i\;lg electronics m\py

Article
In-Memory Data Anonymization Using Scalable and
High Performance RDD Design

Sibghat Ullah Bazai *'* and Julian Jang-Jaccard

Cybersecurity Lab, Computer Science/Information Technology, Massey University,
Auckland 0632, New Zealand; j.jang-jaccard@massey.ac.nz
* Correspondence: s.bazai@massey.ac.nz

check for
Received: 18 August 2020; Accepted: 1 October 2020; Published: 20 October 2020 updates

Abstract: Recent studies in data anonymization techniques have primarily focused on MapReduce.
However, these existing MapReduce based approaches often suffer from many performance
overheads due to their inappropriate use of data allocation, expensive disk I/O access and network
transfer, and no support for iterative tasks. We propose “SparkDA” which is a new novel
anonymization technique that is designed to take the full advantage of Spark platform to generate
privacy-preserving anonymized dataset in the most efficient way possible. Our proposal offers a better
partition control, in-memory operation and cache management for iterative operations that are heavily
utilised for data anonymization processing. Our proposal is based on Spark’s Resilient Distributed
Dataset (RDD) with two critical operations of RDD, such as FlatMapRDD and ReduceByKeyRDD,
respectively. The experimental results demonstrate that our proposal outperforms the existing
approaches in terms of performance and scalability while maintaining high data privacy and utility
levels. This illustrates that our proposal is capable to be used in a wider big data applications that
demands privacy.

Keywords: high performance; data anonymization; scalability; spark; big data mining;
privacy and utility

1. Introduction

The rapid growth of data from many domains (e.g., social media, smartphones, IoT etc.)
has brought in a new era where extracting potential information using data analytic and data mining
has become a top business priority to many organizations. Such practices, however, have also brought
up data privacy concern in the absence of appropriate data protection mechanisms.

Data anonymization approaches are used to conceal private information in such a way where
identifiable (sensitive) information is buried among non-identifiable groups [1,2]. Many different
data anonymization algorithms have been proposed for the purpose including K-anonymization [3],
[-diversity [4], t-closeness [5] and others [6,7].

The recent growth of big data has created a high demand for distributed processing platforms
that are equipped with a core set of features, for example, scalable processing units, large execution
engines, and high capacity storage. Many existing anonymization methods used to run on a single
machine have been redesigned to work with these new platforms (e.g., MapReduce) as the size of the
input data increases massively [8-10].

In addition, many existing researches show that data anonymization methods implemented on
MapReduce platform often have performance bottlenecks because underlying platform does not have
appropriate supports for many core anonymizations tasks. These includes; MapReduce does not have
a support for allocating data across partitions in different nodes in a balanced fashion which increases
network overhead, doesn’t support cache operation for saving the data produced while a task is still

Electronics 2020, 9, 1732; d0i:10.3390/ electronics9101732 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-3042-5977
https://orcid.org/0000-0002-1002-057X
http://www.mdpi.com/2079-9292/9/10/1732?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9101732
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 1732 2 of 26

processing (e.g., intermediate data) which results in the intermediate data often being stored in the disk
and fetched whenever it is needed [11], and does not have a support for iterative tasks which increases
many performance overheads in terms of memory and network management [12]. More details of the
issues associated with MapReduce are discussed in Section 3.1.

To address the limitations of MapReduce, Reference [13] proposed a new platform named Spark
and since been hailed as the next generation of distributed processing platform. Spark has extended its
scalability aspect in addition to offering a new set of advanced features more suited for the algorithms
dealing with many different types of big data operations [14]. With the surge in the population of Spark
and shift from MapReduce approach, many Spark-based data anonymization techniques have been
proposed [15-19]. However, these existing proposals often tend to focus their efforts on improving and
readdressing the scalability aspects to be more suited for Spark instead of investigating the suitability
of Spark as a platform of choice for data anonymization techniques.

This is an extension of the earlier version which we presented in Reference [20]. The focus of the
original paper was to present the details of a novel data anonymization approach based on Spark to
take the full use of the advanced features offered by Spark while this extension offers an extensive
evaluation for the suitability of our proposal for data anonymization techniques. By adapting and
improving the advanced features of Spark, our approach effectively addresses many shortcomings
of existing MapReduce based data anonymization approaches to resolve the overheads associated
with expensive disk I/O, network and iteration tasks. We have extended our earlier version in several
aspects. The new contributions of this paper are listed as follows:

o We provide clearer example of a general approach involved in a basic data anonymization
technique with the addition of a flowchart to assist the understanding of the main tasks involved
in such a technique. In addition, an additional mapping table is provided to further illustrate the
relationship between the symbols and notations we use and database concept.

e We provide more detailed description of two critical RDDs involved in our proposal, FlatMapRDD
and ReduceKeyByRDD respectively. These are designed to provide a better partition management,
in-memory access for various data produced during anonymization process, and an effective cache
management. We provide a better description as how our RDD-based approach can effectively
reduce the significant overhead associated with MapReduce counterparts.

e We provide a new performance comparison between our proposal and the most up to date
existing K anonymity based approaches and evaluates that our proposal offers a very competitive
performance advantage.

e In addition to additional utility measurement matrices for Discenibility Metric (DM) and
Minimal Distortion (MD), we provide a new set of privacy measurement matrices, such as
Kullback-Leibler-Divergence (KLD) and Information Entropy (Ig), to extensively investigate the
privacy and utility trade-offs of our proposal.

o We also provide the insights of a new set of performances associated with different memory
management strategies offered by Spark. We discover that side-effect can occur when there are
too excessive demands for memory access.

The paper is structured as follows. In Section 2, we provide the recent related studies, while in
Section 3, we provide the issues associated with MapReduce approach along with the description
of a basic data anonymization technique as backgrounds. In Section 4, we discuss the details of our
proposal along with main algorithms involved in our RDDs. Section 5 describes the details of the
number of privacy and utility matrices we utilise and how we use them in the context of our proposal.
In Section 6, we discuss the results of our experiments and the key findings. Section 7 provides the
conclusion and planned future work.

Electronics 2020, 9, 1732 3 of 26

2. Related Work

To address the overheads associated with MapReduce, a number of Spark based approaches have
been proposed in recent years. Reference [21] proposed the INCOGNITO framework for full-domain
generalization using Spark RDDs. Though their experiential results illustrate the improvement in
scalability and execution efficiency, their proposal does not provide any insights of privacy and utility
trade-offs. Anonylitics [19] utilized Spark’s default iteration support to implement data anonymization.
However, their approach does not address the potential memory exhaustion unable to accommodate
increasing number of intermediate data produced as the number of iteration increases. PRIMA [16]
proposes an anonymization strategy for Mondrian algorithm with Optimal Lattice Anonymization
(OLA) which is used to define the utility and generalization level rules in order to limit the data
utility loss. Reference [22] proposes a distributed Mondrian approach by splitting the input data to the
partitions allocated to each node of cluster by using Spark k-mean. A series of Spark jobs runs on each
cluster node to produce anonymized results. These anonymized results are then merged together later
by another cluster node.

The study that is most close to ours is that in Reference [17] which provided a distributed
Top-Down Specialization (TDS) algorithm to provide K-anonymity using Apache Spark. Rather,
their solution focuses on addressing scalability and partition management which was originally
proposed by Reference [23]. They neither provide the details of the Spark feature they utilized
nor any insights of privacy and utility trade-offs. Al-Zobbi et al. [18] proposed a sensitivity-based
anonymization using user-defined function in Spark. The authors provide a strategy for reduced data
transmission between memory and disk based on serialized data objects implemented with RDD and
validate that a Spark-based approach can be many times faster than MapReduce counterparts such as
Reference [11].

3. Background

We first provide the comparison of the difference and issues involved in MapReduce and Spark.
This is followed by the description of the main tasks involved in a basic data anonymization strategy
(e.g., Datafly [24]).

