perturbance was added during the simulation, t starting at 4.5 s and finishing at 9 s; the
disturbance has random components that change in value during the disturbance. The biggest
disturbance in simulation has components of 6.17 m/s, 5.97 m/s, and 3.45 m/s for x, y, and z,
respectively, and a magnitude of 9.25 m/s. Through additional tests, it was determined that the
designed backstepping controller is capable of rejecting a disturbance with a maximum magnitude
of 10.1 m/s, as long as no component of the disturbance is greater than 6.6 m/s. The results of the
controller under perturbation are shown in Figures 14–19 The effect of the disturbance can be
observed from 4.5 s onward. It can be seen that the controller tuned with the gains in Table 2 is able
to return to the desired trajectory once the disturbance disappears.

The helical path used can be seen in Figure 14. The performance of the controller in each of the
axes of the fixed inertial system 𝑥, 𝑦, 𝑧 is shown in Figures 15‒17 and the response of the system is
compared against the reference path.

Figure 13. Relative orientation errors vs. time from task 1.

As can be seen, the errors of the position and orientation tracking tend to 0 quickly and remain at
that value throughout the 90 s of the analysis.

Task 2. Helical-type trajectory in which the quadrotor starts at an initial error of 0; additionally,
a random perturbance was added during the simulation, t starting at 4.5 s and finishing at 9 s;
the disturbance has random components that change in value during the disturbance. The biggest
disturbance in simulation has components of 6.17 m/s, 5.97 m/s, and 3.45 m/s for x, y, and z, respectively,
and a magnitude of 9.25 m/s. Through additional tests, it was determined that the designed backstepping
controller is capable of rejecting a disturbance with a maximum magnitude of 10.1 m/s, as long as no
component of the disturbance is greater than 6.6 m/s. The results of the controller under perturbation
are shown in Figures 14–19 The effect of the disturbance can be observed from 4.5 s onward. It can be
seen that the controller tuned with the gains in Table 2 is able to return to the desired trajectory once
the disturbance disappears.Electronics 2020, 9, x FOR PEER REVIEW 17 of 25

Figure 14. Helicoidal trajectory with perturbance. Real (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) vs. desired (𝑅𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒).

Figure 15. X real (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) vs. X(𝑅𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒) desired with perturbance.

Figure 14. Helicoidal trajectory with perturbance. Real (Blue Solid line) vs. desired (Red dotted line).

Electronics 2020, 9, 1735 17 of 24

Electronics 2020, 9, x FOR PEER REVIEW 17 of 25

Figure 14. Helicoidal trajectory with perturbance. Real (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) vs. desired (𝑅𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒).

Figure 15. X real (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) vs. X(𝑅𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒) desired with perturbance. Figure 15. X real (Blue Solid line) vs. X (Red dotted line) desired with perturbance.Electronics 2020, 9, x FOR PEER REVIEW 18 of 25

Figure 16. Y (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) real vs. Y (𝑅𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒) desired with perturbance.

Figure 17. Z (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) real vs. Z (𝑅𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒) desired with perturbance.

Finally, the errors in position and orientation, respectively, are shown in Figures 18 and 19. Note
the effect of the disturbance and the correction of the controller when disturbance disappears.

Figure 16. Y (Blue Solid line) real vs. Y (Red dotted line) desired with perturbance.

Electronics 2020, 9, 1735 18 of 24

Electronics 2020, 9, x FOR PEER REVIEW 18 of 25

Figure 16. Y (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) real vs. Y (𝑅𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒) desired with perturbance.

Figure 17. Z (𝐵𝑙𝑢𝑒 𝑆𝑜𝑙𝑖𝑑 𝑙𝑖𝑛𝑒) real vs. Z (𝑅𝑒𝑑 𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒) desired with perturbance.

Finally, the errors in position and orientation, respectively, are shown in Figures 18 and 19. Note
the effect of the disturbance and the correction of the controller when disturbance disappears.

