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Abstract: In this paper, we propose a novel fault tolerant methodology for digital pipelined data-paths
called Control Feedback Loop Error Decimation (CFLED), that reduces the error magnitude at the
outputs. The data-path is regarded from a control perspective as a process affected by perturbations or
faults. Based on the corresponding dynamic model, we design feedback control loops with the goal of
attenuating the effect of the faults on the output. The correction loops apply correction factors to selected
data-path registers from blocks that have their execution rewinded. We apply the proposed methodology
on the data-path of a controller designed for a 2-degree of freedom robot arm, and compare the cost
and reliability to the generic triple modular redundancy. For Field Programmable Gate Array (FPGA)
technology, the solution we propose uses 30% less slices with respect to Triple Modular Redundancy
(TMR), while having a third less digital signal processing blocks. Simulation results show that our
approach improves the reliability and error detection.

Keywords: fault tolerance; reliability; arithmetic data-path; FPGA; control engineering; feedback controller

1. Introduction

Reliability represents a key factor in electronic devices that operate in radiation prone environments,
frequent in applications in the aerospace domain. It is achieved by adding redundancy to the digital
circuits, with cost increase acting as the main drawback. Fault tolerant design is based on adding some
form of replication, or using specially designed error detection and correction codes, so that the cost
overhead with respect to the nominal solution is acceptable, and the target reliability is achieved.

The most common way of increasing the reliability of a circuit is to employ Triple Modular
Redundancy (TMR), i.e., using three copies of the digital circuit and a voter structure [1]. The main
drawbacks of TMR are its high cost and the sensitivity of errors affecting the voters. Regarding the former,
schemes to reduce the cost of the TMR, such as approximate TMR [2,3] or inexact TMR [4], have been
proposed. Furthermore, the use of TMR in the context of approximate computing is discussed in [5].
For arithmetic circuits, the concept of reduced precision replicas has been applied, with the most significant
part of the circuit being triplicated [6,7]. Reduced precision replicas can also be used in a dual manner,
with the lower cost data-path working in a higher supply voltage domain and providing a highly reliable
reference [8]. Other works improved reliability by increasing the resilience of the voting circuits within the
TMR, such as the self checking voting circuits [9], adaptable bit-width voter [10], or employing dedicated
voters for approximate TMR [11].
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Modular redundancy approaches use multiple instances or truncated versions of the same nominal
circuit. Other solutions use different types of redundancies. For example, approaches using error
correction codes—Hamming or Reed–Muller codes—in combinational circuits have been proposed in [12].
Redundant residue number systems have been employed for signal processing data-paths in [13,14]; in this
case, modular redundancy is employed, with each replica having its own residue representation. Another
approach uses a design inspired from the Markov Random Field (MRF) theory. In [15], a complementary
dual modular redundancy with an MRF voter is proposed, while [16] uses coding-based partial MRF,
where the circuit is employed using MRF-based logic components. The common drawback of MRF-based
implementations is the high implementation cost. Therefore, for non time-critical applications, several
approaches using testing methods and redundancy have been proposed [17], with fault detection being
performed during a circuit testing phase.

Different from all the mentioned approaches, this work proposes a control engineering
approach—Control Feedback Loop Error Decimation (CFLED)—for improving the reliability of digital
data-path processing pipelines, by employing feedback control loops to reduce the error magnitude. CFLED
targets applications that rely heavily on arithmetic operations, such as signal and image processing or control
and artificial intelligence applications. In arithmetic data-paths, error magnitude is an important factor,
as low-magnitude errors may by tolerated by the application. The goal of reducing the error magnitude,
and not to completely remove the fault, is also employed in fault tolerant techniques that rely on approximate
redundancy [2,5], inexact redundancy [4], or reduced precision replicas [7]. The proposed technique may be
applied for arithmetic data-paths implemented on both Application-Specific Integrated Circuit (ASIC) and
Field Programmable Gate Array (FPGA) technology.