3.1. MapReduce vs. Spark

For many years until Spark, Hadoop MapReduce [8] has been a widely used distributed processing
platform for many big data applications. The fundamental building blocks of MapReduce are Map and
Reduce. At start, MapReduce divides the (large) input data into a several smaller chucks. Each chunk
of data (i.e., typically a collection of records) is mapped to a map across multiple mappers. The data
contained in a mapper is assigned for a key-value combination. Each mapper process the data based
on the key-value pair and the results, often called as intermediate data, is stored in the local disk
where the mapper resides. Once the processing of all mappers are complete, a reducer reads the results
from all mappers. Figure 1a shows the full execution cycle of a MapReduce job and data movements
involved at each phase. We argue that many performance overheads occur while MapReduce executes
a job, especially in the following phases.

e Problem 1: One of the implications associated with MapReduce is with the creation of mappers
where the size and number of mappers are decided without the consideration of the capability
of each node. Once data is allocated to mappers, it is not possible to re-allocate records across
different mappers. This creates a several performance issues. Consider a case where a mapper is
allocated with a larger set of records compare to other mappers. The execution for this mapper
requires the use of the majority of the memory at the local disk while other mappers attached to the
same node which shares the same local disk have to wait until the memory is freed. This can cause
creating a long execution queue. Consequently, it can also cause a massive delay in the reducer in
which waits for a long time until the mapper with the larger dataset completes despite all other

Electronics 2020, 9, 1732 4 of 26

mappers have already completed and their results are available much earlier. This problem is
demonstrated as “Problem 1” in Figure 1.

e Problem 2: Each mapper writes the results of the processing at the mapper in the local disk as
intermediate data. The reducer requires accessing the intermediate data for further processing.
This can cause the increase of expensive disk I/O by the mappers and the reducer when the
number of intermediate data increases. This problem is demonstrated as “Problem 2” in Figure 1.

e Problem 3: In MapReduce, a reducer processing the results of many mappers may reside in a
separate network node. In this case, the results of mappers (i.e., intermediate data) requires to
first read from the disk associated with the mapper, transferred across the network, and finally
saved in the reducer’s disk. As number of mappers increase, this can cause a significant network
bottleneck especially if a particular network is slow or unavailable. This problem is demonstrated
as “Problem 3” in Figure 1.

e Problem 4: In case of a task with iterative nature, the result is first written in the local disk. If this
result needs to be used again in the subsequent iteration, the mapper needs to access the disk
again for each iteration. This architectural design is not only ineffective but also results in a
tremendous performance bottleneck as it would cause a severe execution queue. To avoid the
queue, the developer of MapReduce requires creating a series of sequential MapReduce jobs for
the mappers manually. Even with this choice, it is often necessary that each iteration is waited for
the completion (due to the issue discussed in the Problem 1).

Spark utilises Resilient Distributed Datasets (RDDs) as the building block to process Spark jobs.
RDDs hold immutable collection of records which are partitioned and can be processed separately
in parallel. Similar to MapReduce, input data is spilt as several smaller blocks. Each block then can
be further divided into several partitions. An input RDD is created to hold all the partitions in the
beginning. It then assigns partitions in the manner accounting for the processing capability at each
worker’s node to have the optimal number of partitions that can work most effective at each node.
This new capability of Spark can reduce the issue associated with the Problem 1 we discussed earlier.

Once the initial partition allocation is complete, more RDDs are created to process the data
contained in each partition — this is called a transformation in Spark. The intermediate data created
by each RDD transformation is written in the memory and referenced as necessary. The memory
accessibility can effectively reduce the performance overhead we discussed in the Problem 2 and 4.

In MapReduce jobs, the execution of each node happens as a separate unit of work. The result of
each node, the collection of intermediate data, is not shared but being written off at each node due to
the data locality principle of MapReduce. The only way to share the intermediate data with a reducer
is via data transfer across networks. Spark offers the data sharing across different RDDs including
the results produced by the previous stages and the intermediate data produced by different RDDs.
This new feature of Spark can address the concerns we discussed in the Problem 3 and 4.

The execution flow of Spark is illustrated in Figure 1b from data reads off the input data to
the memory, processing data at different partitions, and then processing the partitions through
RDD transformations.

3.2. Data Anonymization

Data anonymization refers to a process of transforming a set of original data into an anonymized
data in such a way that uniquely identifiable attributes no longer present in the anonymized dataset
while preserving statistical information about the original dataset. Two separate techniques are used
for data transformation: generalization and suppression, respectively.

Electronics 2020, 9, 1732 5 of 26

e Generalization involves with a process to replace the value of an attribute to a less specific value.
Domain Generalization Hierarchy (DGH), which is typically defined and provided by a domain
expert, is used to find the granularity for the generalization levels to be applied for each attribute.

e Similar to generalisation, suppression involves with a process replacing the original attribute to
the value that does not release any statistical information about the attribute at all.

/ \ Network Transfer
N
M Intermediate Intermediate
apper
split ¢4 Record Reader]—’[Mapper] PP (Key, Value) (Key, Value)
Map Task eyt alue Map Task
Data Node 1
Data Node 1 key2 value ata Toce
key3 value ;

4

[Intermediate results are copy to re

|| | | Data Node 1

Intermediate
- Record Reader]—-[Mapper] Mapper " (Key, Value)

Intermediate

7
[E " .

Map Task keyl value Map Task (Key, Value)
Data Node 2 otz salve Data Node 2 (VT)
key3 value [
Data Node 2
Problem 2
\ Problem 1 ; l J Problem 3
HDFS Input Data Intermediate Map Result HDFS output Data

Block
(@)
HDFS Input Data Map ROD Reduce RDD HDFS Final Output Data

_ l
Results are stored for next iteration

[Read disk, write memory] [Read and Write in memory] [Read and Write in memory] Read memory, write disk
—= — A ———————— Worker 1
Partiton [(partiton "~ partition [= Partition
Partition " {——+—[__Partition 1> Partition > > partiton_| 2 [key1
emory Memry wemory -
Partition Partition Partition w (" pantition | = | key2 [0
Partition \ {___Partition \ Partition =+ _partition
>
Executor 1 lExeculorl g | Executor 1 I&
a 2 = 5
£a S o] vl 2a keyl | value |) 2
28 é 3 valoe Intermediate results || S © key2 | value 52 é
- T [_value E key3 value <] Worker2
— —
[-
Partition [Partition [Partition N%\J Partition
Partition ——>|___Partition T Partition \-: Partition | 2
Memory \EE s
Memory Memory £ |[key3 .
Partition Partition Partition ——— Partition | =
Partition \ | Partition \ Partition Partition
Executor 2 Executor 2 Executor 2 Executor 2

(b)

Figure 1. Comparing the components and Data-flow in MapReduce and Spark structures.
(a) MapReduce structures; (b) Spark structures.

Figure 2 demonstrates a generalization approach for applying generalization levels (GLs) defined
in a DGH. For example, GLO represents the first level of generalization while higher levels of
generalizations are presented by GL2 and GL3. “*” is an example of suppression which appears in many
attributes as the highest generalization level. Each "*" represents a numerical value of a generalization
level, such as 114* represents GL1 while 11**, 1*** and * represents GL2, GL3, and GL4 respectively.

Electronics 2020, 9, 1732 6 of 26

SUPPIreSSION [==s2zoos s o o oo oo oo oo GLS5

I —————————————— GL4

GL 3

H GL2

GL1
B Indian-

Male Female White . Others Black 1138 1139 1141 1142 GLO
Eskimo

Gender Zip Code Age Generalization
Race Level (GL)

Figure 2. Examples of Generalization and Suppression for a Domain Generalization Hierarchies (DGH).

Though many variations of data anonymization methods have been proposed, our approach
follows the one that is similar to Datafly [24]. The flow of Datafly algorithm is depicted in Figure 3.
In this approach, data anonymization starts by counting the frequency, which represents the number
of appearances given the record set, over the Quasi Identifiers Attributes (QID). The QID refers to
a set of attributes that can uniquely distinguish an individual (e.g., age, date of birth, or address).
Taking from the attribute with the most number of frequency count, the technique generalizes each
attribute until K-anonymity constraint [3] is fully satisfied.

(Start)

Calculate the frequency
count for all qid value of validates the K-anonymity

(End)

Does the frequency count
Yes | The Tableis completely

QID in a Table anonymized
N J \
No
.
qid with most distinct values Does the Table requires Suppress qid yalues that
are generalized to higher No Suppression based on frequency Yes does not validates the
level in the Table count and K-anonymity K-anonymity with respect to

frequency count

AN J AN

Figure 3. Datafly Algorithm

Table 1 illustrates the number of iterations in which a generalization is applied from the original
data to a fully anonymized dataset. It starts with the original data depicted in Table 1 (a). The original
data is transformed based on the counting of the frequency of unique attributes and the frequency
of unique tuples. Table 1 (b) now contains the frequency counts. Starting from the attribute with the
highest number of the frequency count, generalization based on DGH, an example shown in Figure 2,
is applied. For example, the attribute “Age” is first generalized because it has the highest number of
the frequency count at 6. Table 1 (c) depicts a partially anonymized data. Note that a multiple level of
generalizations can be performed at this stage as long as it doesn’t violate the K-anonymity constraint.
The final fully anonymized result is presented in Table 1 (d) which meets the K = 2 constraint.

