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Abstract: Intrusion Detection Systems (IDSs) automatically analyze event logs and network traffic in
order to detect malicious activity and policy violations. Because IDSs have a large number of false
positives and false negatives and the technical nature of their alerts requires a lot of manual analysis,
the researchers proposed approaches that automate the analysis of alerts to detect large-scale attacks
and predict the attacker’s next steps. Unfortunately, many such approaches use unique datasets
and success metrics, making comparison difficult. This survey provides an overview of the state
of the art in detecting and projecting cyberattack scenarios, with a focus on evaluation and the
corresponding metrics. Representative papers are collected while using Google Scholar and Scopus
searches. Mutually comparable success metrics are calculated and several comparison tables are provided.
Our results show that commonly used metrics are saturated on popular datasets and cannot assess the
practical usability of the approaches. In addition, approaches with knowledge bases require constant
maintenance, while data mining and ML approaches depend on the quality of available datasets, which,
at the time of writing, are not representative enough to provide general knowledge regarding attack
scenarios, so more emphasis needs to be placed on researching the behavior of attackers.

Keywords: targeted attacks; attack scenario; intrusion detection; alert correlation; cyber situational awareness;
attack projection

1. Introduction

The disappointing truth about cyber security today is that targeted cyberattacks, which are usually
motivated by financial gain, often go undetected for weeks, even months [1], allowing for attackers
to do a lot of damage. If attacks were discovered at an early stage, the damage they cause could
be significantly reduced. At the time of writing, attacks are primarily detected using network and
host intrusion detection systems (NIDS and HIDS, respectively). Network intrusion detection systems
monitor network traffic, while host intrusion detection system monitor different data sources on a host
(logs, network traffic, system parameters). They both try to detect incidents primarily using rules that
describe what incidents are, with more and more tools appearing on the market trying to use anomaly
detection. No matter the approach, those tools generate a lot of noise, visible in high amount of detections
and false alarms, and often provide multiple detections of the same attack. Finally, they do not provide
sufficient insights regarding security-related events they detect, resulting in attacks being overlooked
by the security personnel [2]. The main problem is that attackers, while trying to achieve their goals by
going through an attack scenario, often cause a lot of low-level incidents to be detected. We define an
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attack scenario as a partially ordered collection of attack steps or actions, such as information gathering,
exploitation, malware installation, and credential misuse, which particular attackers perform in their
attempt to compromise an organization. Examples of several attack scenarios can be found in [3]. IDSs can
not detect such scenarios on their own, because they observe individual events and network connections,
and can potentially detect attack techniques, technical errors, and anomalies they contain. An attack
scenario, on the other hand, combines multiple attack techniques to reach the goals of the attacker,
and usually results in multiple IDS alerts. In order to overcome those issues, approaches appeared that try
to gain higher-level insights by combining multiple low-level incidents into larger attack scenarios that
caused them. They work with alerts that have already been generated by an IDS component. Furthermore,
when certain attack scenario is detected, it is—at least theoretically—possible to predict its future phases.
Predicting future phases of attacks is usually called attack projection.

As researchers use a plethora of different success metrics and datasets to evaluate their approaches,
it is not immediately clear how to compare their results and draw conclusions about them. In many
cases, articles avoid using previously defined metrics and only report results using their own metric,
making their results biased. The main goal of this survey is to enumerate and describe frequently used
datasets and success metrics, and provide expanded comparison tables in an attempt to reduce the bias of
published work in this research area.

Overall, this survey presents an overview of cyberattack scenarios’ detection and projection research
and its state-of-the-art, together with an overview of the underlying concepts and practical problems.
Because of this focus on high-level attack scenarios, low-level intrusion and anomaly detection methods
are outside of the scope of this survey. Unlike other related surveys, this survey makes a more thorough
effort of comparing the results of the various approaches and the available evaluation metrics, so the main
contributions of this survey are a unified comparison of results of relevant papers and the evaluation
metrics in this research area.

The structure of the paper is as follows. Section 2 gives some preliminaries by describing the goals
of attack scenario detection and projection in the context of cyber situational awareness. The following
section, Section 3 gives an overview of novel existing surveys in this area, which constitute related
work. In Section 4, relevant evaluation metrics for alert correlation and attack scenario detection are
discussed and compared. Section 5 presents some of the commonly used datasets, as well as some
novel datasets that show potential, with their pros and cons. After that, Section 6 describes our methods
and gives a narrative overview of selected research papers published in this area, beginning from the
early, pioneering approaches, and finishing with the state-of-the-art at the time of writing. The central
contribution of this paper is given in Section 7, where common evaluation measures are calculated and
displayed on several comparison tables. Finally, the paper gives a discussion in Section 8, and closes with
the conclusion in Section 9, followed by a list of references.

2. Preliminaries: Achieving Cyber Situational Awareness

Cyber situational awareness (CSA) is the application of the model of situational awareness (SA),
elaborated in the military domain by Endsley [4], in the context of information systems. The original SA
model consists of three levels: (i) perception, (ii) comprehension, and (iii) projection, and it considers SA
separately from decision-making and performance outcome, as shown in Figure 1. Perception focuses
on gathering elements that contribute to the current situation, upon which comprehension then builds a
meaningful representation of the situation. Finally, once the current situation has been comprehended,
projection aims to foresee the possible future developments of the situation and its elements [5].
Because humans have a very limited attention and working memory capacity, Endsley suggested that
systems should be designed to automate some SA tasks, and fuse the numerous and diverse elements
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of the situation into a small and manageable number of meaningful objects [4]. This would allow
human attention to shift towards the most relevant aspects of the situation, consequently improving
the decision-making process.

Figure 1. Endsley’s model of situational awareness.

The following three subsections describe some aspects of CSA that are closely related to the scope of
this paper: (A) attack detection, (B) attack projection, and (C) the problem of uncertainty. Attack detection
includes perception and comprehension, while attack projection includes the projection level of CSA.
The problem of uncertainty refers to uncertainty that is present in all CSA tasks that can distort CSA and
lead to misinterpretation of the current situation.

2.1. Attack Detection

The primary means of performing attack detection is via intrusion detection systems, which are in
CSA considered to be a simple sensors, belonging to the perception level of CSA [6]. The first big problem
with intrusion detection systems in practice is the high number of generated low-level alerts making their
analysis hard [2] and prone to errors [6]. IDS systems also suffer from large false positive (FP) and false
negative (FN) error rates [7,8].

The second problem is the difficulty of comprehending the alerts’ meaning and context, vital for
making decisions upon which appropriate actions are taken, which is, IDSs often fail to lead to the
detection of sophisticated attacks [9]. To make matters worse, the investigation of numerous false alerts,
as well as the resulting quarantining of suspicious computer systems, can end up being very expensive for
organizations [9]. Because IDSs generate alarms for individual events, these alarms can be grouped and
analyzed to produce high-level information that is more comprehensible for personnel [6]. For example,
one attack could result in numerous IDS alarms, and it would be beneficial to group those alarms according
to attacks they probably resulted from [5].

Tadda and Salerno [5] analyzed the application of SA principles to the cyber domain, specifically in
the detection of multi-stage attacks. They formulated the goal of CSA in cyber defense as the creation of
attack tracks. Attack tracks are hypotheses of complex multi-stage attacks containing all of the supporting
evidence extracted from the system’s data. Essentially, events and alerts are grouped and correlated
according to a potential multi-stage attack scenario they may be resulting from.

2.2. Attack Projection

The highest level of CSA is attack projection, as summarized by Yang et al. [10]. Attack projection
aims to predict the future phases of an attack by combining the observed malicious activities with the
knowledge about the system’s configuration and vulnerabilities, and the attacker’s behavior patterns.
In theory, taking a proactive approach and predicting the next moves of an attacker should be possible [11].
Problems that make attack projection hard in practice are sensor inaccuracy, attack obfuscation,
development of new attack strategies over time, and a lack of datasets required for comprehensive
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evaluation [10]. Sensor inaccuracy refers to FP and FN errors, while the obfuscation and development of
new attacks stem from the attacker actively trying to conceal the attack [10].

A recent survey of attack projection was made by Husák et al. [11]. In addition to attack projection,
they also surveyed related tasks, specifically intention recognition, intrusion prediction, and network
security situation forecasting. The task of intention recognition, as described by Ahmed and Zaman [12],
focuses on estimating the ultimate goal of an attack, and as such is closely related to attack projection.
Intrusion prediction [13] attempts to predict future intrusions based on the knowledge of past intrusions
combined with various additional data, while network security situation prediction [14] tries to forecast
the overall future tendency of the risk of the network being attacked. The tasks of intrusion prediction and
network security situation forecasting are outside of the scope of this survey.

2.3. The Problem of Uncertainty

The greatest challenge in CSA, which manifests in all CSA tasks, is managing uncertainty [15],
which can distort SA and mislead the interpretation of the situation [16]. One type of uncertainty stems
from the lacking knowledge about existing vulnerabilities and the chances of their exploitation, which also
includes the security awareness of the organization’s employees, depending on which they could be
more or less susceptible to social engineering [15]. Li et al. [15] refer to this type of uncertainty as static
uncertainty. In contrast, dynamic uncertainty occurs as a consequence of attackers actively trying to avoid
detection, and manifests itself during the intrusion, making the attack very hard to detect and trace, as well
as after the intrusion has ended during analysis and forensics. They argue that cyber defense systems
must employ approaches that can deal with the all-present uncertainty, such as e.g., Bayesian networks,
and that deterministic approaches, such as attack graphs, are not well suited for practical use in intrusion
detection and response.

3. Related Work

There are several relevant surveys regarding cyber-attack detection and prediction. In this paper,
we have chosen three recent surveys that we perceived as being of high quality, as related work. Table 1
gives an overview of those surveys with regard to their scope, classes of methods and systems they
proposed, presented insights to evaluate efficiency, and some of the open research problems that their
authors identified. We also elaborate the differences between our survey and four other surveys later in
this section. It is important to note that surveys of low-level intrusion and anomaly detection methods that
do not deal with high-level scenarios of attacks are outside the scope of this survey.