Figure 17. Z (Blue Solid line) real vs. Z (Red dotted line) desired with perturbance.
Electronics 2020, 9, x FOR PEER REVIEW 19 of 25

Figure 18. Relative displacement errors vs. time from task with perturbance.

Figure 19. Relative orientation errors vs. time from task with perturbance.

Tests show that the controller is capable of following trajectories even in the presence of initial
errors or random disturbances, such as those that can cause air currents in a flight. The system
correctly manages the added error within a short response time because of the correct tuning of the

Figure 18. Relative displacement errors vs. time from task with perturbance.

Electronics 2020, 9, 1735 19 of 24

Electronics 2020, 9, x FOR PEER REVIEW 19 of 25

Figure 18. Relative displacement errors vs. time from task with perturbance.

Figure 19. Relative orientation errors vs. time from task with perturbance.

Tests show that the controller is capable of following trajectories even in the presence of initial
errors or random disturbances, such as those that can cause air currents in a flight. The system
correctly manages the added error within a short response time because of the correct tuning of the

Figure 19. Relative orientation errors vs. time from task with perturbance.

The helical path used can be seen in Figure 14. The performance of the controller in each of the
axes of the fixed inertial system x, y, z is shown in Figures 15–17 and the response of the system is
compared against the reference path.

Finally, the errors in position and orientation, respectively, are shown in Figures 18 and 19.
Note the effect of the disturbance and the correction of the controller when disturbance disappears.

Tests show that the controller is capable of following trajectories even in the presence of initial
errors or random disturbances, such as those that can cause air currents in a flight. The system correctly
manages the added error within a short response time because of the correct tuning of the controller;
due to the lack of standardized methods, the application of the genetic algorithm shows appropriate
results for field tests.

3.2. PID Controller

For comparison purposes, a PID-type controller was developed that allows for tracking a trajectory;
in this way, the performance of the proposed backstepping controller can be compared. The control
signal U(t) in a PID is represented by the sum of the value of the proportional, integral, and derivative
components, which depend on the error; that is:

U(t) = Kpe + Ki

∫
e(t)dt + Kd

de(t)
dt

.

The values of the constants Kp, Kd, and Ki determine the behavior of the PID. For the control
of the AUV, six control signals of the PID type were implemented; again, the control signals in the
xy plane will be used to determine the roll and pitch reference angles, and the four control signals
(U1, U2, U3, and U4) will be applied to their corresponding degree of freedom. The values of the control
constants used for the PID controllers can be seen in Table 4.

Electronics 2020, 9, 1735 20 of 24

Table 4. PID gains used in this work.

X Y Z Roll Pitch Yaw

Kp 32 28 25 15 15 5

Ki 12 3 1 3 3 1.5

Kd 26 6 9 6 6 3

With the constants shown in Table 4, the drone is able to follow a trajectory, as shown in Figure 20.

Electronics 2020, 9, x FOR PEER REVIEW 20 of 25

controller; due to the lack of standardized methods, the application of the genetic algorithm shows
appropriate results for field tests.

3.2. PID Controller

For comparison purposes, a PID-type controller was developed that allows for tracking a
trajectory; in this way, the performance of the proposed backstepping controller can be compared.
The control signal U(t) in a PID is represented by the sum of the value of the proportional, integral,
and derivative components, which depend on the error; that is: 𝑈(𝑡) = 𝐾௣𝑒 + 𝐾௜ ׬ 𝑒(𝑡)𝑑𝑡 + 𝐾ௗ ௗ௘(௧)ௗ௧ .

The values of the constants Kp, Kd, and Ki determine the behavior of the PID. For the control of
the AUV, six control signals of the PID type were implemented; again, the control signals in the xy
plane will be used to determine the roll and pitch reference angles, and the four control signals (U1,
U2, U3, and U4) will be applied to their corresponding degree of freedom. The values of the control
constants used for the PID controllers can be seen in Table 4.

Table 4. PID gains used in this work.