Electronics 2020, 9, 1732

Table 1. Data Anonymization Steps.

(a) Original Data

Age Gender ZipCode Race Disease
24 Female 1141 White Fever
35 Female 1141 White Fever
40 Male 1138 White Back Pain
62 Female 1139 Black Asthma
75 Male 1138 Black Heart Attack
85 Male 1138 Black Heart Attack
(b) Frequency Counts
Age Gender ZipCode Race Frequency Tuple
24 Female 1141 White 1 T1
35 Female 1141 White 1 T2
40 Male 1138 White 1 T3
62 Female 1139 Black 1 T4
75 Male 1138 Black 1 T5
85 Male 1138 Black 1 T6
6 2 3 2
(c) Partially Anonymized Data
Age Gender ZipCode Race Frequency Tuple
20-59 Female 1141 White 2 T1,T2
20-59 Male 1138 White 1 T3
60-99 Female 1139 Black 1 T4
60-99 Male 1138 Black 2 T5,T6
3 2 3 2
(d) Fully Anonymized Data
Age Gender ZipCode Race Disease
20-59 Female 1141 White Fever
20-59 Male 1138 White Back Pain
60-99 Female 1139 Black Asthma
60-99 Male 1138 Black Heart Attack

4. SparkDA

7 of 26

In this section, we describe the details of our approach named SparkDA. We first provide the
descriptions for the symbols and notations we used. Then, we describe our two RDDs, FlatMapRDD
and RedueByKeyRDD, and the algorithms each of the RDDs executes.

4.1. Basic Symbols and Notations

The elements of the data across different scopes are outlined using the symbols and notations

in Table 2. The mapping diagram of our proposed notations to a relational database concept is

demonstrated in Figure 4.

Electronics 2020, 9, 1732

FreqSet

Table 2. Basic Symbols and Notations.

Symbol Definition
PT A table (dataset) that contains records
A record contains a number of attributes, RECORD € PT and
RECORD(r) RECORD = {qidy, gidy, ..., gidasr, sa}, where
gid;, 1 < i < attr, is the gid attribute and sa sensitive attribute
attr Indicates a quasi-identifiable attribute
gid A quasi-identifier attribute
QID A set of attributes that belongs to the same gid
sa Indicates a sensitive attribute
SA Contains a set of attributes that belongs to the same sa
i Contains all gid(s) within a record
1" tuple Qidsupre = {qidy, qida, ..., iy}
Contains a set of gidy,
ID . prer
Q Tuple QIDTuple = {qldtuplelr cees qldtupleam}
. A set that contains a frequency associated to a gid, .
freq(qidupie) for all gidy, pje(s) within a QIDT;,p,
A set that contains freq(qidtuple) associated to a qidyple,
freqSet FreqSet = {(qldtuplelrfreq(qldtuple)l)r e
(qldtuplem,f freqwldtuple)uttr) }
dintqid—cnt A number of occurrences for a distinct QID(s)in gid

dintgig-cntSet

A set that contains dint 4-cnt a associated to a QID
for all gid(s) within a QIDr .,
dintgig-cntSet = {dintyig-cnty, ..., dintgig-cntap }

DGH A Domain Generalization Hierarchy

GL Generalization Level of QID € DGH

K K defines the level of K-anonymization

EC Finds the number of the same gid(s) within a QID

for a given group based on K

Y

dint,yy, — cntSet

Figure 4. Notations Mapped for a Database Table.

RECORD
attr attr ‘ attr attr
freq(qideye) < @ ~ -
qid qid sQ
QID qid qid sa
freq(qidrypie) qid qid sa
dint,,,, — cnt Ainteype — cnt

8 of 26

Electronics 2020, 9, 1732 9 of 26

4.2. RDD-Based Data Anonymization

In our proposed approach, a data anonymization technique is implemented through the use of
two Spark RDD transformations, FlatMapRDD and ReduceByKeyRDD, respectively.

4.2.1. FlatMap Transformation (FlatMapRDD)

The overall purpose of the FlatMapRDD is to compute for both the frequency of distinct attributes
and the distinct tuples for all quasi-identifiable attributes. The frequency counts are then used to
decide if further anonymization is necessary.

The Algorithm 1 illustrates the working of the FlatMapRDD algorithm. The algorithm starts
by loading the input data into QIDT,p,. At this initial stage, the QIDr, ;. contains the original
quasi-identifiable attributes.

Algorithm 1: FlatMapRDD.

Input: QIDTp,
Output: FreqSet, dint ;4-cntSet

1 begin
2 freqwidtuple) =1
3 for i in Size(QID7p.) do

4 if qidypre; = qidpupie,,, then

5 ‘ freq(qidtuple) ++

6 end

7 FreqSet+ = (qidtuplw freq(qidtuple))
8 end

9 dintgig-cnt = 0
10 for i in Size(QID7p.) do

11 for j in Size(qidy,) do
1 | QID; = qidppueiy
13 end

14 end

15 for i in Size(QID) do

16 if gid; = qid ;1) then
17 ‘ dintqid-CT’lf(i)

18 end

19 else

20 ‘ dintqid—cnt(,-) + +

21 end

22 dintgig-cntSet += dintgig-cnt ;)
23 end

24 return (FreqSet, dint;4-cntSet)
25 end

Electronics 2020, 9, 1732 10 of 26

The first part of the algorithm (depicted by step 2-8) executes to identify the frequency counts.
To do this, it first measures the size of QID7,p, to compute the total number of gidy, . it contains
(in step 3). The current gidy,, ;. is compared to the next gidy, ;.. If a match is found between the two
comparing qidy,,1.(s), the frequency count is updated by adding the number 1. This is repeated for
each and every gidy, y;, within the QIDr, ;.. However, the algorithm does not update frequency count
if the gidy, ;. and the subsequent gid;, ;. values are different as this indicates two different records.
When the iteration through QIDr,,, completes, the frequency counts for each unique tuple for all
qidy,ple(s) is saved in the FreqSet (seen in step 7). It should note that Spark sorts the gid, ;. (s) within
the partition of each executing node and the frequency count of each gidy, . is always equal to the
number of respective gidy,,, appearing in the dataset as the total frequency count for all gidy,;.(s)
represent the sum of records in the dataset.

The second part of the algorithm (depicted by step 9-22) runs to identify the count for the distinct
attribute within a QID. To do this, it first measures the size of QIDryp, to compute the total number
of QID(s) it contains. Subsequently, the current gid is compared to the next gid. If a match is found
between the two gid(s), the distinct gid count is updated by adding the number 1. This is repeated for
each and every gid given the QID. When the iteration through QID(s) completes, the distinct counts
for each unique attribute for all gid(s) is saved in the dintg;;-cnt (seen in step 22). The algorithm returns
FreqSet and dint ;3-cntSet along with QIDryp;, to ReduceByKeyRDD.

4.2.2. ReduceByKey Transformation (ReduceByKeyRDD)

The overall aim of the ReduceByKeyRDD is to execute an RDD transformation by applying
a generalization level using the information contained in FreqSet and dintg;-cntSet. The RDD
transformation can be interpreted as the changes made to the original data in Table 1 (a) until
it reaches the results seen in Table 1 (d), through Table 1 (b) and Table 1 (c). We introduce an
“anonymization statue (represented by a variable = anonymization;)” to keep track of whether a
given QIDT,p., which contains the lasted anonymization results, is fully anonymized or not and
if a further anonymization processing is necessary. The Algorithm 2 illustrates the working of the
ReduceByKeyRDD algorithm. To start the algorithm, the combination of (DGH, K) which contains
the taxonomy tree and the K-anonymity constraint, is received via a broadcast mechanism which
is sent by the driver node. DGH is further used to retrieve the generalization level (GL) for each
quasi-identifiable attribute. This is described in step 3—4.

The first part of the algorithm (depicted by steps 6-18) is operated to apply a single generalization
level in all quasi-identifiable attribute sets. Applying a generalization level is repeated until the
frequency counts (freq(qidy, ple)) does not exceed the size of K and also does not exceed the maximum
generalization level (MAX(GLy;4)). The generalization is applied to attributes with the highest
distinct attribute counts (MAX(dintg;z-cnt)) to lower. The anonymization status is set to false while
generalization level is being applied.