To the best of our knowledge, CFLED represents the first approach that uses control theory in order
to improve the reliability of processing data-paths. Fault-tolerant control for finite state machines has been
considered in e.g., [18,19]. The design for these use cases is aided by the finite state machine characteristics:
finite and rather low (at most tens) number of states, low number of inputs (typically 1-bit inputs),
and finite number of state transitions. In contrast, the proposed approach considers a dynamic model
that captures high order input-state-output dynamics, where inputs, states, and outputs have continuous
values within their variation domains.

We analyzed the proposed approach on the hardware architecture for the two-degree of freedom robotic
arm controller (2-DOF) presented in [20]. The considered use case consists of a processing pipeline that relies
on function evaluations—performed using Taylor series—scalar-matrix multiplications, and vector-matrix
multiplications. Such operations are widely used in applications such as graphic processing and signal
and image processing. Furthermore, this use case represents a novel application in control engineering:
design of fault tolerant controller when the faults affect the controller implementation. Other approaches
for fault-tolerant control, such as the ones used for electronic power converters [21], induction motors [22],
filters [23], robot control, and localization [24,25], assume faults in components of the controlled system,
usually actuators or sensors.

This paper is organized as follows: Section 2 discusses the methodology—the discrete time dynamical
model of the circuit used to derive the feedback controller; Section 3 discusses a case study for the proposed
methodology and presents FPGA implementation costs and reliability estimates; concluding remarks are
presented in Section 4.

2. Control Feedback Loop for Fault Mitigation

The proposed methodology targets arithmetic data-path circuits consisting of several processing
stages built out of arithmetic operations: additions, accumulations, multiplications, and multiply-add
fused. The operands can be either registers or constants. Thus, we consider data-paths commonly
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used in a wide variety of applications fields that rely on matrix-vector/matrix-matrix multiplications,
convolutions, or weighted sums, and are therefore dominant in fields like signal and image processing,
computer graphics, or artificial intelligence. Each processing stage i consists of a sequence of registers
{Ri

0, Ri
1, . . . , Ri

ni
}, and it takes ni clock cycles to compute a set of ni

s data output elements out of a total of
ni

el data values stored to memory or inside registers. Thus, in order to produce a set of output results for
stage i, a total of ni × dni

el/ni
se clock cycles (cc) are required.

The design process for enhancing the reliability of a given nominal circuit data-path involves: (i)
Modeling the nominal circuit, (ii) CFLED design and simulation, (iii) CFLED operation, and (iv) hardware
implementation of the enhanced CFLED circuit.

2.1. Dynamic Model of Digital Data-Path

Given a digital data-path, our first goal is to develop a mathematical model of the operations performed
and the propagation of values through the data-path. This model forms the basis for designing a control law
that will be used to correct the output of the circuit.

A common way to model a system from a control perspective is by using a state space representation.
Since digital circuits are synchronous, we employ a discrete time-domain state-space representation, where
the sample k corresponds to the current clock cycle, and has the general form:

x(k + 1) = f (x(k), u(k), η) (1)

where x denotes the states describing the circuit, u the inputs, η some parameters of the dynamic system,
and f is a vector function—to be determined—that describes the evolution of the states in time. For a
given circuit, each (partial) result (in case of iterative loops) is mapped to a state variable. Hence, each
meaningful register value at different clock cycles has a corresponding state variable. Furthermore,
a data-path (process) model is built by the composition of several processing stages i.

In this work we consider arithmetic data-path circuits, with the operations: addition, accumulation,
multiplication, and multiply-add. Since we map each (partial) result to a state, the value of the state may be
obtained as either: (1) addition of a constant to a state; (2) addition of two states; (3) multiplication of a state
by a constant; or (4) multiplication of two states. The dynamic model that describes the circuit aggregates
all the operations throughout the clock cycles and therefore it may contain only these four mathematical
operations. Consequently, the model chosen is of the form:

x(k + 1) = Qκ(x(k)) + Ax(k) + a + δ (2)

where κ(x(k)) denotes the Kronecker product of the vector x(k) with x(k), Q, and A are matrices of
appropriate dimensions, a is the vector of biases or affine terms, and δ denotes the faults, possibly with a
known distribution.