Salah et al. [17] proposed a classification of various products that implement alert correlation
capabilities, such as IDS, Security Information, and Event Management (SIEM) systems, and network
management tools, with regard to the number of different information sources that they use, type of
application, correlation method, and their architecture. Depending on the architecture, they can be either
centralized, decentralized, or hierarchical. Information sources discriminate between systems using single
and multiple source types. Correlation methods are given in Table 1. Information source types that they
reviewed are the following:

• alert database containing alerts from low-level sensors such as Network Intrusion Detection Systems
(NIDS) or Host Intrusion Detection Systems (HIDS);

• topology information, such as hosts, connectivity, etc.;
• vulnerabilities database, e.g., Common Vulnerabilities and Exposures (CVE) database;
• trouble ticketing system information;
• ontology database, with domain semantics that can be used for automatic inference;



Electronics 2020, 9, 1722 5 of 32

• cases database, containing rules for associating alerts with common and known problems; and,
• knowledge representation, rules and models either put together by experts or inferred from datasets,

which are used for correlating alerts.

Finally, they proposed an alert correlation process model that consists of four phases: (i) alert
preprocessing, (ii) alert reduction, (iii) alert correlation, and (iv) alert prioritization; and made an analysis
of various products with regard to the proposed dimensions. Our survey differs from this survey in
that, while they focus on correlation systems’ architecture, we focus on success metrics and compare the
approaches’ results.

Hubballi et al. [18] focused on the approaches for reducing false positive alerts, and gave a broader
view and classification than the survey mentioned earlier. This survey also gave an overview of the use of
the various techniques in commercial SIEM systems together with their performance scores. This survey
focuses on approach classification and determining the pros and cons of various classes, and unlike our
survey, does not deal with results of their evaluation.

Husák et al. [11] has the closest scope to the scope of this paper. They analyze attack projection,
attack prediction, intention recognition, and network security situation forecasting. In contrast to
the previously listed surveys [17,18], this survey gives a summary of the results from the published
approaches, but, unlike our survey, does not examine those results and limits itself to a small set of metrics.
Additionally, Husák et al. [11] analyze several novel proposals that we omitted here, most of which are
either out of scope of our paper or use their own datasets or evafluation. The readers are encouraged to
refer to Tables 2–5 in that survey for an overview of evaluation details for papers that are not covered
here. Their survey also includes attack projection related research and concludes that it has seen much
less research than attack detection [11]. Husák states that the main research trend in this area is using
methods, such as e.g., data mining, in order to discover new attack patterns from datasets. It is also worth
mentioning that Husák in [19] already did some work consistent with that trend. Finally, one of their
conclusions was that approaches published in modern papers support real-time operation, while the older
ones did not focus on it as much.

There was also a recent survey by Navarro et al. [20], which focused on problems of reproducibility
and replicability, and the properties of datasets the approaches used. Although they covered a large
number of papers and datasets, they did not deal with evaluation metrics and results. An older survey by
Mirheidari et al. [21] examined the properties of different classes of algorithms used in alert correlation,
such as their memory requirements and ability to identify false positive detections and previously not
seen attacks, but did not examine and compare individual approaches and their evaluation methods.

We also found several surveys regarding collaborative intrusion detection systems (CIDSs), such as
[22,23], but these primarily focus on correlation and integration of alerts from distributed intrusion
detection sensors with the goal of detecting coordinated distributed attacks, rather than reconstructing
attack scenarios.

Although the surveys differ in scope and depth, a large portion of each focuses on the same set of
problems common to attack detection and projection. Various authors came to similar conclusions about
the articles published in this area, especially with regard to the open research questions. The recurring
themes are the lack of proper evaluation methods and success measures, low quality of available datasets,
bad performance in practical operation, scalability issues, as well as the detection of unknown attacks.
Problems with performance in practical application and the discovery of unknown attacks could stem from
the flaws in the way that the attacks and attackers have been researched and modeled, and further research
on attackers’ behavior could result in better models and improvements in the aforementioned areas.
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Table 1. Overview of analyzed surveys in attack detection and prediction.

Salah et al. [17] Hubballi and
Suryanarayanan [18] Husák et al. [11]

Year 2013 2014 2018

Scope Alert correlation
False alert minimization
(a subset of more specific
methods)

Attack projection
Attack intention recognition
Attack prediction
Network security situation

forecasting

C
la

ss
es

of
m

od
el

s
/

m
et

ho
ds

/
te

ch
ni

qu
es Similarity based methods

Attribute based
Temporal based
Sequential based
Pre-post conditions
Graphs
Codebook
Markov models
Bayesian networks
Neural networks
Others

Case based methods
Expert based

Expert rules
Pre-defined scenarios

Inferred knowledge

Signature enhancement
Stateful signatures
Vulnerability signatures
Alarm Mining

Clustering
Classification
Neural Network
Frequent pattern mining

Alarm Correlation
Multi-Step
Knowledge based
Complementary evidence

based
Causal relation based
Fusion based
Attack Graph based
Rule based

Alarm Verification
Flow analysis
Alarm Prioritization
Hybrid methods

Discrete Models
Graph models

Attack Graphs
Bayesian Networks
Markov Models

Game Theoretical models
Continuous Models

Time Series
Grey Models

Machine Learning and Data
Mining

Machine Learning
Neural Networks
SVM
(etc.)

Data Mining
Other Approaches

(e.g., similarity based
correlation)

N
ot

es
re

ga
rd

in
g

ev
al

ua
ti

on

- -

Evaluation in surveyed proposals:
Proof-of-concept
Testbed
Live data (e.g., honeynet)
Public Dataset (DARPA, etc.)
Custom Dataset
Virtual Attacks
Comparison with other algorithms

Id
en

ti
fie

d
op

en
re

se
ar

ch
pr

ob
le

m
s

Lack of standard strategies
for evaluating performance
and effectiveness

Development of scalable
system architectures

Improving FP reduction

Development of new
strategies for coping with
unseen types of attacks

Evaluation on a common
dataset

Analysis of approach
performance

Standardization of formats
and reports

Evaluation of systems’
real time operation

Adapting to changes in the
environment

Methods relying on attack
models require continuous
model maintenance

Low quality of evaluation datasets

Low prediction accuracy and
usability in practice

Evaluation of methods on a
common dataset with common
and meaningful metrics

Discovering novel attacks and
security paradigms
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This survey selects representative papers regarding attack scenario detection and projection, and it
focuses on presenting their crucial points and practical aspects. Our methods are described in Section 6.1.
Unlike the other related surveys identified in this section, this survey makes a more thorough effort of
comparing the results of the various approaches and their evaluation methods in the context of situational
awareness. This also includes the comparison of approaches over several datasets and success metrics,
which was not provided by any of the other surveys reviewed in this section. Finally, our survey contains
several recent approaches that were not included the surveys above. The details of our contributions are
further discussed in Section 7.

4. Evaluation Metrics

Metrics for cyberattack scenario detection are needed in order to compare the success of various
approaches. Because the problem is not a simple matter of TP and TN errors, like in low-level intrusion
detection, each of them measures the success in terms of achieving a goal and poses a certain research
challenge. This section gives an overview of some of the proposed metrics for cyberattack scenario
detection. Similarly to FP and FN errors in low-level intrusion detection, Tadda and Salerno [5,24]
defined success metrics in the context of systems providing high-level CSA. These metrics are divided into
confidence, purity, cost utility, timeliness, and effectiveness metrics, and share similarities with success
metrics used in data science. All of them rely on the notion of attack tracks described earlier. However,
the survey of the representative papers has shown that, out of those metrics, only the confidence metrics,
namely precision, are somewhat used in practice. This can be seen in Table 2, where the metrics usage
frequency among the surveyed articles is shown.

Table 2. Usage of evaluation metrics in the surveyed papers.

Metric Used in # Approaches References

Reduction (8) 6 [25–30]
RC (5) 4 [31–38]
RS (6) 4 [31–38]

Episode Reduction (9) 2 [39,40]
QoA (7) 1 [41]

Recall (1) 0 -
Precision (2) 0 -

Fragmentation (3) 0 -
Misassociation (4) 0 -

Confidence metrics score the detection of real attack tracks. Tadda and Salerno define four confidence
metrics: recall (1), precision (2), fragmentation (3), and mis-association (4).

Recall =
#Correct Detections

#Known Attack Tracks
(1)

Precision =
#Correct Detections

#Detected Attack Tracks
(2)

Fragmentation =
#Fragments

#Known Attack Tracks
(3)
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mis-association =
#Detections neither Correct nor Fragments

#Detected Attack Tracks
(4)

In expressions (1)–(4), known attack tracks (KAT) are the attack tracks labeled in the dataset as the
ground truth, detected attack tracks (DAT) are those detected by the system, correct detections (CD) are
detected attack tracks that are at the same time known attack tracks, and fragments (F) are detections that
should have been detected as a part of a larger attack track.

Ning et al. [34] instead used completeness (5) and soundness (6) measures for alert correlation.

RC =
#Correctly Correlated Alerts

#Related Alerts
(5)

RS =
#Correctly Correlated Alerts

#Correlated Alerts
(6)

In expressions (5) and (6), correlated alerts (CA) are alerts that the system classified as part of the
attack tracks, related alerts (RA) are alerts that belong to the real attack tracks in the dataset, and correctly
correlated alerts (CCA) are alerts classified into correct attack tracks [34].

Yu and Frinckle [41] used a metric that aims at scoring the quality of the alerts that are produced by
alert correlation systems from the viewpoint of the security analyst, called the Quality of Alers (QoA) (7).

QoA = 100% − FP + FN + RT
TA

(7)

In expression (7), FP is the number of the false positive alerts generated by the system, FN is the
number of the false negatives, RT is the number of repeated true alerts, and TA is the number of real
intrusive actions [41]. To the best of our knowledge, only Yu and Frinckle use this metric, but it nonetheless
captures important information regarding the evaluated system, and calculating it for other papers is
possible. It is worth noting that this measure is high if the number of errors produced by the system is low,
but also indicates that the number of repeated true alerts should be low.

Some authors, such as [27], aim at minimizing the number of alerts, and measure the amount of
reduction between the original number of alerts and the number of new, often high-level alerts, which result
from the alert correlation systems. Although this type of reduction measurement (8) is common among
most of the surveyed papers, some of them, such as [39,40], use another variant, called episode reduction,
abbreviated here as ER (9).