The second part of the algorithm (depicted by steps 21-26) is operated by applying suppression
for all attributes for a given tuple which have violated the K-anonymity constraint to ensure no
indistinguishable tuples exists. By now, all anonymization is complete, including the suppression,
therefore the anonymization status is set to true. As seen in step 29, the anonymized results are sent
back to the FlatMapRDD along with the anonymization status. Upon receiving updated QIDr e
which now contains the anonymized data, the FlatMapRDD computes again for the frequency counts
for the distinct tuples and the distinct attributes if only the anonymization status is still set to false.

Electronics 2020, 9, 1732 11 of 26

Algorithm 2: ReduceByKeyRDD.
Input: FreqSet, dintg;;-cntSet
Output: QID7p,, anonymizations

1 begin

2 (DGH, K) <« broadcast(DGH, K)

3 GLqid — (DGH,K)

4 K + (DGH,K)

5 anonymizations = false

6 for i in Size(FreqSet) do

7 if dintgig-cnt < K then

8 for j = 0in Size(dint ;4-cntSet) do
9 if MAX(diT’ltqid-Cﬂl’]’) < MAX(GLqZ‘d) then
10 | UPDATE gid ;) ;) with value of GLgg, + 1
11 end

12 else

13 | aidgyg)

14 end

15 qidpyple+ = qid) (j)

16 end

17 QIDTuple+ = qidtuple

18 anonymizations <— false

19 end

20 else

21 for j in Size(qidy,) do

22 UPDATE gid,;(;) with ™"

23 qidtuplg+ = qtd(l)(])

24 end

25 QIDTllpl€+ = qidtuple

26 anonymizations < true

27 end

28 end

29 return (QI D11, anonymizations)

30 end

4.3. Overall SparkDA Scheme

In this section, we describe the overall process of our proposed approach that includes both the
data anonymization process by two RDDs we described earlier and how these RDDs interact with
other parts of the program.

The overall algorithm for our SparkDA is illustrated in Algorithm 3. The algorithm runs
first by reading off user defined information such as K (i.e., K-anonymity constraint) and DGH
(i.e., contains the definition of generalization hierarchy), as depicted in step 3—4. The K and DGH are
used as global variables that are shard across all Spark worker nodes associated with processing RDDs.
Spark supports broadcast mechanism to send the global variables across worker nodes.

Electronics 2020, 9, 1732 12 of 26

The original data file from HDFS is read and saved into an InputRDD (step 1). The InputRDD
pre-processes the input data in such a way that is easier to be processed by other RDDs. For example,
the input data is divided into two different datasets, one set contains all quasi-identifiable attributes
(QIDTyp1e-RDD) while the other set contains all sensitive attributes (SA-RDD) (step 6). We cache
SA-RDD and QIDryp-RDD as they are used in many subsequent processing. At this stage,
the anonymization status is set to false (step 5).

As depicted in steps 9-14, now two RDDs involved in data anonymization process, FlatMapRDD
and ReduceByKeyRDD, executes interactively many times. The anonymization process completes
when the fully anonymized dataset QIDry is returned from ReduceByKeyRDD in which the
anonymization status is set to true. The anonymized dataset, a generalized and distinct gidy, e
contained within QIDr,, is finally joined with corresponding SA-RDD (step 16).

Algorithm 3: SparkDA.
Input: Dataset, K, DGH
Output: Anonymized(RDD)
1 begin
2 | InputRDD < textFile(Dataset)
3 | broadcast(DGH,K) < broadcast(DGH)
4 broadcast(DGH, K) «+ broadcast(K)
5
6

anonymizations = false

SA-RDD, QID1,p1e-RDD <« InputRDD. filter(qidypie, 5a)
7 SA-RDD, + SA-RDD.cache

8 QIDtple, + QID1yp-RDD.cache

9 while anonymizations = false do

10 Result-RDD(QIDtyp1,, anonymizations) < QIDr,p FlatMapRDD(QID1pie)
ReduceByKeyRDD(dint,;;-cntSet, FreqSet)

1 QIDrypie-RDD.cache < filter.Result-RDD(QID, 1, anonymizations)

12 QIDtypte, < QID71ypie-RDD.cache

13 anonymizations < filter.Result-RDD(QID1, 1, anonymizations)

14 end

15 Anonymizedryy, « filter.Result-RDD(QIDrpje, anonymizations)
16 Anonymized(RDD) < Anonymizedr,pj,.join(SA-RDD.)
17 return Anonymized(RDD)

18 end

The details of Spark execution cycle according to the overall SparkDA operations is depicted
in Figure 5.

Electronics 2020, 9, 1732 13 of 26

S ——
Partition SA_RDD

Partition
DGH(GL Key Value
) 1 sa
“ QIDryp1e RDD H Filter RDD In 2 S
Broadcast (DGH) a s
w Key Value Key Value Key Value Key Value
([: Gidpyple 1 Comp FreqSet 1 QIDrypie , Anonymity 1 Anonymize QIDryp , 52
K — » 2 Gidgyple —* 2 Com Freqset ——> 2 @Drupic, Anonymity 2 Anonymize QIDyyy. , 53
E
R
Y \ a qidtuple a Coip, FreqSet a QIDrpie , Anonymity a Anonymize QIDrype , 52
1
Temory T T, e - S| e—
(Cache)
w o\ /) Key Value Key Value Key Value Key Value
0 Gidgyple 1 Comp FreqSet 1 QIDrypie , Anonymity 1 Anonymize QIDyyp. , 53
R
K s 2 qidmple — > 2 Comw Freqset —> 2 QD1 , Anonymity 2 Anonymize QIDrype , 52
E
R
- a idpple a Cop,FreqSet a QIDry , Anonymity a Anonymize QIDryp , 52
N
FlatMapRDD ReduceByKeyRDD ResultRDD Anonymized RDD

Figure 5. DataFlow in Spark.
5. Privacy vs. Utility Trade-Offs

We used the following privacy and utility metrics to validate and understand the trade-offs
between these two. In the study of understanding the success of a data anonymization technique,
a privacy level is measured by identifying the uniqueness of data. With that, a low privacy
typically means that it is easy to identify an individual (an attribute, tuple or record) from a group
(e.g., many records are unique) while a high privacy indicates that it is (more) difficult to uniquely
identify an individual from a group (e.g., there are many records sharing the same values). A utility
level is measured by calculating the level of degradation in accuracy of value between the original
value (i.e., baseline) and the anonymized value (i.e., sanitized).

5.1. Privacy Metrics

5.1.1. Kullback-Leibler—Divergence (KLD)

KLD is utilized for understanding the likelihood of the presence of the original attribute in
the anonymized attribute for each record [25]. For example, assume that the original attribute of
the age 24 is anonymized into a range of 20-59. The KLD can measure what is the possibility of
guessing the original age 24 from the range 20-59. Note that we use the term “likelihood” instead
of “probability” to indicate that our calculation is done on the past event of the known outcomes
(i.e., anonymized dataset). We measure KLD on the fully anonymized dataset by computing the
followings: (1) calculating the likelihood of the presence of each attribute, (2) sums up all the value of
(1) for each attribute within a record, then continues steps (1) and (2) for all records. Here, Py,,putrDD
indicates the sum of the likelihood of the presence of the original attribute within the original data
(at a record level). Pppuerpp at this stage has a very high data utility and no privacy as there is no
changes made. Pp,,p,¢rpp(r) indicates the sum of the likelihood of the presence of the original attribute
within the anonymized record. Pauonymizedrpp usually has lost some degree of data utility and has
gained some degree of privacy because the data in this set has changed from the baseline after an
anonymization technique is applied.

PAnonymizedRDD (7)
PruputrpD (1)

@

n
KLD = PAnonymizedRDD (1’) IOg
r=1

Electronics 2020, 9, 1732 14 of 26

The KLD value increases from 0 which indicates both records between the original record and the
anonymized record are the same. The increase of KLD value indicates the level of privacy assurance.
With the lower value of KLD, it is easy to identify the original value from the matching anonymized
value (i.e., low privacy).