To determine the exact values of the parameters—matrices Q and A and affine term a—and the
correspondence between the states and registers, we adopt the following convention:

1. The affine term a contains all inputs to the circuit.
2. Since scalar multiplications are commutative, the Q matrix is not unique. Nonzero values should

appear in the first element corresponding to a multiplication.

The model and its parameters are obtained as follows:

1. Write the chronological operations for each clock cycle;
2. assign a state variable to every register containing a partial result at different clock cycles;
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3. define the dynamic of each state variable as the operations performed to obtain the value in the
corresponding register at the corresponding clock cycle;

4. separate the bilinear, linear, and affine terms in the resulting equations;
5. collect the coefficients of the bilinear terms in the matrix Q, the coefficients of the linear terms in the

matrix A, while the affine terms, including the inputs to the data-path, will form the vector a.

Note that a model developed for a given circuit is not unique. We have formulated a generic dynamic
structure that can be used for any circuit implementing arithmetic operations. In what follows, we illustrate
the modeling steps on the circuit in Figure 1.
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(a) Circuit

R0(0) = In1

R1(0) = In2

R2(1) = R0(0)× R1(0)

R2(2) = R2(1) + R0(0)× R1(0)

...

R2(n) = R2(n− 1) + R0(0)× R1(0)

R2(n + 1) = R2(n) + C
R3(n + 2) = R2(n + 1)

(b) Chronological operations
for each clock cycle

Figure 1. Modeling example: Ri(m) denotes the value assigned to register Ri at the clock cycle m, and In1

and In2 are the multiply-accumulate (MAC) design unit inputs.

In this example, In1 and In2 denote the inputs of the circuit. We define the state variables as the
register values (states) in reverse order, i.e., x1(k + 1) = R3(n + 2), x2(k + 1) = R2(n + 1), etc., and express
each of them as a function of the state variables at the previous sample. This leads to the state equations:

xn+3(k + 1) = In1

xn+2(k + 1) = In2

xn+1(k + 1) = xn+3(k)× xn+2(k)

xn(k + 1) = xn+1(k) + xn+3(k)× xn+2(k)
...

x3(k + 1) = x4(k) + xn+3(k)× xn+2(k)

x2(k + 1) = x3(k) + C

x1(k + 1) = x2(k)

(3)

which can be written in a vector form as

x(k + 1) = Qκ(x(k)) + Ax + a

where
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Q =

02×(n+3)2

0(n−1)×((n+2)(n+3)−1) 1(n−1) 0n×(n+3)
02×(n+3)2

, A =

(
0n×1 In 0n×2

0n×1 0n 0n×2

)
, a =


0
C

0(n−1)×1
In2

In1

,

with 0n×m we denote the zero matrix of dimensions n × m, In the identity matrix, and 1n a column
vector of 1 s.

Models of multiple pipelined sub-components can be combined as follows: (1) The outputs of
pipeline stage block i become states of pipeline stage i + 1; (2) modify the matrices A and Q and vector a
appropriately. Thus, larger models of more complex circuits can be built from individual sub-models of
its parts.

2.2. Controller Design

The first objective of the controller is to reduce the fault effect at the digital circuit outputs, such that
it is as close as possible to a reference value (i.e., gold output result). The second objective is to converge as
fast as possible to the correct value. A way to include control inputs into model (2) is to include a linear
input, modifying the system model as

x(k + 1) = Qκ(x(k)) + Ax(k) + a + δ + Bu(k)

y(k) = Cx(k)
(4)

where u denotes the vector of the control inputs, k is the current clock cycle, B is the input matrix that
determines which state is affected by which input and in what measure, y is the vector of outputs available
for correction, and C is the output selection matrix. Next, we define some specific design constraints.

From the circuit side, we need to ensure that even if multiple states are mapped to the same register,
the control input is the same. Note that in (4), the matrix B is an nx-by-nu matrix, where nx is the number
of states and nu is the number of inputs. In this matrix, each element Bij indicates the measure in which
the input corresponding to the column j is applied to the state corresponding to the row i. If the same
input is applied to several states, then the values corresponding to these states can all be set to the same
value. Thus, we enforce that the same control (correction) input is applied to all the states corresponding
to the same register by the appropriate choice of the values in the matrix B.