 X Y Z Roll Pitch Yaw
Kp 32 28 25 15 15 5
Ki 12 3 1 3 3 1.5
Kd 26 6 9 6 6 3

With the constants shown in Table 4, the drone is able to follow a trajectory, as shown in Figure 20.

Figure 20. Tracking trajectory with PID.

For a comparison with the backstepping controller, the design parameters ts and Mp will be
considered. For this reason, it is necessary to evaluate the PID controller against step inputs such as
trajectories a, b, and c. Figures 21‒23 show the results of the PID controller.

Figure 20. Tracking trajectory with PID.

For a comparison with the backstepping controller, the design parameters ts and Mp will be
considered. For this reason, it is necessary to evaluate the PID controller against step inputs such as
trajectories a, b, and c. Figures 21–23 show the results of the PID controller.Electronics 2020, 9, x FOR PEER REVIEW 21 of 25

Figure 21. PID step response in X axis.

Figure 22. PID step response in Y axis.

Figure 23. PID step response in Z axis.

Table 5 shows the numerical results from the PID controller.

Figure 21. PID step response in X axis.

Electronics 2020, 9, 1735 21 of 24

Electronics 2020, 9, x FOR PEER REVIEW 21 of 25

Figure 21. PID step response in X axis.

Figure 22. PID step response in Y axis.

Figure 23. PID step response in Z axis.

Table 5 shows the numerical results from the PID controller.

Figure 22. PID step response in Y axis.

Electronics 2020, 9, x FOR PEER REVIEW 21 of 25

Figure 21. PID step response in X axis.

Figure 22. PID step response in Y axis.

Figure 23. PID step response in Z axis.

Table 5 shows the numerical results from the PID controller.

Figure 23. PID step response in Z axis.

Table 5 shows the numerical results from the PID controller.

Table 5. PID numerical results and comparison with backstepping.

Axis PID Backstepping Mp Design Parameters

X Ts : 4.6 s
Mp : 27%

Ts : 0.49 s
Mp : 0% Ts < 0.5 s

Mp < 5%
Y Ts : 2.91 s

Mp : 20%
Ts : 0.48 s
Mp : 0%

Z Ts : 0.92 s
Mp : 2%

Ts : 0.49 s
Mp : 0%

From Table 5, we see that the PID controller does not meet the required design parameters,
even though, overall, it is able to track a path satisfactorily. Finally, the PID controller was tested
against the same disturbances that the backstepping controller was subjected to, but it did not reject
the disturbances.

Electronics 2020, 9, 1735 22 of 24

4. Conclusions

In this article, we deal with backstepping controller gain tuning for a quadrotor using genetic
algorithms. First, the dynamics of the quadrotor were developed using the Newton-Euler method.
Then the equations of the rotational and translational dynamics of the system are presented.
Subsequently, the setback control system, which is a recursive control procedure based on Lyapunov’s
theory, is presented; this control system shows high performance in the face of parametric uncertainties,
as is clear from the time of establishment (0.5 s) and the maximum impulse (<5%) on different reference
inputs and errors of different magnitudes. The stability analysis based on Lyapunov’s theorem showed
that the control proposal implemented by the self-adjustment of the gains leads to the error of the
quadrotor having stability asymptotically. This is reflected in the comparison with other implemented
methods; it can even be appreciated in the angles and perturbations implemented to test the method.

Compared with other backstepping controllers such as those presented by Amjad (2019), the present
work obtains better results in terms of the error establishment time (less than 0.5 s) compared to the 3 s
of the backstepping control proposed by Amjad. Although the systems are different, the controller is
still the backstepping type.

Compared with the systems proposed for unmanned aerial vehicles, such as the one reported by
Tennakoon and Munasinghe (2008), the present work has better results for the error settlement time,
less than 0.5 s.

The present control proposal had satisfactory results in the simulations carried out in MatLab
software, leaving as future work its physical implementation in a drone and the carrying out of real
flight tests.