Reduction = 100% − Number of Output Alerts
Number of Input Alerts

(8)

ER = 100% − Number of Episodes With Reduction
Number of Input Episodes

(9)

In [39], episodes are mined collections of alerts that could potentially represent multi-step attack
scenarios. Episode reduction in those papers refers to filtering out meaningless episodes and benign
episodes. In addition to episode reduction, the papers [39,40] also use other episode-related metrics,
but as they are highly dependent on the methodology and circumstances, they cannot be directly used for
comparison with other papers.

Another evaluation metric used in attack projection, such as in the approach that was proposed by
Fava et al. [42], is the ratio of correct predictions of the next scenario steps. Farhadi et al. [43] went for a
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more loose approach, in which they also measured the ratio of predictions in which the real next attack
scenario step was one of the two predicted as most probable. Approaches that include an implementation,
such as e.g., Wang et al. [44], often benchmark performance in terms of latencies on expected real-time
load. In-depth comparison of attack projection metrics and evaluation results will be left for future work.

Some metrics above are representations of other metrics used in artificial intelligence, with a difference
in their semantics. RC (5), for example, is equivalent to another commonly used metric, the true positive
rate (TPR), with the main difference being that RC is specialized for alerts and attack tracks. The equivalence
becomes evident when CCA in (5) is replaced with TP, and RA with (TP+FN), which results in the TPR
formula. Precision defined in (2) is a variant of the commonly used precision metrics, which is evident
when CD in (2) is replaced with TP, and DAT with (TP+FP), resulting in the common precision metric.
RS is also equivalent to precision, which again gets obvious when CCA in (6) is replaced with TP, and CA
with (TP+FP). The difference between (2) and (6) is that (2) measures precision of attack tracks, while (6)
measures the precision of assigning alerts to attack tracks.

Because most surveyed papers contain information regarding their alert and attack counts, it is
possible to calculate completeness, soundness, and QoA metrics that can be used for comparison over a
common dataset, regardless of the metrics used in the original papers. It is also possible to compare the
reduction metrics, but these metrics lack deeper insight and should be used alongside other criteria.
Any special considerations regarding success metrics will be discussed alongside the datasets and
approaches in question in Sections 5 and 6.

5. Evaluation Datasets

Measuring the performance and effectiveness of different approaches the key is to have good datasets.
When different methods are evaluated against the same dataset then they can be easily compared while
using the same success metrics. Yet, the nature of the attacks is such that a single dataset is not sufficient
and there are a number of different datasets available each with their own advantages and disadvantages.
Different attack and normal data used in different datasets make a comparison between methods tested
on different datasets difficult and not worth doing. To make things more complicated, a number of
papers use custom datasets that are not used by anyone else. In the following subsections, we provide an
overview of some commonly used datasets across the reviewed papers, as well as some new datasets that
appeared recently.

5.1. Darpa Intrusion Detection Evaluation Datasets

The first widely used dataset for IDS evaluation is DARPA1998, published by the MIT Lincoln
laboratory in 1998. This dataset was originally used to evaluate intrusion detection systems in the Air
Force Research Laboratory (AFRL). The dataset was generated using a simulated network and contains a
mix of normal network activities and attacks. It is divided into a training set containing seven weeks of
traffic and a test set of two weeks of traffic (MIT Lincoln Laboratory, 2019). All of the attacks in the dataset
are labeled. The 300 simulated attacks that appear in the dataset are described in detail by Kendall [45]
(Kendall, 1999). In 1999, a newer and improved version of the dataset was created, called the DARPA
1999 [46].

In the aftermath of the Wisconsin Evaluation Rethink workshop in 2000, and the subsequent meetings,
the MIT Lincoln Laboratory produced a new dataset containing two DDoS attack scenarios, called the
DARPA 2000 [3]. The first scenario, LLDOS 1.0, features a novice attacker performing a DDoS attack in
several phases, beginning with the initial probing of the network from the internet, and ending with the
abuse of an existing service to perform a DDoS attack. The second scenario, LLDOS 2.0.2, features a slightly
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stealthier attacker performing the same attack using a malware. As the two datasets hold information about
attack scenarios, they are popular for evaluation of tasks, such as alert correlation and attack projection.

5.2. Def Con Ctf Datasets

Alongside annual DEF CON conference [47], a popular international capture the flag (iCTF)
cybersecurity competition is held. After each competition, the organizers publish the collected network
packet captures containing attack traffic, which researchers can use to analyze attacks and discover attack
patterns. The packet captures are published on the DEF CON CTF web site [48]. A notable property of
CTF datasets is that the vast majority of their traffic is attack traffic, as opposed to benign traffic in other
datasets [49].

5.3. Cyber Treasure Hunt Dataset

Vigna [50] organized several cybersecurity exercises in order to evaluate students, one of which was
a treasure hunt competition. The students were split into teams and tried to attack a simulated payroll
system by following provided step-by-step instructions with the goal of performing malicious money
transfers [50]. The students were required to document the details of the attacks, and network traffic was
collected, resulting in a dataset containing labeled multi-step attack scenarios [51].

5.4. Unb Datasets

Because of the significant changes in network usage patterns since the age of DARPA datasets [49],
as well as the criticism surrounding those datasets [52,53], the Canadian Institute of Cybersecurity
(CIC) created several novel IDS/IPS datasets (University of New Brunswick—Canadian Institute for
Cybersecurity, n.d.) that are still not much used. The first dataset ISCXIDS2012 was created in
2012, using simulated agents developed to mimic previously observed user behavior patterns in the
Institute. Shiravi et al. [54] provided the detailed description of this dataset, as well as the guidelines
and requirements for creating valid and realistic datasets. The main requirements can be summarized,
as follows: (i) network traffic should not be modified after the capture has finished, (ii) the data should be
labeled automatically during its creation, (iii) the capture should contain the entire network interactions
and diverse intrusions, and (iv) the simulated data must eliminate the need for later sanitization
and anonymization.

In a similar manner, after Gharib et al. [49] identified a more complete set of requirements for
realistic intrusion detection datasets, the same institute created a newer dataset in 2017, called CICIDS2017.
The details regarding this dataset are explained by Sharafaldin et al. [55].

5.5. Other Datasets

The previous datasets are either heavily used by researchers, or they show a good promise as is
the case with CICIDS2017. There is a number of other datasets used less frequently than the previous
ones, but still interesting enough to be mentioned. One example of such datasets are the DARPA Grand
Challenge Problem (GCP) datasets, which are used in four surveyed articles, but to the best of our
knowledge are not publicly available.

Some datasets are collected while using honeypots. Honeypots are network decoys that are used
to lure attackers and observe their actions [56], whose entire network traffic is, by definition, malicious.
Thus, logged honeypot traffic can be used to research attackers and attack patterns. The next source of
attack data comes from simulated attack scenarios in which a number of researchers pretended to be
attackers and perform attacks, resulting in custom datasets. In both cases, honeypots and simulated
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attacks, it is frequently the case that the authors do not publish much details of the attacks that happened
nor datasets used, hindering the reproducibility of their research.

An overview of several other notable intrusion detection datasets was given by Gharib et al. [49].
Besides the already mentioned, they reference the CAIDA, LBNL, CDX, Kyoto, Twente, UMASS, and ADFA
datasets, each with its advantages and weaknesses. A plethora of additional datasets is available
throughout the internet, e.g., packet captures [57]. In the authors’ opinion, these datasets are usually highly
specific and, in most cases, not well fit for intrusion detection evaluation and learning.

5.6. Criticism of Existing Datasets

McHugh gave an extensive critique of the DARPA datasets in 2000 [52], mainly focusing on the
suitability of its data and the simulated environment used to create it for intrusion detection evaluation.
He argues that the dataset contains biases, with the major ones stemming from the employed attack
taxonomy, which concentrates on the attacker’s viewpoint, ignoring the viewpoint of the IDS, and the
simplistic false positive based receiver operator curves (ROC) used to present results, making them
a nonrealistic general measure of success. Specifically, DARPA ‘98 was synthesized without deeper
insights regarding the causes of real-word false positive alerts and lacks realistic statistical properties [52].
Further analysis performed by Brown et al. [53] confirmed that its statistical properties significantly
differed from those expected in a real network.

Gharib et al. [49] analyzed and compared 11 commonly used datasets in 2016 using the dimensions
they proposed, and came to the conclusion that all of them had severe weaknesses when it comes to traffic
completeness. Most of them failed at either providing diverse attack examples, a sufficient variety of
protocols, adequate data labeling, a good feature set, etc. For detailed information, readers are encouraged
to examine Table 3 in their paper [49]. The authors also state that datasets should be produced in a
dynamic manner, so they can be periodically updated to reflect changes in attack and network traffic
patterns over time. Finally, they proposed a weighted ranking framework for the datasets based on the
proposed dimensions.

6. Survey of Developments in Attack Scenario Detection and Projection

This section provides an overview of the developments in attack scenario detection and projection,
beginning with early approaches in the 1990s, towards the state of the art approaches at the time of writing.
The overview only examines the most important points of the articles, as perceived by the authors of
this survey.

6.1. Methods

Surveyed articles were chosen in the following manner:

1. Three Google Scholar and Scopus searches were performed, using the following keywords:
“attack scenario detection alert correlation”, “attack scenario reconstruction alert correlation”,
and “attack scenario projection alert correlation”.

2. A table containing 300 articles was populated while using the top 100 articles returned by each
Google Scholar search.

3. We sorted the table by four criteria, each time listing the first 25 results whose titles and abstracts fell
within the scope of the survey. The first criterion was the total number of citations, in order to find
the most influential papers. The second criterion was the number of citations divided by the age of
the paper, in order to find more recent papers that gained traction. The third criterion was the rank
that the Google Scholar search yielded, used to measure the relevance of the paper. Finally, as we
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noticed the lack of newer papers on the list, we added a fourth criteria, which filtered out all papers
older than 2015, and sorted the remaining papers using their Google Scholar ranks. At this point,
the list contained 100 article mentions.