5.1.2. Information Entropy (Ir)

The Ir is used to measure the degree of how uncertain it is to identify the original value from the
anonymized value within the QID attributes [26]. The entropy value of I is 1 if all the gid attributes
are identical in the anonymized dataset for the same QID. The Ig(QID) value can be calculated by,
(1) calculating the likelihood of the presence of the original attribute in a record, (2) computing the sum
of the values of step (1) for each attribute in a record (denoted as P ponymizedrDD (gid)), (3) continuing the
steps (1) and (2) for each QID, and (4) computing the sum of the value of step for all records. Note that
if all attributes are changed between the original record and the anonymized record, the value of

PAnonymizedRDD is 1.

n
Ig = — ;1 PAnonymizedRDD(qid) log PAnonymizedRDD(qid)' 2)
qid=

From Equation (2), we obtain Ig(QID) for a single QID, however, we are interested in the Ir for
the whole anonymizedRDD. Thus, we calculate the Ir for anonymizedRDD by taking the average
of all QIDs. The entropy value of I is 0 if there are two identical records from the original dataset
to the anonymized dataset for a matching equivalent class. The maximum value of If is achieved
when the original record sets is completely different from the anonymized record sets for a given QID.

Higher value of I represents more uncertainty (i.e., higher privacy).

5.2. Utility Metrics

5.2.1. Discernibility Metric (D M)

DM reports the data quality resulting from the degree of data degradation, as a result of data
anonymization, of an individual tuple based on an equivalent class. Let EC be the set of equivalence
classes of a K-anonymized dataset. EC; is one of the equivalence classes of | EC |. The DM metric can
be expressed more formally for AnonymizedRDD as follows:

D Mscore = Z | Eci |2/ (3)
EC;e AnonymizedRDD
where i represents a gidy, . within an equivalent class. The data utility is associated with the DM
score. If DM score is high, it means the data utility is low (i.e., the original gidy, , has lost its original
values) while the lower the DM score represents the data utility is high.

5.2.2. Average Equivalence Class Size Metric (Cayc)

Cav measures data utility of attributes by calculating the average size of the equivalence class.
A higher data utility is typically achieved when the number of equivalence size is bigger because it is
more difficult to distinguish an attribute when there are large number of attributes. Therefore, it is
considered that the results of C4y scores are sensitive to the K group size [27]. We calculate C 4y
according to AnonymizedRDD as following.

AnonymizedRDD
Cavg = | y|EC| |/K, 4)

where | AnonymizedRDD| denotes the total number of records within the anonymized set while the
total number of equivalence classes is denoted by |EC].

Electronics 2020, 9, 1732 15 of 26

5.2.3. Minimal Distortion (MD)

The MD measures data utility of every quasi-identifiable attribute (4id) in a tuple (gid;,).
It defines data utility by comparing the rate where how many numbers of gid(s) in (gidy, ;) have
been made to be indistinguishable. This is done by measuring the level of distortion on each gid in
respect to a generalized level [28]. We calculate the distortion from the gidy, ;. of AnonymizedRDD in
comparison to InputRDD by using the following equation.

D]
MD =) MDIInputqidy,p.;, Anonymizedqidy,pi. i, (5)
i=1
where |D| depicts the number of tuples in InputRDD. Equation (5) defines MD for complete dataset.
The overall distortions between the anonymized dataset and the original dataset can be minimized by
decreasing the K group size.

5.2.4. Precision Metric (PM)

As cited in Reference [24], PM calculates the least distorted combination of attribute and tuples
from anonymized records. PM is typically considered to be sensitive to the GL. We define the equation
for PM;core according to AnonymizedRDD as follows.

qu:dtuple ZQIDTuple GL
qid=1 qidyypie=1 ‘DGH‘YidtL;plel >
7

PM =1- 7
e qldtuple-QIDTuple

(6)

where GL represents a generalization level (including suppression) which is defined in the DGH.
The attributes associated with a higher generalization level tends to provide a better precision score
than the attributes with a lower generalization level.

6. Experimental Results

This section first illustrates our experimental setups with the dataset and the system
environment configurations. Then, we discuss the results of privacy and utility scores we obtained.
The comprehensive experimental results of scalability, performance, and the impact of different cache
management strategies of Spark follows.

6.1. Datasets

In our study, we used two datasets: US Census dataset (i.e., Adult dataset) [29] and Irish Census
dataset [30]. We synthesized these datasets to increase the number of records to investigate different
aspects of performance. We used “Benerator”, which is a Java-based open-source tool, and the
guideline from Reference [31] to generate the synthesized datasets. Table 3 illustrates the details of
the both datasets including the quasi-identifiable attributes (QID), the number of district value, and
generalization levels. The sensitive attributes are set to the “Salary” in the Adult dataset and the “Field
of Study” in the Irish dataset.

6.2. System Environment Configurations

Our experiments were run on two different platforms. The first sets of experiment were executed
in a distributed processing platform environment using Spark while the other sets of experiment were
executed on a standalone desktop. The latter was used to validate the comparability of data privacy
and utility. The expectation was that the data privacy and utility scores should stay same between two
sets of experiments.

Electronics 2020, 9, 1732 16 of 26

Table 3. Datasets.

(a) Adult Dataset

QID Distinct Value GL
Age 74 4
Work Class 8 2
Education 16 4
Marital Status 7 3
Occupation 14 2
Gender 2 1
(b) Irish Dataset
QID Distinct Value GL
Age 70 4
Economic Status 9 2
Education 10 4
Marital Status 7 3
Industrial Group 22 2
Gender 2 1

We used Spark 2.1 where Yarn and Hadoop Distributed File System (HDFS) were configured
using Apache Ambari. HDFS was used to distribute data across a NameNode (worked as a master
node), a secondary NameNode, and six DataNodes (worked as worker nodes). 3 GB memory was
allocated to Yarn NodeManager while 1 GB memory was configured for each of ResourceManager,
Driver, and Executor memory. Table 4 (a) shows the Spark and Hadoop Parameters while Table 4 (b)
provides the details of the Spark cluster and standalone desktop setups. Windows 10 was used as a
standalone desktop. All experiments ran at least 10 times and the average was used as to warrant the
reliability and consistency of the results.

Table 4. Hardware and Cluster Parameters and Configuration.

(a) Spark and Hadoop Parameters

Spark Hadoop
Resource Manager Memory 1 GB NameNode 1
Driver Memory 1GB DataNode 6
Executor Memory 1GB Block Replication 3
Driver Cores 1 Block Size 128 MB
Executor Cores 1 HDFS Disk 18 TB
(b) Hardware Configuration
Configuration Cluster Node Standalone Desktop
Master ~ Worker
CPU (Cores) 32 8 12
Memory (GB) 64 32 32
Disk (TB) 24 8 4

Network (Gbit/s) 10 10 10

Electronics 2020, 9, 1732 17 of 26

6.3. Privacy and Utility

We discuss the results of running privacy and utility metrics in this section. We illustrated the
details of experimental in Table 5.

Table 5. Experimental Configurations for Data Privacy and Utility.

Metrics Anonymization Parameters Dataset Size Platform

K-value € {2, 5,10, 25,50, 75,100}, | QID | =5* Adult=30K Spark, Standalone
K-value € {2, 5,10, 25,50,75,100}, | QID |=5* Irish=30K Spark, Standalone
K-value € {2, 5,10, 25,50,75,100}, | QID | =5* Adult=30K Spark, Standalone
K-value € {2, 5,10, 25,50,75,100}, | QID |=5* Irish=30K Spark, Standalone

* Indicates the total number of attributes. Here there are 5 attributes in the experiment.

1 DM, Cayg, MD, PM

2 KLD, I

6.3.1. Privacy Results

The results of KLD metric on Adult dataset are shown in Figure 6a. The results show that the KLD
values stay identical between Spark and standalone environment which means the implementation
of data anonymization in Spark didn’t affect any privacy level. The KLD values only increased from
around K group size 2 to 5. After K-value (i.e., group size) = 5 the KLD values remain the same for
the rest of the K group size. The visible increase of KLD from K-value 2 to 5 (and slight changes
from 5 onward) is due to the active generalization level being applied. At approximately K-value 10,
all generalization has been applied and there are no more changes to the rest of the K-value thus KLD
value remains identical.

The results of KLD metric on Irish dataset are shown in Figure 6b. In general, the overall
observation of the changes of KLD values is similar to that of Adult dataset. However, we observe that
the average KLD values are much higher in the Irish dataset than Adult dataset. This is due that the
Irish dataset has more generalization levels for each QID which increase the chances of more number
of QIDs to share the same value. This increases a privacy level.