Author Contributions: Conceptualization O.R.-A., R.H.-A. and A.F.R.; methodology, O.R.-A., J.M.G.-G., R.H.-A.,
A.F.R. and C.F.-S.; software, O.R.-A. and R.H.-A.; validation, O.R.-A. and R.H.-A.; formal analysis, O.R.-A.,
J.M.G.-G., R.H.-A. and A.F.R.; investigation, O.R.-A., J.M.G.-G., R.H.-A. and A.F.R.; resources, J.M.G.-G. and
R.H.-A.; data curation, J.M.G.-G. and R.H.-A. writing—original draft preparation, all authors; writing—review and
editing, O.R.-A. and R.H.-A.; visualization, O.R.-A., J.M.G.-G., R.H.-A., A.F.R. and C.F.-S.; supervision, O.R.-A.,
J.M.G.-G., R.H.-A., A.F.R. and C.F.-S.; project administration, all authors; funding acquisition, O.R.A., A.F.R. and
C.F.-S. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to acknowledge the financial support of Universidad Politecnica de Queretaro
in the production of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xin, J.; Zhong, J.; Yang, F.; Cui, Y.; Sheng, J. An Improved Genetic Algorithm for Path-Planning of Unmanned
Surface Vehicle. Sensors 2019, 19, 2640. [CrossRef] [PubMed]

2. Giernacki, W.; Horla, D.; Baca, T.; Saska, M. Real-Time Model-Free Minimum-Seeking Autotuning Method
for Unmanned Aerial Vehicle Controllers Based on Fibonacci-Search Algorithm. Sensors 2019, 19, 312.
[CrossRef] [PubMed]

3. Castano, F.; Beruvides, G.; Villalonga, A.; Haber, R.E. Self-Tuning Method for Increased Obstacle Detection
Reliability Based on Internet of Things LiDAR Sensor Models. Sensors 2018, 18, 1508. [CrossRef] [PubMed]

4. Zemmour, E.; Kurtser, P.; Edan, Y. Automatic Parameter Tuning for Adaptive Thresholding in Fruit Detection.
Sensors 2019, 19, 2130. [CrossRef]

5. Espinoza, K.; Valera-Martínez, D.L.; Torres, J.A.; López-Martínez, A.; Molina-Aiz, F. An Auto-Tuning PI
Control System for an Open-Circuit Low-Speed Wind Tunnel Designed for Greenhouse Technology. Sensors
2015, 15, 19723–19749. [CrossRef]

6. Tang, J.; Zheng, J.; Wang, Y.; Yu, L.; Zhan, E.; Song, Q. Self-Tuning Threshold Method for Real-Time Gait
Phase Detection Based on Ground Contact Forces Using FSRs. Sensors 2018, 18, 481. [CrossRef]

7. Lee, C.; Chen, R. Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan
Cooling System. Sensors 2015, 15, 11685–11700. [CrossRef]

http://dx.doi.org/10.3390/s19112640
http://www.ncbi.nlm.nih.gov/pubmed/31212651
http://dx.doi.org/10.3390/s19020312
http://www.ncbi.nlm.nih.gov/pubmed/30646579
http://dx.doi.org/10.3390/s18051508
http://www.ncbi.nlm.nih.gov/pubmed/29748521
http://dx.doi.org/10.3390/s19092130
http://dx.doi.org/10.3390/s150819723
http://dx.doi.org/10.3390/s18020481
http://dx.doi.org/10.3390/s150511685

Electronics 2020, 9, 1735 23 of 24

8. Besada, J.A.; Bergesio, L.; Campaña, I.; Vaquero-Melchor, D.; Lopez-Araquistain, J.; Bernardos, A.M.;
Casar, J.R. Drone Mission Definition and Implementation for Automated Infrastructure Inspection Using
Airborne Sensors. Sensors 2018, 18, 1170. [CrossRef]

9. Hamza, M.; Jehangir, A.; Ahmad, T.; Sohail, A.; Naeem, M. Design of surveillance drone with X-ray camera,
IR camera and metal detector. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and
Future Networks (ICUFN), Milan, Italy, 4–7 July 2017; pp. 111–114.