4. All 23 articles ([25,26,31–34,38,58–73]) that appeared more than once on the list were considered for
inclusion in the survey. Additionally, [35,36] were included, because, although each of them appeared
only once on the list, they were in essence representing the same approach. Porras et al. [58] was
excluded because it primarily concerns with mission impact and elimination of duplicate and false
positive alerts, and not attack scenarios. Hossain et al. [59] were excluded, because they primarily
focus on detecting low-level attacks on a single host. Pietraszek et al. [71] was excluded, because they
primarily focused on reducing false-positive IDS alerts.

5. We included additional 8 articles ([19,28,39,40,42,43,74,75]) that were cited in the surveys that were
covered in Section 3 and seemed to be relevant.

6. Additional 15 articles ([8,37,44,76–87]) were included because their results were cited by other articles
already included at this point.

7. The steps described above were repeated using Scopus searches with the same search terms. While the
first search returned the target 100 results, subsequent searches only found a handful of articles.
In this manner, additional 9 articles ([29,30,88–94]) were found and considered for inclusion in
our survey. Alhaj et al. [92] was excluded because their goal is correlating alerts into individual
attack steps, but they do not reconstruct the high-level attack scenarios, effectively performing alert
aggregation.

8. Finally, four articles were included on an individual basis. Huang et al. [95] was included,
because it considers operational planning of attacks. Yu and Frincke [41] was included, because
it introduced an expressive metrics, Quality of Alerts (7). GhasemiGol and Ghaemi-Bafghi [27],
and Albanese et al. [96] were included due to using approaches whose types were underrepresented.

The annual distribution of surveyed methods and papers is shown in Figure 2. Interestingly,
we noticed that older methods (i.e., [31–34]) were published while using a larger number of papers,
with later papers extending and updating the originally presented method, while newer methods (i.e., [73])
are usually published using one or two papers. This can be seen as the difference between the numbers
of papers and methods in Figure 2, especially noticeable between the years 2001 and 2004. It can also be
observed that scientific production in this field peaked in the early 2000s, followed by research at a slower
pace thereafter.
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Figure 2. Annual distribution of surveyed methods (blue) and papers (green).



Electronics 2020, 9, 1722 13 of 32

It should be noted that this method contains biases, as it only covers sources that are written in
English and discriminates against articles on the basis of quantitative measures rather than their actual
quality. Each article we surveyed is biased because it evaluates its approach using only a subset of datasets
and success metrics. Our main goal in this survey is to try to expand this subset and quantify their
individual bias. In Section 7, we collected the original counts of alerts from the papers and calculated
commonly used success metrics described in Section 4 in order to provide a more complete comparison of
the approaches’ results.

The approaches are split into several subsections according to their similarities. On the highest level
are three subsections: State transition analysis technique (Section 6.2), Event and/or Alert Correlation
Relying on Expert Knowledge (Section 6.3), and Event and/or Alert Correlation Relying on Data Mining
and Machine Learning (Section 6.4). The first deals with older approaches, based on explicit attack scenario
signatures, the second with approaches that do not describe explicit attack scenarios, but use some sort of
rules to build attack scenarios, and the third with approaches that use machine learning, often combined
with rules, to build attack scenarios.

6.2. State Transition Analysis Technique

Early research efforts in attack detection aimed to develop easy to understand and efficient ways of
describing attack signatures independently of the underlying audit data formats, and flexible enough
to cover the majority of possible attack scenarios. Several of these relied on describing low-level attack
scenarios while using the state transition analysis technique (STAT). STAT defines a state machine with
an initial state, transition states, a target state, and signature actions that trigger transitions between
states [8]. Once event logs are transformed into a state transition diagram, the diagram can be compared
with transition diagrams for known attacks. Approaches, such as these work directly with audit data,
such as event logs, as opposed to latter approaches working on top of alerts generated from IDSs.

Ilgun et al. [8] proposed USTAT, a HIDS that is based on STAT, with the U in the abbreviation
indicating that it is a UNIX-based STAT prototype. In USTAT, low-level attack scenarios are described
using state machines that end in compromised states. States are logical expressions parametrized by
the system’s attributes. Directed edges, called transitions, connect states that start with state being a
precondition and end with a state being post-condition. Transitions are triggered when signatures of
possibly malicious activities are detected, causing the state machine to enter a new state describing the
expected resulting changes to the environment. As audit data enters USTAT, it performs state transitions,
which are then analyzed by its inference engine. If the inference engine recognizes a described attack
sequence, USTAT acts as an IPS, taking the action that is specified by its rules. USTAT was only able to
recognize changes in known attributes in the system, ignoring any outer entities, such as users, and they
could describe and recognize only explicitly specified scenario variant patterns inside the collected audit
data. It was validated and compared to other tools while using a list of defined requirements for such tools.

Eckmann et al. [86] proposed a STAT based attack detection language called STAT language (STATL),
a STAT based attack detection language, which is independent of the underlying IDS and provides
performance enhancements over USTAT. The language compiles into rule formats for supported HIDSs
and NIDSs, such as e.g., USTAT, NetSTAT, and WinSTAT, extended with applicable USTAT plugins.
The authors validated STATL’s expressiveness by describing 48 different attack scenarios for various IDSs.
They successfully described all of those 48 attack scenarios while using STATL.

6.3. Event and/or Alert Correlation Relying on Expert Knowledge

Research soon focused on intrusion detection on a higher level. Instead of analyzing audit data and
raising low-level alerts, some researchers began combining the already generated alerts and additional
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data from various sources into plausible larger-scale attack scenarios. Huang et al. [95] made an analogy of
intrusion detection and response to military operations. In military operations, commanders need to have
some hypothesis regarding the adversary’s operational and strategic goals to decide on a proper reaction
to his actions discovered on the tactical level, such as e.g., troop movements. In cybersecurity, low-level
alerts, which could likely be FP or represent irrelevant attacks, do not provide the bigger picture and the
higher-level insight that is needed to make decisions. Nevertheless, they can be combined to uncover
possible attack strategies on the operational and strategic levels, which provide a deeper understanding of
the current system state. Additionally, sensors that are based on different rulesets and detection types,
especially if distributed over different parts of the network, offer diverse viewpoints on the information
system, and should be used in a complementary manner [63].

6.3.1. Alert Correlation Based on Alert Attributes

Huang et al. [95] proposed a collaborative server-client IDS focused on the attacker’s higher-level
strategies, mimicking military operations. The server collects alerts from the clients and hypothesizes
about the possible large-scale attack strategy. Clients are informed of the hypothesis and they build a
goal tree based on domain knowledge to check whether the detected alerts could prove it. Goal trees
hold a hierarchical representation of an actor’s goal with the combination of sub-goals the actor used to
achieve it. Finally, they send the evidence and detected low-level goals to the server, so it can adjust and
possibly form a new hypothesis. The authors identified that further work needs to be done in detecting
the attacker’s decoy attacks and adding probabilities to the goal tree.

Valdes and Skinner [25,85] proposed a probabilistic alert correlation approach based on attribute
similarity. A similarity function and a threshold are defined for each alert attribute, as well as the
situation-specific similarity expectation, correcting that similarity for some specific situations, such as
e.g., IP spoofing. Similar alerts from various sensors are grouped into meta-alerts, containing lists of
original attribute values. Evaluation was performed while using recorded live data, where the number of
generated alerts was reduced seven times, and by performing experiments over a simulated e-commerce
network, where the approach managed to reconstruct the basic steps of the attack scenario as meta-alerts.

Morin et al. [62] proposed a formal model for cyber security, called M2D2. The model introduces
relations between information system characteristics, vulnerabilities, security tools (e.g., IDS), and events.
Network topology is described using a hypergraph in which nodes represent network interfaces,
while edges, which can connect more than two nodes, represent networks. Data is mostly populated from
available databases, such as e.g., ICAT vulnerability database, but parts such as topology information must
be entered manually. The model can be used for aggregating alerts and determining causality relations
between them. An improved version, M4D4 [80], added support for various new network device types,
and describes a higher-level attack nomenclature using graphs. At the time of publishing, the authors
were working on a proof-of-concept M4D4 Prolog reasoning engine, integrated into an information system
to aid in alert correlation. Because M2D2 and M4D4 were developed to describe networks ad attacks,
the authors validated the models by describing several situations and use cases.

Morin and Debar [61] combined M2D2 [62] with the formalism of chronicles [97] in order to
describe benign and malicious scenarios as chronicles using expert rules with temporal constraints.
Benign chronicles contain false positive alerts, while malicious chronicles contain alerts and events related
to recognized attack scenarios. M2D2 correlates alerts with chronicles into high-level alerts and security
operators are presented with high-level alerts and alerts that do not belong to a chronicle, resulting in an
alert reduction. The approach was validated while using recorded logs of alerts from a real network.

Qin and Lee [68] correlate alerts into attack scenarios that are based on the Granger Causality Test
(GCT). This test aims to check whether lags between events in a time series could indicate a causality
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relationship between them. The authors construct ordered sequences of alerts, called hyper-alerts,
based on feature similarity and prioritize them using a manually configured Bayesian Network. Prioritized
hyper-alerts are presented to security analysts. When they choose to investigate a hyper-alert, the approach
searches for other causality related hyper-alerts via GCT, potentially revealing neighboring steps of the
attack scenario. The approach was evaluated while using Grand Challenge Problem (GCP) v3.1. and
DEFCON 9 datasets. On the GCP dataset, they scored reduction, completeness, and soundness of 91%,
94%, and 87%, respectively, while, on the DEFCON 9 dataset, they achieved alert reduction of 99.7%.
They identified missed IDS alerts as the main limiting factor of their approach. In [69], the authors improved
alert prioritization by including a knowledge base containing information regarding the surrounding
network assets, and added an auxiliary method of alert correlation based on a knowledge base containing
known attack plans.

Valeur et al. [26] correlated alerts and used alert verification to identify failed attacks. e.g., if an
attempt of a service exploit over a machine is detected, and that machine does not run or expose the
targeted service, then that attack was a failure. This is done actively, while using a vulnerability scanner
script executed each time an exploit alert is reported. Unfortunately, active alert verification has drawbacks
regarding system performance and can produce alerts as a side effect. Related alerts are merged into
a hierarchical tree of meta-alerts, alerts on a higher level of abstraction, according to common attribute
values and a sliding time-window. The next stage of the proposed system is attack focus recognition,
aiming to discover hosts that are often sources or destinations of attacks. Finally, high-level multistage
attack scenarios are detected by matching chains of alerts to predefined attack scenarios described while
using STATL, and displayed as graphs to the operators. Additional tools that are offered by the system
are impact analysis, which follows dependencies within the system and tries to determine the full impact
of an attack, and alert prioritization, assigning priority values to alerts. Evaluation of FP alert reduction
was performed on several datasets, including DARPA, Honeypot, DEF CON CTF, and the Treasure Hunt
dataset, as well as live data from the Rome Air Force Research Laboratory’s networks.

