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Abstract: In Korea, data on pavement conditions, such as cracks, rutting depth, and the international
roughness index, are obtained using automatic pavement condition investigation equipment, such as
ARAN and KRISS, for the same sections of national highways annually to manage their pavement
conditions. This study predicts the deterioration of road pavement by using monitoring data from the
Korean National Highway Pavement Management System and a recurrent neural network algorithm.
The constructed algorithm predicts the pavement condition index for each section of the road network
for one year by learning from the time series data for the preceding 10 years. Because pavement
type, traffic load, and environmental characteristics differed by section, the sequence lengths (SQL)
necessary to optimize each section were also different. The results of minimizing the root-mean-square
error, according to the SQL by section and pavement condition index, showed that the error was
reduced by 58.3–68.2% with a SQL value of 1, while pavement deterioration in each section could be
predicted with a high coefficient of determination of 0.71–0.87. The accurate prediction of maintenance
timing for pavement in this study will help optimize the life cycle of road pavement by increasing its
life expectancy and reducing its maintenance budget.

Keywords: deep learning; long short-term memory; sequence lengths; pavement deterioration model;
crack; rutting depth; international roughness index

1. Introduction

With the start of the fourth industrial revolution, technological innovation is in progress to apply
information and communication technology, Internet of things (IoT) sensors, big data, and artificial
intelligence to realistic tasks. Artificial intelligence technology can be applied to almost all areas of
society beyond the traditional IoT industry, but few large leading companies can effectively respond
to this high degree of diversity. Therefore, the sustainable development of artificial intelligence
technology must involve the government, universities, and public research institutes to achieve open
innovation [1].

Advanced countries, such as the USA and Japan, are introducing these new technologies at a
national level to increase the efficiency of road pavement maintenance and management [2]. In addition,
with research on and development of the property management system using artificial intelligence and
big data, it is expected that public infrastructure can be maintained efficiently. Advanced countries
are conducting research on and development of pavement management systems for various reasons,
such as serviceability, life cycle cost analysis, and pavement design. In particular, in addition to
the existing statistical methodologies, research utilizing artificial intelligence has been conducted
in various fields, such as pavement performance and distress prediction, pavement management
systems and maintenance strategy, structure evaluation of pavement systems, and image recognition
to detect pavement distress. Previous studies have shown that artificial intelligence can be widely
applied to solve various problems, including the nonlinear problems of pavement engineering [2].
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In addition, deep learning and machine learning techniques are being used in various fields for open
innovation [3–6].

In Korea, social infrastructure built intensively in the high growth period of the 1980s is aging; in
the case of road pavements, it is expected that 85% of all roads will exceed 20 years of service life in
the next 10 years. To prevent the aging of such paved roads, a pavement management system (PMS)
is aimed at the systematic maintenance and management of road pavement. A PMS is a tool that
systematically manages all phases of road pavement, ranging from basic planning, design, construction,
maintenance, and evaluation of road pavement to maintaining the best possible pavement condition
with minimal cost. Because a PMS is based on the lifecycle cost analysis of road pavement, it is
necessary to reliably analyze the costs incurred in the initial construction phase, as well as the costs
incurred at the time of disposal. Therefore, to develop a system for efficient maintenance of paved
road, it is very important to develop a model for predicting pavement distress. A variety of studies
have been conducted to develop models for predicting pavement distress: Statistical methodologies,
including regression, Markov chains, neural networks (NNs), and recurrent neural networks (RNNs),
have been used in these studies [7–10].

The most critical difference between a statistical model and a deep learning model is that the
statistical model requires a hypothesis for the data. For example, in a linear regression model,
the hypothesis is an assumption that the objective variable can be explained by a linear combination of
explanatory variables, while the Markov chain model assumes that the current condition at discrete
times is changed by a transition probability that relies only on the condition at the previous time. When
the data satisfy such a simplified assumption, the expressive power of the model is greatly restricted,
so the analysis of the parameters becomes simple. However, when the assumption about the data is
inappropriate, the accuracy of the prediction becomes poor and the interpretation of the parameters
becomes difficult. The relationship between the explanatory variables and the objective variable can
be observed clearly in controlled conditions, such as in the laboratory. However, in the case of data
measured in the field, there are various factors that can be measured but cannot be related to the
state of the road pavement, such as environmental conditions and differences in construction quality.
Therefore, there is a high probability of large errors between the explanatory variable and the objective
variable, and the relationship may be complicated with a nonlinear shape. In these cases, it is difficult
to analyze the relationship between variables using conventional statistical models. In contrast, a deep
learning model is a highly expressive model that can approximate all nonlinear functions. For example,
road pavement condition can be predicted with high accuracy by a RNN model that predicts the
distress of a section by finding the distress characteristics per unit interval, including all maintenance
histories generated in the relevant interval, or by considering interaction between all explanatory
variables and their nonlinear changes. Therefore, a deep learning model considers the relationship
between variables that are not included in the existing statistical models. Deep learning could perform
excellently in analyzing data obtained from the site that embodies nonlinear and complex relationships.