10. Pedro, J.O.; Dangor, M.; Kala, P.J. Differential evolution-based PID control of a quadrotor system for hovering
application. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver,
BC, Canada, 24–29 July 2016; pp. 2791–2798.

11. Zheng, H.; Zeng, Q.; Chen, W.; Zhu, H.; Chen, C. Improved PID control algorithm for quadrotor based
on MCS. In Proceedings of the 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC),
Nanjing, China, 12–14 August 2016; pp. 1780–1783.

12. Mo, H.; Farid, G. Nonlinear and Adaptive Intelligent Control Techniques for Quadrotor UAV—A Survey.
Asian J. Control. 2019, 21, 989–1008. [CrossRef]

13. Pervaiz, M.; Khan, Q.; Bhatti, A.I.; Malik, S.A. Dynamical Adaptive Integral Sliding Backstepping Control of
Nonlinear Nontriangular Uncertain Systems. Math. Probl. Eng. 2014, 2014, 1–14. [CrossRef]

14. Knöös, J.; Robinson, J.W.C.; Berefelt, F. Nonlinear Dynamic Inversion and Block Backstepping: A Comparison.
In Proceedings of the AIAA Guidance, Navigation, and Control Conference 2012, Minneapolis, MN, USA,
13–16 August 2012. [CrossRef]

15. Koshkouei, A.; Zinober, A. Adaptive Sliding Backstepping Control of Nonlinear Semi-Strict Feedback form
Systems. In Proceedings of the 7th IEEE Mediterranean Control Conference, Haifa, Israel, 28–30 June 1999.

16. Koshkouei, A.; Burnham, K.J. Adaptive backstepping sliding mode control for feedforward uncertain
systems. Int. J. Syst. Sci. 2011, 42, 1935–1946. [CrossRef]

17. Koshkouei, A.J.; Mills, R.E.; Zinober, A.S.I. Adaptive Backstepping Control. In Variable Structure Systems:
Towards the 21st Century; Yu, X., Xu, J.-X., Eds.; Lecture Notes in Control and Information Sciences; Springer:
Berlin/Heidelberg, Germany, 2002; Volume 274, pp. 129–153. ISBN 978-3-540-45666-7.

18. Gao, Y.; Tian, D.; Wang, Y. Fuzzy Self-tuning Tracking Differentiator for Motion Measurement Sensors and
Application in Wide-Bandwidth High-accuracy Servo Control. Sensors 2020, 20, 948. [CrossRef] [PubMed]

19. Lee, T.; Leok, M.; McClamroch, N.H.; Leoky, M. Geometric tracking control of a quadrotor UAV on SE (3).
In Proceedings of the 49th IEEE Conference on Decision and Control (CDC 2010), Atlanta, GA, USA,
15–17 December 2010; pp. 5420–5425.

20. Das, A.; Lewis, F.; Subbarao, K. Sliding Mode Approach to Control Quadrotor Using Dynamic Inversion.
Chall. Paradig. Appl. Robust Control 2011, 3–24. [CrossRef]

21. Sieberling, S.; Chu, Q.; Mulder, J.A. Robust Flight Control Using Incremental Nonlinear Dynamic Inversion
and Angular Acceleration Prediction. J. Guid. Control. Dyn. 2010, 33, 1732–1742. [CrossRef]

22. Ansari, U.; Bajodah, A.H. Robust generalized dynamic inversion based control of autonomous underwater
vehicles. SAGE J. 2017. [CrossRef]

23. Muliadi, J.; Kusumoputro, B. Neural Network Control System of UAV Altitude Dynamics and Its Comparison
with the PID Control System. J. Adv. Transp. 2018, 2018, 1–18. [CrossRef]

24. Kusumoputro, B.; Priandana, K.; Wahab, W. System identification and control of pressure process rig®system
using backpropagation neural networks. ARPN J. Eng. Appl. Sci. 2015, 10, 7190–7195.