Barzegar and Shajari [38] converted each alert into an ontology according to its attributes. Alerts were
considered to be neighboring steps of the attack if the ontology similarity according to their proposed
measure was larger than a set treshold. The approach was evaluated using DARPA 2000 LLDOS 1.0 and
MACCDC 2012 datasets. On DARPA 2000, it correlated alerts into four groups, three corresponding to
parts of the attack scenario and one to false positive alerts. They provided completeness and soundness
measures over only a subset of this dataset, and did not address the fragmentation of the reconstructed
scenario, so we excluded those results from Section 7. The depictions of their latency results lack concrete
time units and they seem to grow at least polynomially with the number of alerts, so we do not consider
this approach to be applicable in real time.

6.3.2. Preconditions and Post-Conditions

As noted by Cheung et al. [67], low-level intrusion detection approaches relying on signatures,
such as e.g., STATL, lack the flexibility to be used in order to describe high-level scenarios in a way that
could support all their equivalent variants. They concluded that this lack of flexibility is addressed using
the precondition and post-condition approach, in which scenarios are assembled from individual attacks
by matching their preconditions and post-conditions.

Cuppens and Ortalo [81] proposed a language for describing cyberattacks, called LAMBDA.
The language represents attacks using attacker actions defined through their preconditions and
post-conditions, as well as their detection actions, describing steps needed to detect the action,
and verification actions, describing the steps needed to confirm that the attack succeeded. The later
can e.g., refer to determining that a vulnerable service is running on the target machine. In addition,
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the language defines event combination operators in order to specify ordering of events required for an
action to be recognized, including e.g., parallel and sequential ordering. Attack actions can be combined
if post-conditions of one action satisfy parts of the preconditions of the other. Cuppens and Miege [60]
later used LAMBDA in the MIRADOR project to automatically generate a set of correlation rules from the
described attacks. LAMBDA was validated by describing various attacks and situations.

Templeton and Levitt [82] introduced the model JIGSAW, which models attack scenarios while
using attack actions with required capabilities, conceptually the same as preconditions, and provided
capabilities, similar to post-conditions. Capabilities are atomic objects that describe the state of the
system, and alongside technical attributes describe the attacker’s knowledge about the system and policy
statements. They proposed use cases for the model in tasks, such as e.g., FP reduction, attack detection,
and attack projection. Finally, they identified attack generation, formal theory of attacks, and attack
nondeterminism as future research problems, and stated that models based on signatures and exploits
do not generalize well. Similarly to LAMBDA, they validated JIGSAW by describing several examples
of attacks.

Cuppens et al. [83] distance themselves from earlier works using explicit scenario specification,
and concentrate on using plans and objectives to detect attack scenarios. Action preconditions and
post-conditions are still defined while using LAMBDA, but they are not combined according to a
pre-defined scenario. Instead, actions are treated as possible stepping-stones that lead the system to
a state in which some given security properties have been compromised. The authors added a concept
of virtual alerts, as placeholders to support possible attacker’s actions that were not detected, but are
nonetheless required for the scenario. The article validates the proposed approach by describing example
attack scenarios.

Ning et al. [31,32,34] and Ning and Xu [33] developed an alert correlation model and several alert
analysis tools. The model shares similarities with JIGSAW and LAMBDA, since it describes attack scenarios
while using the same precondition and post-condition paradigm, but it also presents a concrete alert
correlation method. Alerts are mapped one-on-one to entities, called hyper-alerts, which are then correlated
using partial preconditions and post-conditions that are specified by experts. Only a partial match of the
conditions is required, because alerts corresponding to some preconditions required for later scenario
steps could be missing (e.g., FN alerts). Correlation results in connected directed acyclic graphs (DAGs) of
hyper-alerts representing possible attack scenarios. The authors later added concepts supporting attack
strategy detection, by defining a measure of similarity of the previously generated DAG with known
scenarios that are defined in the form of attack strategy graphs, and developed the toolkit TIAA for
alert analysis. Attack strategy graphs are automatically built by generalizing already seen hyper-alert
correlation graphs and extracting rules. Finally, they evaluated the method while using the DARPA 2000
dataset, and reported completeness scores between 62.5% and 94.74% and soundness scores between 92.3%
and 100%, depending on the subset of the dataset.

Cheung et al. [67] proposed the Correlated Attack Modeling Language (CAML), based on the
precondition post-condition paradigm. Unlike previous similar work, they primarily focused on
modularity, and developed the language to describe modular scenarios. The main idea is that higher-level
scenarios can be executed while using a combination of various lower-level scenarios, with the lowest level
being individual attack steps. They validated a prototype by compiling the language to P-BEST expert
rules [98], and then tested them on the DARPA Grand Challenge Problem (GCP) v2.0 dataset.

Ning et al. [66] argued that a major drawback of earlier precondition and post-condition based
approaches is that they have problems with handling missed alerts. They proposed several techniques
that combine the hyper-alert correlation graph generated while using approaches, such as Ning’s earlier
work with graphs generated by techniques relying on alert attribute similarity and audit trails to complete
the correlation graph. Two graphs are combined while using a set of proposed rules. They validated
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the proposed techniques while using the DARPA 2000 dataset, on which only one of the attacks had
miscorrelated alerts.

Saad and Traore [35,36] introduced an ontology-based technique for semantically clustering alerts
into attack scenarios. The proposed ontology contains various alert attributes and context information.
For clustering, the semantic relevance between two alerts is calculated as the normalized sum of the weights
of ontology relations occurring between them, resulting in an alert correlation graph (ACG). The ACG is
then clustered into subgraphs that represent possible attack scenarios. Finally, causality relations between
alerts of a possible attack scenario are determined using prerequisites and consequences of attacks stored in
the ontology, resulting in an attack scenario graph. Evaluation was performed on the DARPA 2000 dataset,
which resulted in soundness and completeness between 96% and 100%. As no details about counts
of various alert classes are available in the paper, it was not possible to verify or revise these scores.
The authors intended to continue improving the ontology relations, use machine learning to reduce FP
alerts, and research attack-pattern similarity. They considered the latter very challenging, because the
available datasets were very limited and outdated.

Milajerdi et al. [73] developed a system that contains a high-level host-based IDS component and an
alert correlation system that builds high-level attack scenarios. The IDS component is based on high-level
signatures that detect the attacker’s tactics, techniques, and procedures (TTPs) from system events.
Detected TTPs are then correlated into high level scenario graphs (HSGs) using prerequisites based on the
Mandiant Attack Lifecycle Model [99] and information flows between them. After additional preprocessing,
HSGs are classified using estimated overall TTP severity scores into malicious attack scenarios and benign
episodes. The approach was evaluated while using recorded traffic from a DARPA-organized red team
exercise [100] and a live red team engagement over a simulated enterprise network. In both instances,
it scored very high accuracy and recall rates in attack scenario detection. For the first experiment, both rates
were 100%.

6.3.3. Attack Graphs and Trees

Goldman et al. [84] and Geib and Goldman [75] proposed an IDS extension system,
called SCYLLARUS, for attack plan recognition and projection. The system has a hierarchical plan library in
which higher-level plans can be decomposed into a partially ordered series of lower-level plans. Top-level
plans are complete attack scenarios, executed with concrete attacker goals. The system analyses IDS alerts,
according to them, tries to determine the likelihood of a plan being executed, and provides information
about probable next targets according to that plan for taking proactive measures. They evaluated the
prototype of the first version of SCYLLARUS using a custom attack simulation dataset.

Hughes and Sheyner [74] describe attack scenario graphs, graphs that are based on vulnerabilities
and exploits representing stages of possible attack scenarios reaching a target asset, and the possible usage
of such graphs in a model for threat mitigation. Attack scenario graphs can be used in order to predict
possible future steps of attacks. They validated the model by demonstrating several usage examples.

Noel et al. [79] used attack graphs that were constructed offline to correlate events into attack
scenarios in real time. Events are matched to exploits on the attack graph, and a new weighted graph,
the event graph, is constructed with edge weights representing event distances on the original attack
graph. Event distances are used to calculate the measure of correlation of the observed sequence of
events to the scenario represented by the attack graph. The approach was validated while using several
practical experiments. The first experiment proved that the approach could filter out attacker’s actions
based on preconditions and post-conditions. The second experiment, which contained seven attack
scenarios mixed into a custom dataset, was used to tune and analyze hyper-parameters. Finally, the third
experiment, in which they mixed 10,000 attack-scenario and other event-related alerts into a custom
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dataset, analyzed the system’s performance when confronted with larger number of alerts. The authors
claimed that all 10,000 alerts were correctly identified by the system, but did not provide details regarding
the alert counts.

Wang et al. [44,65] concentrated on addressing performance issues of attack graphs in real-time
application. They proposed the queue-graph data structure, which only correlates the latest instances of
alert types, to increase alert correlation performance, and performed aggregation over indistinguishable
transitive alerts to produce a more compact graph. The approach also hypothesizes about missing alerts
and predicts possible future attack steps. Alert correlation was validated using the DARPA 2000 dataset,
but, besides a high-level overview and the claims of it being satisfactory, no additional results were
presented [44]. Real-time performance was validated using the Treasure Hunt dataset [44].

Liu et al. [37] use attack patterns, described using proposed models called attack path graphs (APGs),
in order to describe the attack phases an attacker has to make to reach his goal. The high-level attack pattern
graph starts with a probing phase, continues with the scanning and intrusion phases, and ends with the
goal phase. Alerts are correlated while using the edges of the APG for each source and target host, and an
attack graph is constructed by aggregating APGs based on the attackers and victims. The approach was
evaluated using the DARPA 2000 dataset, with a reported completeness measure of 100% and soundness
measure ranging from 98.3% to 100%. Using the original counts from the article [37], we calculated the
measures from scratch, resulting in lower scores than provided in the original paper. The revised scores
are available in Section 7 and the explanation in Section 8.