The control input u(k) is usually computed based on the outputs of the circuit and a given reference.
Cost-wise, the preferred solution is the simplest possible, mainly, a linear control law, i.e., when the
control input u(k) is computed as u(k) = −Ky(k), with K a constant matrix. The controller gain K is
determined such that the closed-loop system—meaning that the control input is applied to the system
described by (4)—is asymptotically stable. Thus, we have experimented with the control input computed
as u(k) = −K(y(k)− yd), where yd are the desired values. However, since model (4) is in most cases
nonlinear, such a controller may not suffice, in which case nonlinear controllers can be designed.

The proposed methodology consists of the steps depicted in Figure 2. The inputs are: a register
transfer level nominal digital design, a set of application specific constraints (e.g., the acceptable output
error), and the aforementioned design specific constraints. The output is a CFLED model.

A final remark concerns the operands data representation, since it is an important implementation
cost factor. Although in control engineering floating point is the preferred representation format, from the
circuit design point of view, having fixed point operands is a major source of cost saving. Many designs are
fine tuned to the application specific needs and use custom fixed point representation. Thus, if a fixed-point
representation is chosen, the CFLED gains, as well as resulting states, cannot exceed the representation
used for the initial implementation, and use fixed point representation as well.
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Figure 2. CFLED design steps.

2.3. Fault Tolerant CFLED Operation

Before describing the CFLED operation, we revise the circuit design constraints with respect to
timing (i.e., number of clock cycles required computing a result). In digital circuit operation, a pipeline
stage result is obtained at well defined moments in time (i.e., after a number of ni clock cycles for an
arbitrary processing stage i). In addition to this, we add the latency constraint that the CFLED enhanced
circuit execution can not be larger than twice the execution of the nominal circuit. The latter implies that
re-execution of an input data set is not applicable, otherwise we would be unable to justify the additional
logic overhead with respect to time redundancy. However, given the principle of the correction loop,
an extended execution, such that the correction offsets are added is required. This is handled in parallel
for all the pipeline stages having non-zero coefficients in the K matrix, and we refer to it as pipeline stages
execution rewind. Thus, latency increase is limited, and all computation sub-blocks are synchronized to
the worst case number of clock-cycles it takes to compute a pipeline stage output result. This operating
principle is depicted in Figure 3.

To summarize, the operation of the CFLED augmented digital circuit requires the following steps:

1. compute the difference between the output and the reference (y(k)− yd)),
2. determine the correction factors by means of −K× (y(k)− yd),
3. rewind the computation by adding the obtained correction factors to the corresponding registers.

It should be emphasized that for a circuit composed of several sub-blocks, the rewinding process is performed
only in the sub-modules for which the coefficients in K are non-zero. Furthermore, the re-executions is performed
in parallel for the sub-blocks where the correction factors are applied—see Figure 3. Therefore, a correction phase
duration is equal to the highest latency of the rewinded sub-modules. The correction process may take several
phases/iterations, until the result is below the tolerated threshold.

A key issue is represented by the need of the yd reference. We solved this problem by employing two
CFLED augmented processing pipelines, each providing the reference to the other circuit. In this case,
an application specific filter may be employed, in order to exclude results that are out-of-bounds for the
specific application.
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Figure 3. CFLED execution example. Three stages are considered in this example, each computing ni
el results.

Each result takes ni cc for computation. First, the normal operation is performed. If, after finishing the
computation, a difference is detected at the output, the correction operation is started. All three stages are
executed—rewinded —in parallel with correction inputs added to designated registers.

3. Case Study—A Robot Arm Controller

3.1. Nominal Circuit Design

To illustrate the proposed approach, we consider the hardware implementation of a fuzzy controller
for a two degree of freedom (2-DOF) robot arm. The parameters of the physical robot are described
in [26], and the hardware implementation of the controller in [20]. The output of the nominal (controller)
circuit implementation is the vector u (2 elements), that represents the inputs for controlling the robot arm.
With xIr (2 element vector) we denote the controller state, while xr represents the current state of the robot
(4 element vector), and yr is the reference that the robot arm should follow.