25. Hernández-Alvarado, R.; García-Valdovinos, L.G.; Salgado-Jiménez, T.; Gómez-Espinosa, A.; Fonseca-Navarro, F.
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles. Sensors 2016, 16, 1429. [CrossRef]
[PubMed]

26. Reyad, M.; Arafa, M.; Sallam, E.A. An optimal PID controller for a qaudrotor system based on DE algorithm.
In Proceedings of the 11th IEEE International Conference on Computer Engineering and Systems (ICCES),
Cairo, Egypt, 20–21 December 2016; pp. 444–451.

27. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings
of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 2520–2525.

28. Tesch, D.A.; Eckhard, D.; Guarienti, W.C. Pitch and Roll control of a Quadcopter using Cascade Iterative Feedback
Tuning. In Proceedings of the 4th IFAC Symposium on Telematics Applications TA 2016, Porto Alwegre, Brasil,
6–9 November 2016.

http://dx.doi.org/10.3390/s18041170
http://dx.doi.org/10.1002/asjc.1758
http://dx.doi.org/10.1155/2014/492824
http://dx.doi.org/10.2514/6.2012-4888
http://dx.doi.org/10.1080/00207721.2011.617059
http://dx.doi.org/10.3390/s20030948
http://www.ncbi.nlm.nih.gov/pubmed/32050730
http://dx.doi.org/10.5772/16599.2011
http://dx.doi.org/10.2514/1.49978
http://dx.doi.org/10.1177/1475090217708640
http://dx.doi.org/10.1155/2018/3823201
http://dx.doi.org/10.3390/s16091429
http://www.ncbi.nlm.nih.gov/pubmed/27608018

Electronics 2020, 9, 1735 24 of 24

29. Jokar, A.; Godarzi, A.A.; Saber, M.; Shafii, M.B. Simulation and optimization of a pulsating heat pipe using
artificial neural network and genetic algorithm. Heat Mass Transf. 2016, 52, 2437–2445. [CrossRef]

30. Li, Y.; Song, S. A survey of control algorithms for Quadrotor Unmanned Helicopter. In Proceedings of
the Fifth International Conference on Advanced Computational Intelligence (ICACI 2012), Nanjing, China,
18–20 October 2012; pp. 365–369.

31. Yu, G.; Doukhi, O.; Fayjie, A.R.; Lee, D.J. Intelligent Controller Design for Quad-Rotor Stabilization in
Presence of Parameter Variations. J. Adv. Transp. 2017, 2017. [CrossRef]

32. Sadeghzadeh, I.; Abdolhosseini, M.; Zhang, Y. Payload Drop Application of Unmanned Quadrotor Helicopter
Using Gain-Scheduled PID and Model Predictive Control Techniques. Lect. Notes Comput. Sci. 2012, 7506,
386–395.

33. D’Amato, E.; Di Francesco, G.; Notaro, I.; Tartaglione, G.; Mattei, M. Nonlinear Dynamic Inversion and
Neural Networks for a Tilt Tri-Rotor UAV. IFAC-PapersOnLine 2015, 48, 162–167. [CrossRef]

34. Davoudi, B.; Taheri, E.; Duraisamy, K.; Jayaraman, B.; Kolmanovsky, I. Quad-Rotor Flight Simulation in
Realistic Atmospheric Conditions. AIAA J. 2020, 58, 1992–2004. [CrossRef]

35. Lee, J. Optimization of a modular drone delivery system. In Proceedings of the 2017 Annual IEEE International
Systems Conference (SysCon), Montreal, QC, Canada, 24–27 April 2017; pp. 1–8.

36. Berning, A.W.; Taheri, E.; Girard, A.; Kolmanovsky, I. Rapid Uncertainty Propagation and Chance-Constrained
Trajectory Optimization for Small Unmanned Aerial Vehicles. In Proceedings of the 2018 Annual American
Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 3183–3188.