5 T T T 5 T T T T T
—— Adult—Spark r&/*//a—w—a
—— Adult—Standalone
4 * 4 *
3 * 3 *
A A
— =
» N
2 . 2+ .
1r | 1r —+— Irish—Spark
. —a— Irish—Standalone
0 | | | | | O | | | | |
0 20 40 60 80 100 0 20 40 60 80 100
K — value K — value

(@) (b)

Figure 6. Divergence for Adult and Irish datasets on both Spark and Standalone. (a) KL -Divergence in
Adult Dataset; (b) KL-Divergence in Irish Dataset.

Electronics 2020, 9, 1732 18 of 26

The results of Ir metric on Adult dataset are shown in Figure 7a. Again, the values between
the Spark and Standalone remain the same which ensures that the implementation of our data
anonymization technique in Spark didn’t destroy the privacy level. The average of Ir values in
Adult dataset is lower compare to Irish dataset.

5 5

451 5

S * * * 5 .
35 f f
—— Adult—Spark —— Adult—Spark
—— Adult—Standalone —&— Adult—Standalone
3 | | | | | 3 | | | | |
0 20 40 60 80 100 0 20 40 60 80 100
K —value K — value

@) (b)

Figure 7. Information Entropy for Adult and Irish datasets on both Spark and Standalone. (a) I in
Adult Dataset; (b) I in Irish Dataset

Our investigation reveals that Adult dataset contains relatively the small number of different
QIDs which share the same value as the result of anonymization. The smaller K value affects the
I value more compare to the greater K value due to the number of same values in QID attributes.
This affects in the higher I value as it is easier to identify a unique record within the same equivalent
class compare to Irish dataset which has a larger number of different QIDs that share the same value.

6.3.2. Utility Results

We illustrate the results of data utility metrics, based on the results obtained from Adult dataset
Figure 8a,c,e,g and from Irish dataset Figure 8b,d,f h.

We first discuss the data utility results of Adult dataset. The overall DM scores produced by both
Spark and standalone are relatively high at 0.9. Recall that DM measures the data utility of tuples
within an equivalent class. It is expected that the increased in the K group size would result in the
increase in the equivalent class. As the equivalent class becomes larger, there will be more changes
to make tuples to be more indistinguishable which would result in a high DM score—the results
represented in Figure 8a. In addition, there is a sudden increase in the DM score approximately around
K =5 both in the Spark and standalone. This illustrates that at K = 5 and onwards the degradation
of data has reached the maximum and there is no more generalization/suppression to be applied
(i.e., data utility is at the lowest).

The trend of C,4yg scores were similar to DM as both metrics were based on the calculation
according to the size of equivalence classes. We observe the trend where the data utility scores decline
when the size of K group increases as there are more matched distinct attributes. The average penalty
seem to remain same at around K = 10 with no changes in generalization. The rationale is that at
this point, there are no more generalizations or suppressions to apply to an equivalence class. As a
consequence, the average penalty for an equivalent class drops when the number of K group size
grows. This is seen in Figure 8b.

Electronics 2020, 9, 1732 19 of 26

Figure 8c illustrates the results of M D which measures the rate of data utility based on the changes
made to tuples from the original dataset to the anonymized dataset. It is expected that MD score
would increase when the K group size increases because there would be more attributes in a tuple not
matching between the original dataset and the anonymized dataset. MD tends to be more sensitive to
generalization levels because the attributes in a tuple applied with higher generalization levels would
have more dramatic changes.

Precision Metric (PM), in Figure 8d, demonstrates the level of distortion at the record level
(i.e., the combination of tuples and attributes). It is expected that the PM score will be higher as the
number of K group size increases as there are more records that have lost its original values. The PM
score is highly sensitive to GL for each gid. This is shown in Figure 8d where the PM score increases
as the number of K group size increases for both Spark and standalone. This is because the level of
GL applied in each gid is increased to its highest as the size of K group increases. We observe that at
K =25 and onward, the gid are appeared to have been generalized to its highest level as the PM score
stays the same.

1 1
% 09 ppe—eo—eo—Te— 9o % 09 & £ 8
i i
! ! @[
Q08 B Q081 b
—— Adult—Spark —&— Irish—Spark
—e— Adult—Standalone —e— Irish—Standalone
0.7 ‘ ‘ ‘ : : 0.7 ‘ ‘ : :
0 20 40 60 80 100 20 40 60 80 100
K —value K — value
a b
. | (a) . | (b)
0.5
o O
S S
= <
Q Q
0 -
—— Adult—Spark —&— Irish—Spark
—e— Adult—Standalone —e— Irish—Standalone
705 | T T T | 705 | T T T |
0 20 40 60 80 100 0 20 40 60 80 100
K — value K — value

(0)

Figure 8. Cont.

(d)

Electronics 2020, 9, 1732

20 of 26

0.8 0.8
071} - ~ -] 0.7+ y
g 0.6 [B g 0.6 - b
= =
= 05) . =05 .
04 y 041 |
—— Adult—Spark —&— Irish—Spark
—e— Adult—Standalone —e— Irish—Standalone
0.3 ‘ ‘ ‘ ‘ ‘ 03 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
K — value K — value
e f
0.8 T (© 0.8 T @
0.6 - * 0.6 - b
[= [=
g ke
g 04[8 g 04[8
& &
~ e ® ® ~
0.2 B 0.2 b
—— Adult—Spark —&— Irish—Spark
—eo— Adult—Standalone —e— Irish—Standalone
| I I I | | I I I |
00 20 40 60 80 100 00 20 40 60 80 100
K — value K — value
(8) (h)
Figure 8. Data Utility Metrics for Adult and Irish datasets on both Spark and Standalone.

(a) Discernibility Metric in Adult Dataset; (b) Discernibility Metric in Irish Dataset; (c¢) Average
Equivalence Class in Adult Dataset; (d) Average Equivalence Class in Irish Dataset; (e) Minimal
Distortion in Adult Dataset; (f) Minimal Distortion in Irish Dataset; (g) Precision Metric in Adult
Dataset; (h) Precision Metric in Irish Dataset.

6.4. Scalability, Performance and Caching

We ran three sets of experiments to understand scalability, performance, and cache management
as shown in Table 6. The execution time for running both FlatMapRDD and ReduceByKeyRDD
was measured.

Table 6. Experimental Configurations for Scalability, Performance and Caching (K-value € { 10, 20, 25,
50, 75, 100} on Spark).

Experiment Anonymization Parameters Dataset Size
Adult = 10M
1 QID Size Asetof | QID |€[1,2,3,4,5,6] %
Irish = 10M
Adult = (5M,10M, 20M, 30M, 40M, 50M)
2 Records Size |QID |=5* -
Irish = (5M,10M, 20M, 30M, 40M, 50M)
Adult = 10M
3 Cache Storage Levels | QID | =5 *, Memory, Disk, Memory_AND_Disk, OFF_HEAP Irish = 10M
rish =

* It indicates the number of attributes that were used in the experiments.

Electronics 2020, 9, 1732 21 of 26

6.4.1. Scalability

In the first set of experiments, we measure the scalability of SparkDA on Adult dataset and Irish
dataset by varying the size of QIDs. Before running a scalability test, we first run an experiment for
increasing the size of K group on a fixed number of QID to understand the relationship between
the execution time and the size of K group. Results show that the execution time appears not to be
affected by increasing K group size. This can be explained by following. The number of iterations
from the original data to fully anonymized dataset is decided based on the frequency of distinct tuples.
The number of K group size would increase the number of tuples. With the fixed number of QIDs,
the number of tuples that are increased doesn’t necessarily are distinct. This means the frequency
count stays the same. With the frequency count remaining the same, the same number of operations
are done irrespective to the increasing number of K-size thus the execution time stays the same.

In contrast, as soon as we increase the size of QIDs, the execution time starts to increase. This is
because the processing of QID involves applying generalization levels after counting for the number
of distinct attribute values which require many iterative operations. Adding more QIDs involved
generating more operations. Therefore, the execution time is increasing in the order of the increasing
number of QIDs. This is shown Figure 9a,b.

——Ql — Q2 ——Q3 ——Q1 ——Q2——Q3
——Q4-o-Q5—eQ6 ——Q4—--Q5-e-Q6
T T T T T T T T T

MW e, e 240 .

’Quj 220 - * ’g 220 - *

£ o e——o—— O —— o S

g 200 . £ 200 .