The hardware architecture is a fixed point implementation, using 24 bits operands, 8 bits for the
integer part, and 16 bits for the fractional part. The equations and the numerical approximations used are
described in [20]. For the purpose of this study, we focus on the register transfer level operations of the
five pipelined processing blocks of the data-path depicted in Figure 4:

1. Trigonometric function approximator, that computes the sin(x), sin(2x), and cos(x)—these three
functions are evaluated based on the 2nd and 3rd order Taylor series, and are computed in parallel;

2. computation of weighting functions—the computation of the three weighting functions h1, h2, and v
is serialized, with one element computed at a time;

3. multiplication between the weighting functions—this block performs the 8 multiplications between
h1 or (1− h1), h2 or 1− h2, and v or (1− v) sequentially;

4. final gain matrix computation—this block performs the accumulation of 8 scalar-matrix products;
the size of the matrices is 2× 6; it employs a single multiply-add fused unit, and therefore, the 12
elements of the final gain elements are computed sequentially;

5. output computation—the output control vector is obtained by multiplication of the final gain matrix
with the vector composed of the process state xr and internal state xIr; the two elements of the output
vector are computed sequentially;

The 2-DOF robot arm controller contains 34 data registers and the processing of a set of input samples
requires 175 clock cycles.
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Figure 4. 2-degree of freedom (DOF) robot arm controller hardware architecture.

3.2. Dynamic Model and CFLED Design

For the implemented architecture, a dynamic model has been developed, following the steps described
in Section 2. The output of the system has been defined as the output of the circuit. The model is non-linear
(consequence of the multiplication operation), of the form (4), and has 310 states. In addition to the discussion
from Section 2, in order to avoid obtaining a switching system or the need to include clock-dependence
in the model, the blocks that compute results sequentially (e.g., weighting functions, weighting function
multiplication, and output computation) are modeled as parallel in the dynamic model.

For the actual design of the controller, we have opted to linearize the model in the zero equilibrium
point, reduce it using a balanced realization, and compute the gain matrix by placing the closed-loop
system poles as close as possible to the origin [27]. As a result that K is constant, it is computed offline.
Finally, the resulting controller has been tested for the original nonlinear model. The correction gains
are constant during the entire correction process and are independent of the fault rate affecting the
circuit. The computed gains are multiplied by the difference between the actual and desired output vector
(u[k]− ud[k]), and their sum added at each clock cycle to the designated register during the correction
operation phase. Furthermore, the vector ud is updated at the end of each correction phase execution.

Regarding the values in the gain matrix K, we have obtained values that are non-negligible for two
out of five blocks: the final gain matrix computation and output computation blocks (5 registers out of 34).
Thus, we employ CFLED for these two computational stages. The values for the gain factors corresponding
to the two blocks are given in Table 1, where R3

i denotes registers within the final gain matrix computation
block, while R4

i denotes registers within the output computation. During the correction phase, processing
is performed only on these two blocks and the duration of the correction is given by the maximum of
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the latency of the two modules augmented with CFLED. Since the correction gain values are constant
(computed offline), optimized implementation of multiplication with constants can be employed, using a
simple shift-and-add approach.

First, the Matlab model of the CFLED enhanced 2-DOF controller with golden reference has been
built. In the next step, the golden reference has been replaced by a second CFLED controller that is also
subject to probabilistic errors. A simple control unit determines if the difference between the outputs
is smaller than the application specific error tolerance, chosen as 10−3. If the computed output register
difference is larger than this bound, the error correction phase is started. Thus, the fault tolerant solution
relies on two CFLED enhanced models connected in reaction, that exchange data at the beginning of each
correction phase.