37. Ventura Diaz, P.; Yoon, S. High-Fidelity Computational Aerodynamics of Multi-Rotor Unmanned Aerial
Vehicles. In Proceedings of the 2018 AIAA SciTech Forum, American Institute of Aeronautics and Astronautics,
Kissimmee, FL, USA, 8–12 January 2018.

38. Mishra, A.; Davoudi, B.; Duraisamy, K. Multiple-Fidelity Modeling of Interactional Aerodynamics. J. Aircr.
2018, 55, 1839–1854. [CrossRef]

39. Lim, S.P.; Haron, H. Performance comparison of Genetic Algorithm, Differential Evolution and Particle
Swarm Optimization towards benchmark functions. In Proceedings of the 2013 IEEE Conference on Open
Systems (ICOS 2013), Kuching, Malaysia, 2–4 December 2013; pp. 41–46.

40. Winiczenko, R.; Górnicki, K.; Kaleta, A.; Janaszek-Mańkowska, M. Optimisation of ANN topology for predicting
the rehydrated apple cubes colour change using RSM and GA. Neural Comput. Appl. 2018, 30, 1795–1809.
[CrossRef] [PubMed]

41. McKerrow, P. Modelling the Draganflyer four-rotor helicopter. In Proceedings of the 2004 IEEE International
Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; Volume 4,
pp. 3596–3601. [CrossRef]

42. Yim, S. Comparison among Active Front, Front Independent, 4-Wheel and 4-Wheel Independent Steering
Systems for Vehicle Stability Control. Electronics 2020, 9, 798. [CrossRef]

43. Kong, W.; Zhou, D.; Yang, Z.; Zhao, Y.; Zhang, K. UAV Autonomous Aerial Combat Maneuver Strategy
Generation with Observation Error Based on State-Adversarial Deep Deterministic Policy Gradient and
Inverse Reinforcement Learning. Electronics 2020, 9, 1121. [CrossRef]

44. Zhang, C.; Zhou, L.; Li, Y.; Fan, Y. A Dynamic Path Planning Method for Social Robots in the Home
Environment. Electronics 2020, 9, 1173. [CrossRef]

45. Wei, Y.; Hong, T.; Kadoch, M. Improved Kalman Filter Variants for UAV Tracking with Radar Motion Models.
Electronics 2020, 9, 768. [CrossRef]

46. Trujillo, J.-C.; Munguía, R.; Urzua, S.; Grau, A. Cooperative Visual-SLAM System for UAV-Based Target
Tracking in GPS-Denied Environments: A Target-Centric Approach. Electronics 2020, 9, 813. [CrossRef]

47. Masood, K.; Molfino, R.; Zoppi, M. Simulated Sensor Based Strategies for Obstacle Avoidance Using Velocity
Profiling for Autonomous Vehicle FURBOT. Electronics 2020, 9, 883. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00231-016-1759-8
http://dx.doi.org/10.1155/2017/4683912
http://dx.doi.org/10.1016/j.ifacol.2015.08.077
http://dx.doi.org/10.2514/1.J058327
http://dx.doi.org/10.2514/1.C034709
http://dx.doi.org/10.1007/s00521-016-2801-y
http://www.ncbi.nlm.nih.gov/pubmed/30220793
http://dx.doi.org/10.1109/ROBOT.2004.1308810
http://dx.doi.org/10.3390/electronics9050798
http://dx.doi.org/10.3390/electronics9071121
http://dx.doi.org/10.3390/electronics9071173
http://dx.doi.org/10.3390/electronics9050768
http://dx.doi.org/10.3390/electronics9050813
http://dx.doi.org/10.3390/electronics9060883
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Mathematical Model of A Six-Degrees-of-Freedom Air Vehicle
	Backstepping Control
	Tuning the Backstepping Controller Using Genetic Algorithms

	Results
	Experimental Validation
	PID Controller

	Conclusions
	References