Roschke et al. [29] improved upon the work in [65] by using explicit attack graph-based
correlation and considering a larger number of alerts with the same type when building attack scenarios.
Explicit correlation aids in forensic analysis, while the consideration of multiple alert type instances enables
the detection of a larger number of similar attack scenarios. The method was evaluated over a custom
dataset containing recorded university network traffic and simulated attacks. It managed to detect the
simulated attack scenario and reduced the number of reported alerts by at least 95.58%.

Ahmadinejad et al. [91] developed a hybrid approach that combines attack graphs that were
constructed for the target network and alert feature similarity. Alerts for known attacks are correlated
using the attack graph, with hypothesized unknown attack steps inserted into the graph in situations
when the attack sequence on the graph is inconsistent, while alerts representing unknown attacks are
grouped according to their feature similarity into collections that the authors refer to as hyper-alerts.
Evaluation was performed over the DARPA 2000 dataset and several other synthetic datasets. The methods
successfully reconstructed the attack scenario while providing sufficient performance for real-time
operation. Although the results on the DARPA 2000 dataset indicate the accuracy and recall of 100%,
the authors never explicitly state this and do not provide sufficient quantitative success metrics, so we
only managed to calculate the alert reduction of 93.58%.

Albanese et al. [89] proposed a system that correlates alerts into attack scenarios while using a
generalized dependency graph (GDG) and a probabilistic temporal attack graph (PTAG). The GDG
describes the dependencies between IT resources and services provided by the organization, while the
PTAG is an attack graph that contains temporal distributions for the delays between consecutive attack
steps. The construction of these graphs requires a considerable amount of manual work. After the attack
scenarios have been constructed, the system attempts to predict the most probable next attack steps using
probabilities from the PTAG and their overall impacts on the system calculated from the GDG. Evaluation
over synthetic attack graphs has shown that the system is able to perform in real time.

A later paper by Albanese et al. [96] presented a method for identifying sequences of events or
alerts that are poorly explained by existing attack patterns in the knowledge base, and could potentially
represent novel attacks. The method conceptually resembles anomaly detection and it is applicable to both
IDS signatures and alert correlation, where high-level attack patterns are described using i.e., attack graphs.
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An evaluation on the IDS level was performed using two days of recorded traffic. However, the use case
with high-level attack scenarios was not evaluated, hence the minus (−) sign in Section 7.

6.4. Event and/or Alert Correlation Relying on Data Mining and Machine Learning

Many of the surveyed later works criticized approaches relying on pre-defined knowledge and
parameters, because they only worked well with pre-defined scenarios and could not detect previously
unknown attacks. Recent research in this area aims at employing machine learning and data mining,
often with specialized and pre-configured models, to learn new attack patterns from datasets and recorded
network traffic.

Dain and Cunningham [77,78] defined attack scenarios as ordered sequences of alerts, in which new
alerts can be added if they satisfied a similarity criteria. A new scenario was defined if an alert was not
similar to any of the existing scenarios. The approach they called the heuristic approach, as compared
the attributes of the new alert with the last alert in each scenario using a non-linear function, which was
trained on the labeled DEF CON 8 CTF dataset using the square error minimization technique in MATLAB,
and correctly joined 88.81% of alerts into scenarios on the test set. They compared this results to the
naïve approach, which only compared the IP addresses of the results, but this approach scored better
on the DEF CON 8 CTF dataset, by correctly assigning 93.91% of alerts. We can conclude that this was
probably a result of the properties of this specific dataset. Another proposed technique was based on
data mining. It considered previous three alerts in the scenario for comparison, and used some additional
features. The best results were obtained while using decision trees, which correctly joined 99.99% of alerts
to scenarios. Unfortuately, that particular dataset was rarely used, so these results cannot be directly
compared to other methods, as visible in Section 7

Zhu and Ghorbani [70] used a multi-layer perceptron (MLP) and a support vector machine (SVM),
trained together with a pre-built alert correlation matrix (ACM) extracted from the training set, in order
to learn a classifier to decide whether two alerts should be grouped in the same attack scenario or
not. Validation was performed using the DARPA 2000 dataset. They extracted attack graphs from
the predicted alert correlation scores, and concluded that both models managed to group a subset of
alerts into meaningful scenarios. Although most of the discovered attack scenario’s steps resemble that
of Ning et al. [34], the system failed to correlate the final DoS attack in the dataset due to spoofed IP
addresses [70]. No quantitative results that could be compared to other approaches were provided in
the article.

Yu and Frincke [41] described alerts as observations of hidden actions of attackers, and proposed to
model attack scenarios using Hidden Colored Petri nets (HCPN). Action preconditions and post-conditions,
as represented by input and output arcs in the HCPN, were taken from the work of Ning et al. [31–34].
HCPN colors represent actors, transitions represent actions, and places represent the system’s resources.
Based on this model, they provided an algorithm to determine the next most probable steps of the attacker.
Training and evaluation was performed on the DARPA 2000 dataset, resulting in a TP rate of next step
prediction of 93.3%. They focused on a novel measure of success they introduced, Quality of Alerts
(QoA) (7) [41], as the principal success metrics. We used the provided alert class counts and definitions
from this article to check their QoA scores and calculate completeness and soundness scores. The results
and comparison can be found in Section 7. In addition to DARPA 2000, the authors used the DARPA
Grand Chellenge Problem dataset, reaching a QoA score of 93%.

Fava et al. [42] used Variable-Length Markov Models (VLMM) in order to discover scenarios, or more
precisely the attacker’s behavior patterns, and to project the most probable next action of the attacker.
The proposed methodology assigns symbols to alerts belonging to attack tracks based on their attributes
and the chosen alphabet, and uses the generated symbol sequences in order to train VLMMs later used
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for projection. Evaluation was performed using a custom-built dataset, reaching a correct prediction rate
of 90%.

Sadoddin and Ghorbani [28] proposed a modified version of the FP_Growth algorithm, based on
structured patterns, for attack scenario pattern mining. Alerts are aggregated according to their sources
and targets, and a Frequent Structure Pattern Tree (FSP_Tree) is incrementally built and frequent patterns
are extracted. The method was evaluated while using the DARPA 2000 dataset, synthetically generated
patterns, and real alert data from the Fred-eZone. The DARPA 2000 LLDOS 1.0 attack scenario was
recognized as two scenarios, because of the IP spoofing used in the last step, and there were two more
unlabeled scenarios detected inside the background LLDOS 1.0 traffic. Only alert reduction was scored,
were the number of alerts was reduced from 922 to 29, resulting in a reduction ratio of 96,85%. In the
second experiment, synthetic patterns were used to test performance, which seemed to support real-time
application. Finally, by applying the system on real network traffic, they revealed patterns of a large
number of various bot attacks.

Ren et al. [76] used Bayesian networks to group alerts that belong to the same scenario together.
The proposed approach has an offline phase, in which features contributing to the correlation of alerts
are identified, and an online phase, in which alerts are probabilistically correlated using the previously
identified features. Before the offline phase is performed, features that represent the generalization
hierarchy of existing features, e.g., IP address ranges, are added. Probabilities can be periodically
recalculated to capture new correlation patterns. It is important to note that the correlation is not done on
basis of alerts, but on the basis of the alert’s types. Evaluation was performed while using the DARPA 2000
dataset, correctly correlating 96.5% of alert pairs into scenarios, and a honeynet dataset labeled by experts,
on which it correctly correlated 93.2% of alert pairs before recalculation, and 96.1%, after recalculation.
It was possible to calculate completeness and soundness measures using the information provided in the
article. Section 7 shows the results.

Soleimani and Ghorbani [39] proposed a correlation system relying on decision trees (DTs) to discover
malicious attack scenarios. Alerts are first aggregated into hyper-alerts, in the context of the paper,
groups of similar alerts. Hyper-alerts are then combined into episodes, sequences of hyper-alerts of
various lengths. A DT classifier is used to determine whether the detected episodes are malicious,
and adds malicious episodes into a model episode tree, a data structure used to store attack scenario
patterns. The DT classifier is initially trained on labeled data. If the DT classifies episodes as benign,
rules based on alert attributes are used to assess whether those episodes could be potential attack scenarios
and, if so, they are presented to the admin who can approve them to be used to update the classifier.
After malicious episodes have been detected, the model episode tree is used to calculate the probabilities
of potential next hyper-alerts, and a prediction of next probable attacker’s steps is made. The detection
and episode filtering was evaluated using the DARPA 2000 dataset and a recorded real worm attack from
an ISP. After characteristic attack scenarios have been learned, the scenario detection rate scored between
94.61% and 99.78%, and episode reduction for episodes of length 6 reached 99.94%.

Fredj [90] extends attack graphs with probabilities of attacks, and refers to this type of graphs as
Markov chain attack graphs (MCAG). The MCAG is constructed from a database of organization’s hosts
and network information, including firewall policies, and statistical information from a dataset or online
data containing attack traffic. Alerts are correlated using the MCAG and clustered into attack scenarios by
finding their final states, which do not have outgoing edges to other states. The probabilities allow for
predicting the next probable steps in the scenario. Evaluation was performed on the DEF CON CTF 17
dataset, where it correlated attacks by 97 attackers into 85 attack scenarios.

GhasemiGol and Ghaemi-Bafghi [27] used alerts partial entropy (APE) to identify alerts containing
common information in order to produce hyper-alerts and attack scenarios. Their central idea is that
alerts corresponding to same attacks will have more common information than alerts that correspond
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to different attacks. Alerts are clustered using the density-based spatial clustering of applications with
noise (DBSCAN) algorithm based on the measure of partial entropy. DBSCAN was originaly proposed for
spatial databases, and performs clustering on a basis of density [101]. After clustering, additional features
describing alert generalization hierarchies are added, and only a specified number of alerts containing the
largest amount of information in a cluster are chosen as its representatives. The approach was evaluated on
the DARPA 2000 dataset, where it reduced the original 34,819 alerts to seven hyper-alerts, corresponding
to major events in the scenario. Although the main semantics of the DARPA 2000 attacks were preserved,
details regarding alert classification rates are not available in the paper. Finally, they argue that the
resulting hyper-alerts could be further filtered by editing the thresholds for entropy, but that would also
cause information loss.