We simulated the Matlab model to asses the performance of the overall system. The behavior of the
proposed solution can be observed in Figure 5, which depicts outputs u1, and u2 of the two controllers in
the presence of errors. Note that the error at the output of one circuit influences the other. The simulation
shows that up to cycle 27, the output of the two CFLED circuits are identical; thus, the black and red lines
overlap. Then, the first controller has errors manifesting at the output u1; thus, triggering the correction
phase during the next simulation cycle. Due to the correction factors the two outputs influence each other,
leading to a small perturbation in output u2, that is eliminated successfully during further correction
phases. This is also the case for the other two errors that are larger in amplitude. The only difference is
that the recovery time is larger. Given this observation, it makes sense to include a check in the control
unit, that verifies if the output values are within the allowed range. For the considered use-case, the range
is [−3.5, 3.5]. If both CFLED enhanced circuits yield out of bounds results, then system failure occurs,
and computation is restarted. Otherwise, they may serve as reference for each other during an error
correction phase, if needed. If only one of the CFLED enhanced circuit outputs exceeds the range, then the
other output is considered correct.

Table 1. CFLED K matrix values for registers in Figure 4.

Input No. Register Gains u

1 R3
1 −0.0011 −0.0038

2 R3
0 0.0007 0.0024

3 R4
1 −0.0017 −0.0022

4 R4
0 −0.0103 −0.0092

3.3. Results and Discussion

In this section, we discuss the results obtained by the proposed approach and compare them with
those obtained by a TMR.

3.3.1. Reliability Analysis

The reliability analysis of the proposed approach has been performed using simulated fault injection,
in a Matlab–Modelsim co-simulation environment. Two main components are needed: the Matlab model
for the process, and the HDL CFLED RTL design simulated using Modelsim. The Matlab simulation
is responsible for generating and sending input data to the robot arm controller. It also generates the
correct output results, and handles the statistics recording and result post-processing. The communication
between the two CAD programs is through TCP/IP connection.

The simulated fault injection is performed in three phases:
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I Setup: initializes all data structures from Matlab from the configuration files, loads the HDL design
inside the Modelsim environment with the parameters sent from Matlab, and generates a TCL data
structure in the HDL simulation environment that mirrors the Matlab simulated fault injection
configuration data (i.e., bit error probability, fault location).

II Simulation runs: One simulation step is run for both Matlab and Modelsim. In the Matlab environment, a
set of input data and output gold values are computed. A TCL script with appropriate command
parameters is invoked through the TCP/IP connection. Next, the register values for outputs, and the
debug registers are read in Matlab, and data are logged in *.csv files.

III Results processing: Matlab scripts process the logged data and compute statistics.

(a) u1 (b) u2

Figure 5. Matlab simulation example. Clock cycle accurate simulations of two CFLED enhanced 2-DOF
units connected in reaction, and denoted with colors red and black, respectively.

We have performed the simulated fault injection both on the CFLED augmented architecture, and on
a fault tolerant controller that uses TMR. We have considered bit-flips that affect each flip-flop within all
data registers, with different fault rates per clock cycle: 10−4 , 10−5, and 10−6. During a sample processing,
for a bit-flip rate of 10−4, the number of faults injected in the baseline architecture—without any fault
tolerant mechanism—is 14. For the fault tolerant designs—CFLED and TMR—faults have been applied for
the entire design and during the entire execution.

We present the results in terms of:

1. Output failure rate—in this case, we have counted the number of outputs that have a difference
greater than 10−3 with respect to the correct output.

2. Gaussian distribution of the output error magnitude in terms of mean (µ) and covariance (σ)—this type of
analysis has been performed because in arithmetic data-paths the error magnitude is in many cases
more important than the number of errors (such as bit errors) affecting the result. Smaller values of
the mean and of the covariance mean an improved distribution of error magnitude, and therefore,
increased fault tolerance.

Results are depicted in Table 2 for the first component of the output vector (u1), and Table 3 for
the second component of the output vector (u2). Although the TMR presents better output failure
rate—a smaller number of erroneous frames—the distribution of error magnitude is improved in the case
of CFLED. This indicates that although the number of erroneous results is higher in the case of CFLED,
the error magnitudes achieved with the proposed method are lower compared to TMR. Therefore, it
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can be noted that CFLED achieves its primary goal, to reduce or mitigate the magnitude of errors in
arithmetic data-paths.