S0 e T £ 180 | |

= =

9] 9] */»\—’4*’/4(*

i 160 [~ * [160 t—aa————Aa———A—————A |
e Y —_
——b———— o ————— T —

140 140
| | | | | | | | | |
0 20 40 60 80 100 0 20 40 60 80 100
K — value K — value

(a) (b)
Figure 9. Execution Time vs. QID Size. (a) Adult Dataset; (b) Irish Dataset.

We examine the details of different QIDs from both datasets.
strong performance relationship between the distinctness of quasi-identifiers (i.e., often regarded

It appears that there is a

as cardinality) and the execution time. For example, the execution time has sharply increased between
Q4 and Q5 in Adult dataset. We observe that the new attribute “Occupation” in Q5 has a high
cardinality and it affected the execution time. In addition, we see that higher execution times in Adult
dataset as this dataset appears to have more variations of distinct values.

6.4.2. Performance

The second set of experiments is conducted to understand the performance of our proposal.
We first compare the performance of our approach against existing data anonymization approaches.
The list of existing approaches that were compared include: Spark based multi-dimensional
sensitivity-based anonymization (Spark MDSBA) [18], MapReduce based multi-dimensional
sensitivity-based anonymization (MR MDSBA) [15], Apache Spark based top-down specialization
(Spark TDS) [17], and MapReduce based multi-dimensional top-down specialization (MR MDTDS) [15].
In order to ensure the comparability of results across different approaches, we used the same

Electronics 2020, 9, 1732 22 of 26

workload and enforced our configuration to match with the experimental configuration discussed in
References [15,17,18] as much as possible.

Figure 10 illustrates the execution time obtained across different methods. As clearly seen,
our proposal outperforms other similar approaches by providing the lowest execution time. SparkTDS
appears to show the highest execution time. Our analysis demonstrates that SparkTDS updates the
score of all leaf which appears to be expensive additional overhead. This is because the increase in
the number of leaves and associated operations (e.g., applying generalization level at leave) naturally
demand more execution time especially for higher K-group sizes. The MapReduce-based approaches,
seen in MR MDTDS and MDSBA, appear to have a higher execution time mainly due to expensive
disk I/0O associated with intermediate data. Spark MDSBA performs relatively well when compared to
other approaches. We observed that Spark MDSBA uses a larger memory size compare to the dataset
size which results in reduced execution time.

MR MDTDS | [74.21 -

Spark TDS -| [94.6 i

MR MDSBA | | 242 I
Spark MDSBA - [11.5 =

SparkDA 4 [3.7 L
| | | | |

|
0 20 40 60 80 100

Figure 10. Performance comparison with existing approaches.

Secondly, we conducted a performance experiment to understand the impact of execution time
against the growing number of records on the fixed size of 5 QID attributes. As seen in Figure 11a,b,
the execution time remains same irrespective to the size of K group. This appears that some operations
(e.g., involved in QID generalization) are cached in memory then re-used and this does not affect too
much on the execution time. However, this changes as soon as the number of records is increased.
The execution time linearly increases as the number of records increase in both datasets.

——5M —&-10M ——20M ——5M —&=-10M ——20M
—— 30M —e—40M —— 50M ——30M —e— 40M —— 50M
T T T T T T T T T T
800 - e e & | 800 ®—e® =%
) Fl
)) b—poo——o—— o o
g 600 o—eo—O——o— o - g 600 8
g g R —
o — e o
S Q
E 400 f £ 400f Ao o s
|9} |9}
Q Q
& &
= = = -y 5 8
200 B—°° S = = 200 |- |
C—o© —o— —
| | | | | | | | | |
0 20 40 60 80 100 0 20 40 60 80 100
K — value K — value
(a) (b)

Figure 11. Execution Time vs. Record Size. (a) Adult Dataset; (b) Irish Dataset.

Electronics 2020, 9, 1732 23 of 26

6.4.3. Caching

Spark offers a multiple cache storage levels to speed up the process of the same RDDs that are
accessed multiple times. The Spark cache strategies can be categorized as follows [14].

e MEMORY_ONLY: RDD partitions are cached in memory only.

e OFF_HEAP: RDD partitions are cached outside the process heap (of JVM) in native memory
therefore they are not processed by the garbage collector.

e MEMORY_AND_DISK: RDD partitions are cached in memory. If enough memory is not available,
some RDD blocks (usually based on Least Recently Used, or other strategies [13] from memory
are written off to disk.

e DISK_ONLY: RDD partitions are cached on disk only.

During the anonymization process, the two RDD transformations we utilize, FlatMapRDD and
ReduceByKeyRDDs, are accessed multiple times for generalization from the main application SparkDA.
We have set up our experiment with the different cache management options. The results are shown
in Figure 12a,b. In general, the memory-based strategies where the RDD blocks are stored in the
memory, such as MEMORY_ONLY and OFF_HEAP, outperformed compared to the cached in disk.
Understandably, in-memory inside the JVM cache strategy MEMORY_ONLY took the least execution
time compared to out of JVM memory cache strategy used by OFF_HEAP. The MEMORY_AND_DISK
took more time than memory-based strategies but less than DISK_ONLY as expected as this strategy
allows the switch from memory to disk when the allocated memory is fully consumed by RDD blocks.
Comparing the overall cache performance, the average execution time for Irish dataset was less than
Adult dataset. The higher generalization levels for different attributes in Adult dataset has contributed
toward the increase in the execution time as there were more ReduceByKeyRDD operations for the
generalization levels defined in the DGH thus the updates for attributes were more frequent.

—— MEMORY_ONLY —e— MEMORY_ONLY
—_ OFF_HEAP —— OFF_HEAP
—e— MEMORY_AND_DISK —e— MEMORY_AND_DISK
—»— DISK_ONLY —»— DISK_ONLY
T T T T T T
240 | . 240 | |

220 | * 220 | *

200 |- 5 200 |- 5

Execution time (Sec)
Execution time (Sec)

g2 0
180 | = 180 |- =

0 20 40 60 80 100 0 20 40 60 80 100

K — value K — value

(a) (b)

Figure 12. Execution Time vs. Cache Strategies. (a) Adult Dataset; (b) Irish Dataset.

7. Conclusions and Future Work

This work introduces “SparkDA” a new novel data anonymization approach designed to take
the full advantage of Spark platform to generate privacy-preserving anonymized dataset in the
most efficient way possible. Our approach is based on two RDD transformations FlatMapRDD
and ReduceByKeyRDD with a better partition control, in-memory processing, and efficient cache
management. These new innovations contribute towards reducing many performance overheads

Electronics 2020, 9, 1732 24 of 26

associated in other similar approaches implemented in MapReduce. The set of experimental results
showed that our proposal provides high performance and scalability while supporting high data
privacy and utility required by any data anonymization techniques. We also provided insights of
a set of performances associated with different memory management strategies offered by Spark
and discovered that a side-effect could occur when there are too excessive demands to save data to
executor’s memory.

In future, we plan to extend our study to implement data anonymization strategy based on
the subtree generalization scheme [1]. This new approach will solve the current limitation of the
full-domain based generalization approach where attribution values are generalized equally without
considering their respective parents’ node which results in the loss of data utility to some degree.
We also plan to extend our study to implement a more comprehensive data anonymization strategy
for multi-dimensional datasets.

Author Contributions: Conceptualization, S.U.B. and].J.-J.; methodology, S.U.B.; software, S.U.B.;
validation, S.U.B. and].J.-J.; formal analysis, S.U.B; investigation, S.U.B.; resources, S.U.B. and].]J.-].;
writing—original draft preparation, S.U.B.; writing—review and editing, J.J.-J.; visualization, S.U.B.; supervision,
J.J.-J.; project administration, S.U.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bayardo, RJ.; Agrawal, R. Data privacy through optimal k-anonymization. In Proceedings of the 21st
International Conference on Data Engineering (ICDE’05), Tokoyo, Japan, 5-8 April 2005; IEEE: Piscataway,
NJ, USA, 2005; pp. 217-228.

2. Fung, B.C;, Wang, K; Yu, PS. Top-down specialization for information and privacy preservation.
In Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, Tokoyo, Japan,
5-8 April 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 205-216.