Ramaki et al. [40] proposed the real-time episode correlation algorithm (RTECA), which correlates
alerts into scenarios using a causal correlation matrix (CCM), estimated during the algorithm’s offline
phase using an alert dataset, and it predicts the next probable steps of the detected scenario. Alerts are
aggregated into hyper-alerts, defined as alert aggregates, based on their attack type and a given time
window. Variable-length hyper-alert sequences are then converted to directed acyclic graphs (DAGs),
called episodes, which are, during the online phase of the algorithm, classified as either critical or
benign, depending on the strength of the correlation between their hyper-alerts calculated using the CCM.
Critical episodes are reported as potential attack scenarios, while the weakly correlated benign episodes are
analyzed to learn potential new scenarios and update the CCM accordingly. CCM’s values are estimated
offline while using distinct similarity functions over some of the hyper-alert’s attributes, and statistical
properties calculated from a stored attack tree. The attack tree constitutes of correlated hyper-alerts from
all identified critical episodes, together with frequencies of those episodes used to calculate conditional
hyper-alert probabilities. These probabilities can be used to predict the most probable next steps of an
attack scenario. Evaluation was performed using the DARPA 2000 LLDOS 1.0 dataset and DARPA Grand
Challenge Problem dataset 3.1. On DARPA 2000, it successfully identified the main steps of the scenario,
with an episode reduction score of 99.95% for episodes of length 4. Evaluation on the Grand Challenge
Problem (GCP) v3.1 dataset successfully identified previously unknown attack patterns and correctly
projected between 68.5% and 99.93% of next scenario steps, with an episode reduction score of 99.95%.

A later paper by Ramaki et al. [88] presents a method relying on Bayesian attack graphs (BAGs) for
alert correlation and attack scenario projection. The BAG is an attack graph that contains conditional
probabilities for attack steps when some preceding attack steps have been observed. This probabilities are
estimated off-line using a dataset of recorded alerts. Evaluation was performed on the DARPA 2000 LLDOS
1.0 scenario, where it successfully discovered the entire attack scenario with an alert reduction of 99.34%
and projected the next steps of the attack with an accuracy between 92.3% and 99.2%. The authors claim
that the entire attack sequence was correctly reconstructed, which is equivalent to the RC (5) score of 100%.

Holgado et al. [72] used Hidden Markov Models (HMMs) with pre-defined attack stages to learn
and predict steps of attacks. After pre-processing, alerts are labeled with keywords and severity scores
obtained from the related CVE [102] records, to handle previously unknown types of alerts automatically.
The approach was trained and evaluated while using DARPA 2000 LLDOS1.0 and a custom-made dataset
containing scripted DDoS attacks. It was sucessful in identifying phases of the attack and calculated the
risk of reaching the final phase for each alert. Although the authors provided a graphical representation of
their results for DARPA 2000 that suggests a success rate of almost 100%, they did not provide enough
numerical information to calculate comparable metrics.

Husák and Kašpar [19] used sequential rule mining on alerts from the SABU alert sharing
platform [103] to learn attack sequence rules, and evaluated their usability in attack scenario projection.
The evaluation showed that the observed attack patterns change quickly, but they are nonetheless stable
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enough to be usable during several days. This paper was more focused on the properties of the dataset
than the method itself.

Ghafir et al. [87] developed a machine-learning based IDS technology, called MLAPT, whose low-level
detection modules are outside the scope of this survey. It correlates alerts of its detection modules
into larger-scale attacks using pre-defined attack steps, and pre-defined grouping and correlation rules.
Upon discovery of partial or full attack scenarios, it generates high-level alerts for the security team.
The final component of MLAPT is an attack projection module that predicts next steps of partial attack
scenarios. It relies on several ML algorithms that were trained over a dataset of attack scenarios the
system detected in a period of six months. MLAPT was evaluated while using three proprietary datasets
and simulated attack scenarios inside the campus network. It achieved a total RC of 81.8%, RS of 73.4%,
and successfully predicted the next steps, depending on the classifier in 68 to 85% of cases. In [64],
the authors improved the attack scenario projection component with a Hidden Markov Model (HMM).
The improved version was evaluated using two synthetic datasets, with a projection success rate of about
40% for projection from the first step of a scenario, increasing to 100% for projection from the middle of
a scenario.

Zhang et al. [30] used alert attributes and Markov Chains (MC) to estimate alert causal probabilities
from a dataset. Similar alerts were aggregated into hyper-alerts and then grouped according to the IP
addresses they contained. A small set of alert attributes, such as the source IP address, was used to
estimate the probability that alerts in an alert sequence are consequences of previous alerts. Using the
mined statistics and alerts that involve multiple hosts, the method creates an attack graph that represents
attack steps in the network. Evaluation was performed using the DARPA 2000 dataset. The method
successfully reconstructed large parts of both attack scenarios, and led to an alert reduction of 96%.
Unfortunately, detailed evaluation results needed to calculate other metrics are not available. Because this
approach is based on mining rules from a dataset, it is likely to give the best results when detecting
repetitive attacks, such as those that are characteristic for computer worms, and will likely not perform as
well when facing novel attack scenarios.

Zhang et al. [93] define rules and algorithms for grouping alerts into attack scenarios and reasoning
about the next steps of the attacker. Alerts are first aggregated into intrusion actions with regard to
their features. Intrusion actions are then added to sessions representing communication between pairs
of hosts. The criteria for splitting sessions are unusually large time gaps between intrusion actions.
Finally, sessions are grouped into attack scenarios if they share common intrusion actions. Historical data
is used offline to estimate correlation probabilities of sessions, and this probabilities are used to predict the
next steps of the attack. The method was evaluated on the DARPA LLDOS 1.0 scenario and the CICIDS 2017
dataset. It has shown a promising prediction accuracy larger than 90%, and it managed to reconstruct the
attack scenarios with alert reduction of 83.12% on the LLDOS 1.0 scenario. Unfortunately, the reconstructed
graphs of attack scenarios are large and difficult to analyze, and the available quantitative results were
insufficient for calculating other success metrics.

Hu et al. [94] correlate alerts into attack sequences using network-specific attack graphs constructed
with the MulVAL Toolkit [104]. The creation of the attack graph requires knowledge about the target
network and existing vulnerabilities. Generated attack sequences are then clustered using a sequence
similarity metric into attack scenarios. The method takes into account that attack steps may have been
missed by the IDS, including both unknown and failed attacks. Validation is first preformed in an
experimental setting, and later whlie using the DEF CON CTF 23 dataset. In both cases, the method
successfully reconstructed the attack scenarios. Unfortunately, quantitative information on the results was
not published.
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7. Results

The main contribution of this survey is a unified comparison of results of the surveyed papers. A basic
overview of the papers is shown in Table 3, with the following columns:

1. Model gives a basic description of the concepts which the method or tool is based on. Some of the
articles propose attack description languages, such as STATL, and are therefore labeled as Language.
Similarity stands for feature similarity and refers to models which compare alert features, often using
pre-defined formulas for similarity. Articles relying on attack graphs and attack trees are labeled as
Graph. Most papers either use a knowledge base (KB) populated by experts, or machine learning
(ML) or data mining (DM) to extract attack scenarios. In some cases, names of data mining algorithms
or machine learning models are provided. Hidden Markov model is abbreviated as HMM, Similarity
as Sim., Decision Trees as DT, and Markov chain as MCh.

2. Domain knowledge refers to the amount of domain knowledge that needs to be provided to the model
to be fully functional. Since languages can be used in all sorts of systems, based on KB, AI, or hybrid
models, the field is left empty. One star means that there is only minimal domain knowledge entry
needed, in most cases about IP ranges in the network. Three stars signify that the system needs
regular maintenance of a knowledge base to operate, while two stars are between the two extremes.

3. Level of evaluation describes whether the authors validated their approaches on datasets without
quantitative success measurement, denoted by V, evaluated them on datasets using quantitative
success metrics, denoted by E, or validated them using examples, use-cases, and/or formal proofs,
denoted by F.

4. Real-time refers to the ability of the proposed system to work in a real online environment. It is
important to note that empty fields do not necessarily mean that the system is not applicable, but that
the question of such use was not considered in the paper. The papers which support real-time
operation are marked with a plus sign in this column. Question marks denote that the paper left an
impression that it should support real-time usage, but it did not contain clear evidence for it.

The next seven columns indicate whether a particular dataset was used in the paper. Datasets that
have been used in a paper either for validation or for evaluation are marked with a plus sign or with the
version of the dataset. If the approach was evaluated over at least one of the selected datasets, and it
contains evaluation results, it is denoted by E. The asterisk in the final column for [93] signifies that they
used CICIDS 2017 rather than a custom dataset.

Analysis of the papers has shown that four datasets were used for evaluation in a consistent manner
more than once, namely DARPA 2000, Cyber Treasure Hunt, GCP 3.1, and DEF CON 9 datasets. The results
for those datasets are listed in Tables 4–6, with some additionally depicted in Figure 3. In most cases,
we used original data from the papers (alert counts, false positives, false negatives, etc.) in order to
calculate success metrics from scratch, according to the definitions in Section 4. Figures that were not given
in the paper and are purely our own work are underlined, and the results that significantly differ from the
ones stated in the papers are written in bold, with original values written in parenthesis.