Table 2. Parameters of the Gaussian distributions and output failure rates for ur
1.

Bit Error Method µ σ Output
Probability Mean Covariance Failure Rate

10−4 CFLED −0.1036 79.54 0.3202
TMR −0.5192 236.39 0.1516

10−5 CFLED −0.0043 0.4196 0.0186
TMR 0.0277 1.3228 0.0066

10−6 CFLED −5.99× 10−4 1.3× 10−3 0.002
TMR −2.09× 10−2 2.826 0.0007

Table 3. Parameters of the Gaussian distributions and output failure rates for ur
2.

Bit Error Method µ σ Output
Probability Mean Covariance Failure Rate

10−4 CFLED −0.0886 66.8871 0.3176
TMR 0.10132 131.82 0.1436

10−5 CFLED −0.0334 3.6056 0.0229
TMR −0.0452 5.501 0.0039

10−6 CFLED 0.0018 0.016 0.002
TMR 0.0056 0.7344 0.0007

Figure 6 depicts the average number of correction phase executions, depending on the bit error
probability. It can be noted that for a bit error probability of 10−6, less than a quarter of phase executions
are required on average. Given that a phase execution requires 20 clock cycles—out of 175 clock cycles
required for processing one sample—less than 5 clock cycles are added on average to each sample
processing. This means that the execution time is increased on average with less than 0.3%.
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Figure 6. CFLED average phase execution increase for a maximum of 24 correction phase executions.
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3.3.2. FPGA Implementation Results

The implementation results for the proposed CFLED enhanced 2-DOF controller design for Xilinx
Virtex-7 VX485T-2 FPGA device, using the Xilinx Vivado 2017.1 tool are depicted in Table 4 for the
baseline—non-fault tolerant—circuit, and the controlled, fault tolerant version, with two CFLED enhanced
circuits providing the reference to the other.

Table 4. Implementation results.

Design Slices DSP Frequency
Blocks [MHz]

Baseline 1948 34 142
TMR 5844 102 142
CFLED 4052 68 142

FPGA implementation results indicate that the two circuit CFLED solution has an overhead of 2.1×
in terms of slices, with respect to the baseline circuit. In terms of DSP blocks, the CFLED solution contains
the same number of blocks as two baseline circuits. Therefore, the CFLED solution uses 30% less slices
with respect to the TMR, while having a third less DSP blocks. The results in Table 4 also indicate the
low cost of the correction feedback with respect to the baseline circuit. As a result that this block consists
of 4 multipliers with constants—using a simple shift-and-add approach—no dedicated DSP blocks are
required, while the overhead in logic slices is rather negligible.

4. Conclusions

To the best of our knowledge, this paper represents the first attempt to improve the reliability of digital
processing pipelines by employing control engineering techniques. CFLED requires the development of a
dynamic model associated to the processing pipeline, and the design of a feedback controller that computes
correction factors. The correction to be applied is computed as the multiplication between offline computed
constants with the difference between the circuit’s output and the reference, and they are added to a sub-set of
registers within the processing pipeline. A key issue is represented by obtaining the reference. In this paper,
we propose to use two CFLED augmented data-paths, each providing the reference to the other.

Reliability estimates obtained by means of simulated fault injection for a hardware architecture
of a two degree of freedom robotic arm controller indicates that the error magnitude of the CFLED
augmented circuit is reduced with respect to a classic TMR-based solution. Regarding the cost overhead
for an FPGA-based implementation, CFLED shows a 30% reduction in slice-based resources compared to
the TMR.

Thus, future work will consist of reducing the cost of this solution, by employing reduced precision
replicas or approximate methods for part of the data-paths.
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Abbreviations

The following abbreviations are used in this manuscript:
FPGA Field Programmable Gate Array
TMR Triple Modular Redundancy
ASIC Application-Specific Integrated Circuit
MRF Markov Random Field
CFLED Control Feedback Loop Error Decimation
DSP Digital Signal Processing
HDL Hardware Description Language
RTL Register Transfer Level
2-DOF Two Degree of Freedom
MAC Multiply-Accumulate
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