3. Sweeney, L. k-anonymity: A model for protecting privacy. Int. |. Uncertain. Fuzziness Knowl. Based Syst.
2002, 10, 557-570. [CrossRef]

4. Machanavajjhala, A.; Gehrke, J.; Kifer, D.; Venkitasubramaniam, M. 1-diversity: Privacy beyond k-anonymity.
In Proceedings of the 22nd International Conference on Data Engineering (ICDE’06), Atlanta, GA, USA,
3-7 April 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 24-24.

5. Li, N; Li, T, Venkatasubramanian, S. t-closeness: Privacy beyond k-anonymity and l-diversity.
In Proceedings of the 2007 IEEE 23rd International Conference on Data Engineering, Istanbul, Turkey,
11-15 April 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 106-115.

6. Kelly, D.J.; Raines, R.A.; Grimaila, M.R.; Baldwin, R.O.; Mullins, B.E. A survey of state-of-the-art in
anonymity metrics. In Proceedings of the 1st ACM Workshop on Network Data Anonymization, Alexandria
& Fairfax, VA, USA, 27-31 October 2008.

7. Sun, X.; Wang, H.; Li, J.; Truta, TM. Enhanced p-sensitive k-anonymity models for privacy preserving data
publishing. Trans. Data Priv. 2008, 1, 53—66.

8. Dean, J.; Ghemawat, S. MapReduce: simplified data processing on large clusters. Commun. ACM 2008,
51, 107-113. [CrossRef]

9. Bazai, S.U.; Jang-Jaccard, J.; Wang, R. Anonymizing k-NN Classification on MapReduce. In Proceedings of
the International Conference on Mobile Networks and Management, Melbourne, Australia, 13-15 December
2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 364-377.

10. Bazai, S.U.; Jang-Jaccard, J.; Zhang, X. A privacy preserving platform for MapReduce. In Proceedings of the
International Conference on Applications and Techniques in Information Security, Auckland, New Zealand,
67 July 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 88-99.

11. Zhang, X,; Liu, C.; Nepal, S.; Yang, C.; Dou, W.; Chen, J. Combining top-down and bottom-up: Scalable
sub-tree anonymization over big data using MapReduce on cloud. In Proceedings of the 2013 12th IEEE
International Conference on Trust, Security and Privacy in Computing and Communications, Melbourne,
Australia, 16-18 July 2013.

http://dx.doi.org/10.1142/S0218488502001648
http://dx.doi.org/10.1145/1327452.1327492

Electronics 2020, 9, 1732 25 of 26

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Grolinger, K.; Hayes, M.; Higashino, W.A.; L'Heureux, A.; Allison, D.S.; Capretz, M.A. Challenges for
mapreduce in big data. In Proceedings of the 2014 IEEE World Congress on Services, Anchorage, AK, USA,
27 June-2 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 182-189.

Zaharia, M.; Chowdhury, M.; Franklin, M.].; Shenker, S.; Stoica, I. Spark: Cluster computing with
working sets. HotCloud 2010, 10, 95.

Shi, J.; Qiu, Y.; Minhas, U.E; Jiao, L.; Wang, C.; Reinwald, B.; Ozcan, F. Clash of the titans: Mapreduce vs.
spark for large scale data analytics. Proc. VLDB Endow. 2015, 8, 2110-2121. [CrossRef]

Al-Zobbi, M.; Shahrestani, S.; Ruan, C. Improving MapReduce privacy by implementing multi-dimensional
sensitivity-based anonymization. J. Big Data 2017, 4, 45. [CrossRef]

Antonatos, S.; Braghin, S.; Holohan, N.; Gkoufas, Y.; Mac Aonghusa, P. PRIMA: An End-to-End Framework
for Privacy at Scale. In Proceedings of the 2018 IEEE 34th International Conference on Data Engineering
(ICDE), Paris, France, 16-19 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1531-1542.

Sopaoglu, U.; Abul, O. A top-down k-anonymization implementation for apache spark. In Proceedings of
the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11-14 December 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 4513-4521.

Al-Zobbi, M.; Shahrestani, S.; Ruan, C. Experimenting sensitivity-based anonymization framework in apache
spark. J. Big Data 2018, 5, 38. [CrossRef]

Pomares-Quimbaya, A.; Sierra-Munera, A.; Mendoza-Mendoza, J.; Malaver-Moreno, J.; Carvajal, H.;
Moncayo, V. Anonylitics: From a Small Data to a Big Data Anonymization System for Analytical Projects.
In Proceedings of the 21st International Conference on Enterprise Information Systems, Heraklion, Greece,
3-5 May 2019; pp. 61-71.

Bazai, S.U.; Jang-Jaccard, J. SparkDA: RDD-Based High-Performance Data Anonymization Technique for
Spark Platform. In Proceedings of the International Conference on Network and System Security, Sapporo,
Japan, 15-18 December 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 646—662.

Chakravorty, A.; Rong, C.; Jayaram, K.; Tao, S. Scalable, Efficient Anonymization with INCOGNITO-
Framework & Algorithm. In Proceedings of the 2017 IEEE International Congress on Big Data
(BigData Congress), Honolulu, HI, USA, 25-30 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 39-48.
Nezarat, A.; Yavari, K. A Distributed Method Based on Mondrian Algorithm for Big Data Anonymization.
In Proceedings of the International Congress on High-Performance Computing and Big Data Analysis,
Tehran, Iran, 23-25 April 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 84-97.

Zhang, X,; Yang, L.T.; Liu, C.; Chen, J. A scalable two-phase top-down specialization approach for data
anonymization using MapReduce on cloud. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 363-373. [CrossRef]
Sweeney, L. Achieving k-anonymity privacy protection using generalization and suppression. Int.].
Uncertain. Fuzziness Knowl. Based Syst. 2002, 10, 571-588. [CrossRef]

Kifer, D.; Gehrke, J. Injecting utility into anonymized datasets. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, Chicago, IL, USA, 27-29 June 2006; ACM: New York, NY,
USA, 2006; pp. 217-228.

Ashwin, M.; Daniel, K.; Johannes, G.; Muthuramakrishnan, V. l-diversity: Privacy beyond k-anonymity.
ACM Trans. Knowl. Discov. Data 2007, 1, 1-52.

LeFevre, K.; DeWitt, D.J.; Ramakrishnan, R. Mondrian multidimensional k-anonymity. In Proceedings of
the 22nd International Conference on Data Engineering (ICDE’06) 2006, Atlanta, GA, USA, 3-7 April 2006;
ICDE: Oslo, Norway, 2006; Volume 6, p. 25.

Li, J., Wong, R.C.W,; Fu, AW.C,; Pei,]. Anonymization by local recoding in data with attribute hierarchical
taxonomies. IEEE Trans. Knowl. Data Eng. 2008, 20, 1181-1194.

Asuncion, A.; Newman, D. UCI Machine Learning Repository. Available online: https://archive.ics.uci.
edu/ml/index.php (Accessed on 21 July 2020)

Central Statistics Office. This is Ireland: Highlights from Census 2011, Part 1. Available online:http:
/ /www.cso.ie/en/databases/ (Accessed on 25 July 2020)

http://dx.doi.org/10.14778/2831360.2831365
http://dx.doi.org/10.1186/s40537-017-0104-5
http://dx.doi.org/10.1186/s40537-018-0149-0
http://dx.doi.org/10.1109/TPDS.2013.48
http://dx.doi.org/10.1142/S021848850200165X
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://www.cso.ie/en/databases/
http://www.cso.ie/en/databases/

Electronics 2020, 9, 1732 26 of 26

31. Ayala-Rivera, V.; McDonagh, P.; Cerqueus, T.; Murphy, L. A systematic comparison and evaluation of
k-anonymization algorithms for practitioners. Trans. Data Priv. 2014, 7, 337-370.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Background
	MapReduce vs. Spark
	Data Anonymization

	SparkDA
	Basic Symbols and Notations
	RDD-Based Data Anonymization
	FlatMap Transformation (FlatMapRDD)
	ReduceByKey Transformation (ReduceByKeyRDD)

	Overall SparkDA Scheme

	Privacy vs. Utility Trade-Offs
	Privacy Metrics
	Kullback-Leibler-Divergence (KLD)
	Information Entropy (IE)

	Utility Metrics
	Discernibility Metric (DM)
	Average Equivalence Class Size Metric (CAVG)
	Minimal Distortion (MD)
	Precision Metric (PM)

	Experimental Results
	Datasets
	System Environment Configurations
	Privacy and Utility
	Privacy Results
	Utility Results

	 Scalability, Performance and Caching
	Scalability
	Performance
	Caching

	Conclusions and Future Work
	References