Ning et al. calculated the completeness and soundness over subsets of the LLDOS 1.0 scenario, so the
results in the table are also not available in their original articles and, hence, underlined. We encountered
a similar situation with Liu et al., but our results on the dataset subset basis differed from those
that are mentioned in the paper. Finally, in cases where original information was missing from the
papers, we transcribed results directly from the papers. Such results are denoted with (P) in the table.
Ramaki et al. [88] is a special case, because we converted their claim of detecting the entire attack scenario
into the RC score of 100%.
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Table 3. Overview of the basic properties and evaluation details of the surveyed papers.
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Ilgun et al. [8] 1995 Language V +
Huang et al. [95] 1999 Language -

Cuppens and Ortalo [81] 2000 Language F
Valdes and Skinner [25] 2001 Sim. * E + +

Templeton and Levitt [82] 2001 Language F
Goldman et al. [75,84] 2001 KB, Graph *** V +

Dain and Cunningham [77] 2001 ML, DM * E + 8
Ning et al. [31–34] 2002 KB *** E + 8
Eckmann et al. [86] 2002 Language V +
Morin et al. [62,80] 2002 KB *** F

Morin and Debar [61] 2003 KB *** V ? +
Cuppens and Miege [60] 2002 KB *** V +

Cuppens et al. [83] 2002 KB *** F
Cheung et al. [67] 2003 KB *** V + 2.0

Hughes and Sheyner [74] 2003 KB, Graph *** F
Qin and Lee [68,69] 2003 Sim., KB ** E 3.1 9

Valeur et al. [26] 2004 Sim. * E + + + 9 + +
Ning et al. [66] 2004 Sim., KB ** V +
Noel et al. [79] 2004 KB, Graph *** V ? +

Wang et al. [44,65] 2005 Sim., Graph ** V + + + +
Zhu and Ghorbani [70] 2006 ML Ensemble * V ? +

Yu and Frincke [41] 2007 KB, HCPN ** E + + ?
Liu et al. [37] 2008 KB, Graph ** E ? +

Fava et al. [42] 2008 Markov models * E + +
Sadoddin and Ghorbani [28] 2009 DM: FSP_Growth * E ? + + +

Ren et al. [76] 2010 Sim., ML * E + + +
Roschke et al. [29] 2011 Graph ** E ? +

Ahmadinejad et al. [91] 2011 Graph, Sim. ** E + + +
Albanese et al. [89] 2011 KB, Graph *** E + +

Saad and Traore [35,36] 2012 KB, Graph ** E + +
Soleimani and Ghorbani [39] 2012 DM, ML: DT * E + + +

Albanese et al. [96] 2014 KB, Rules *** - +
Fredj [90] 2015 KB, Graph ** E + 17

GhasemiGol and
Ghaemi-Bafghi [27] 2015 ML * E +
Ramaki et al. [40] 2015 DM on streams ** E + + 3.1 +
Ramaki et al. [88] 2015 KB, Graph, ML ** E + +
Holgado et al. [72] 2017 KB, ML: HMM ** V + + +

Barzegar and Shajari [38] 2018 Sim. * E + +
Husák and Kašpar [11] 2018 DM: TopKRules * V ? +

Ghafir et al. [64,87] 2018 KB, ML: HMM ** E + + +
Milajerdi et al. [73] 2019 KB, Graph *** E + + +

Zhang et al. [30] 2019 ML: MCh * E + +
Zhang et al. [93] 2019 ML, Rules * E + + *

Hu et al. [94] 2020 ML, Graph ** V 23 +
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Table 4. Selected success metrics calculated on the basis of results on the DARPA 2000 dataset.

Papers Year
Scenario LLDOS 1.0

RS (6) RC (5) QoA (7)

Saad and Traore [35,36] 2012 (P) 99.70% (P) 100.00%
Ramaki et al. [88] 2015 (P) 100.00%
Ren et al. [76] 2010 87.14% 96.83%
Ning et al. [31–34] 2002 94.06% 94.06% 85.91%
Yu and Frinckle [41] 2007 100.00% 93.75% 93.75%
Liu et al. [37] 2008 (100%) 86.27% (99.02%) 87.13%

Table 5. Alert reduction calculated on the basis of results on the DARPA 2000 dataset.

Papers Year
LLDOS 1.0 Reduction on

LLDOS 1.0 and
LLDOS 2.0.2Reduction (8) Episode Reduction (9)

GhasemiGol and Ghaemi-Bafghi [27] 2015 99.98%
Ramaki et al. [88] 2015 99.34%
Yu and Frincke [41] 2007 98.35%
Sadoddin and Ghorbani [28] 2009 (96%) 96.85%
Zhang et al. [30] 2019 96.21% (P) 96%
Ning et al., Ning and Xu [31–34] 2002 94.43% 95.64%
Ahmadinejad et al. [91] 2011 93.58%
Zhang et al. [93] 2019 83.12%
Valeur et al. [26] 2004 53.00%
Ramaki et al. [40] 2015 (P) 99.95%
Soleimani and Ghorbani [39] 2012 (P) 99.94%

Table 6. Alert reduction results on Cyber Treasure Hunt (CTH), GCP 3.1, and DEF CON 9 datasets.

Papers Year CTH GCP 3.1 DEF CON 9

Saad and Traore [35,36] 2012 99.999%
Ramaki et al. [40] 2015 92.00%
Qin and Lee [68,69] 2003 91.37% 99.66%
Valeur et al. [26] 2004 99.962% 96.81%

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

85%

90%

95%

100%

RS
RC

Reduction
Ep. Reduction

Figure 3. Scores achieved (percentages) on the DARPA 2000 LLDOS 1.0 scenario over years.
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8. Discussion

We calculated new metrics for 9 articles, and verified others where possible, as can be seen in
Tables 4–6. Soundness and completeness measures were not consistent for Liu et al. [37], where our
calculations yielded lower values than reported in the original paper. We found that they may have made
a typing error when presenting their correlation results. While calculating, they may have copied the
number of correctly correlated results from the inside network in LLDOS 1.0 (44 in the paper), to the
correctly correlated alert count from the DMZ portion of the scenario. If we assume that the latter number
was actually 57 and not 44, the calculated results from the paper written in parenthesis are the correct
values. In contrast, the calculation of episode reduction for Sadoddin and Ghorbani resulted in a slightly
larger value than that presented in the paper, because the authors, possibly intentionally, made a rounding
error. Because the reduction metrics shown in Tables 5 and 6 depend heavily on the characteristics of initial
alerts raised by the IDS, the fact that many authors use different IDS systems with different configurations
makes them an imprecise comparison criteria.

In Table 4, we chose to sort the papers according to calculated scores for completeness, RC, because it
reflects the absence of false negative errors, which are, in practice, much more dangerous than false positive
errors. We expect that approaches exhibiting false negative errors in a controlled and sterile setting, such as
a dataset, where the adversary is essentially a simple automaton, will be fairly easy to fool with novel and
modified attack patterns when facing intelligent adversaries in real environments. Interestingly, if newer
methods perform worse than older methods on some old datasets, they could still potentially perform
better on contemporary attacks that are not represented in theese old datasets.

Knowledge-based approaches and approaches that learn attack patterns from datasets, are both types
of signature recognition systems. As such, they must be constantly manually updated with new high-level
attack patterns described by rules and/or new datasets in order to correlate alerts correctly. As a step in
this direction, the authors of UNB datasets continuously publish new and updated datasets, as described
in Section 5.4. Unfortunately, this procedure makes the comparison of attack detection approaches difficult,
since older approaches would have to be re-evaluated each time that a new dataset is published in order
to be comparable. A possible solution is to evaluate new approaches while using a larger number of
datasets, including both older popular datasets and novel ones. To compensate for the inconsistent use of
metrics, approaches should aim to publish detailed information on the correlation results, so that different
evaluation metrics can be calculated independently if necessary. As shown in Tables 4 and 5, 4 approaches
did not provide the underlying counts of the alerts and only published their final results.

Another problem in detecting high-level attacks is missed alarms, i.e., situations where IDS did
not trigger alarms for an attack. This usually happens, because the IDS does not have the appropriate
signatures. Ning et al. [66] addressed this by using domain knowledge to create hypotheses for missed
alerts and later validated these hypotheses while using raw audit data, while Wang et al. [44] handled this
using alarm similarity. As some of the surveyed papers suggest, one possible solution to this problem
would be to integrate different data sources, such as anomaly detector alarms and event logs, and another
would be to incorporate more knowledge about attackers and their high-level targets into the approach.
As for the first solution, Sommer and Paxson [105] argue that a serious disadvantage of anomaly detectors
based on machine learning is that ML is not suitable for meaningful outlier detection. To expand on
this, the fact that an event is an outlier has little to do with the fact that it is malicious, and most of the
outliers can be traced back to software and policy changes and benign network errors, resulting in a large
proportion of anomalies being false positives. The second solution deals with the attacker’s operations,
tactics, and objectives, and may provide better quality, but it relies on large amounts of domain knowledge
about attackers and continuous manual work. To quote all too often quoted Sun Tzu: “If you know others
and know yourself, you will not be imperiled in a hundred battles”. An example of a high-level model
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that is based on attacker tactics is the MITRE ATT&CK framework [106], which we encourage all readers
to review.

Most of the metrics collected in this survey measure the technical characteristics of the approaches,
rather than their impact on productivity in a security operations center (SOC). The only metric in the
surveyed literature that focuses on user experience is QoA (7), along with its weighted variant described
in [41]. Together with the CSA metrics that were proposed in [5], it is largely ignored in the surveyed
papers. Most commercial systems today rely on human operators, combine subscription-based domain
knowledge with anomaly detection to find attacks, and provide analytical capabilities for further manual
validation and investigation.

Finally, approaches since 2004 mostly support real-time operation, and would be sufficent for detecting
scripted attack scenarios of computer worms and low-profile attackers. Some limited projection of attacks
is also possible. However, they are far from detecting and projecting attack scenarios of high-profile
intelligent adversaries, such as Advanced Persistent Threats (APTs), and a lot of research in applications of
AI is needed to cope with them.

9. Conclusions

This paper gave an overview of notable advances in high-level attack scenario detection and
projection. It explained the context, reasoning, and practical problems that encouraged research in
this area, and followed the evolution of proposals from the pioneering approaches to the state-of-the-art
at the time of writing. Approaches relying on manually defined domain knowledge require constant
maintenance and are, in most cases, not very flexible, while data mining and ML approaches highly
depend on the quality of the available datasets. In this survey, emphasis was put on comparing the
papers by calculating comparable measures of success on two most commonly used datasets, namely the
DARPA 2000 dataset and the Treasure Hunt dataset. We suggest that future approaches evaluate on a
larger number of datasets, including both the popular older ones, and novel ones, and focus more on the
value they provide to the security personell. At the time of writing, the available datasets do not seem
representative enough to enable the extraction of knowledge regarding attackers and attack scenarios aside
from bot attacks. The tasks of attack scenario detection and projection have proven to be very challenging,
and they require further research.
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