Therefore, this study aims to develop a road pavement deterioration model using a RNN algorithm,
based on the road pavement monitoring (RPM) data from the Korean National Highway Pavement
Management System (NHPMS). In particular, environmental variables that were not considered
in previous research, such as annual average temperature and annual total precipitation, were
considered during model development. First, the literature regarding road pavement deterioration
models using deep learning and explanatory variables is reviewed, and then the characteristics of the
monitoring data are analyzed. An empirical analysis is then conducted to develop a road pavement
deterioration prediction model using the RNN model. Finally, the results of this study are summarized,
and conclusions are drawn by verifying the applicability of the RNN algorithm in predicting road
pavement condition.
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2. Literature Review

It is essential to predict the deterioration condition of the pavement accurately to establish an
efficient property management system. Deterioration of the road pavement progresses relatively slowly
but continuously and is caused by various environmental factors, such as pavement design, materials,
traffic loads, annual average temperature, and annual total precipitation [11,12]. In most studies that
have attempted to predict road pavement deterioration, the deterioration speeds have been estimated
from the difference between the past and present amounts of deterioration, based on visual inspection
data [13]. Shin [14] proposed a semi-parametric stochastic duration model to predict crack deterioration
in asphalt pavement. Loizos and Karlaftis [15] also developed a pavement surface distress prediction
model based on the probabilistic duration principle. However, existing statistical deterioration models
are at a preliminary stage and, if multiple variables are estimated, problems, such as convergence of
maximum likelihood estimation (MLE), still exist [16,17]. To solve such problems, some researchers
have proposed using a Bayesian estimation method. This has been found to solve problems concerning
a small sample quantity and convergence of the estimation function [18–20].

In addition to statistical analysis methods, studies using the deep learning methodology have been
widely conducted. These can be broadly classified into studies using NN algorithms and those using
RNN algorithms. Attoh-Okine [21] used a back-propagation type of NN to develop a deterioration
model for the rutting depth index of the road pavement. He trained the NN algorithm with the
explanatory variables, such as road structure deformation, traffic loads, crack rate, and rutting depth in
the previous year, and surface distress, such as patching. It was found that the prediction performance
of the NN algorithm was greatly enhanced when factors, such as road pavement life and environments,
were additionally considered. Attoh-Okine [22] also analyzed the road pavement condition using a
back-propagation NN to develop a deterioration model for the international roughness index (IRI) of
the road pavement. Various input variables and a NN algorithm were also utilized to predict cracking
of the road pavement, rutting depth, IRI, the condition rating index (CRI), visual condition index
(VCI), and the present serviceability index (PSI) [23–29]. In addition, it was found that the prediction
performance when using the NN algorithm was higher than that achieved using the conventional
statistical analysis [30,31].

However, Attoh-Okine [21] pointed out that prediction performance deteriorated if prediction
was performed for new data, instead of the data used for learning. This was because of the problem
that commonly occurs with NN learning: The algorithm was overfitted to the learning data. To solve
the problem of such NN algorithms, various methods have been proposed. Hinton et al. [32] proposed
a method of learning a deep belief network after pre-training the data, using the limited Boltzmann
machine. However, recently, the dropout normalization technique, which can solve overfitting
problems by randomly removing connections between some neurons in the existing deep belief
network during the learning process, is often used [33,34]. In a study to predict the service life of
a paved road, Choi and Do [31] reported that prediction performance was enhanced, using a NN
algorithm, when overfitting was resolved.

In addition, there have been several studies that utilized a RNN algorithm, which is suitable for
analyzing time series data. Tabatabaee et al. [35] utilized the support vector machine (SVM) and RNN
model to develop a prediction model for the PSI. First, they used the SVM to classify the sections
with structural similarities. Second, the RNN model was used to predict the PSI in the following year
from the other independent variables, together with the classification results obtained during the first
stage. The case study used a dataset from the Ministry of Transportation, Minnesota, USA (MnRoad).
This revealed that the second-stage model (which used both the SVM and RNN together) was superior,
in terms of prediction performance and error, to the first-stage model (which used only the RNN).
Okuda et al. [36] utilized the RNN model to develop a prediction model for rutting depth. When the
time series data for road deterioration accumulated for 20 years were used, it was found that the best
prediction performance was achieved when the RNN model was used.
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Therefore, in this study, the analysis was carried out with the RNN algorithm, not the NN
algorithm, to correctly handle the time series data in the RPM dataset. In addition, the aim was to
establish a model with an optimum performance for each road pavement section by conducting a
sensitivity analysis by sequence length, which is a core element of the RNN algorithm; this contrasts
with previous research that has utilized the RNN algorithm, which did not consider sequence length.

3. Characteristics of Data

3.1. Characteristics of Road Pavement Monitoring Data

In this study, the data in the RPM dataset provided by the Korean NHPMS were used to predict
the pavement condition index of the individual monitoring sections, whose locations are shown in
Figure 1.
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Figure 1. Pavement monitoring sections and meteorological stations: (a) location, (b) field image.

The RPM dataset contained data for the 11 years from 2007 to 2017, inclusive. RPM data represent
the overall pavement conditions of the general national highways. Data are collected annually by
pavement condition inspection equipment, such as ARAN and KRISS, for a road span of 2300 km, which
is about 20% of the total extent of the national highways. ARAN and KRISS are equipment that can
automatically measure road pavement conditions while driving. The main functions include detection
of cracks, rutting depth, and IRI, as well as video recording of the pavement section. Crack detection is
performed by acquiring a pavement image with an actual crack resolution of less than 1 mm by using
a high-resolution line scan camera installed at the rear of the vehicle. The rutting depth is measured
using ultrasonic waves, and the IRI can be quantified by attaching a high-precision high-speed radar
with a precision of 0.1 mm or less to both wheel segments, facing in the same direction as the vehicle′s
driving trajectory. Each section has a length of 1 km, and the same section is investigated every year.

The data contained information such as section length, location, administration office, pavement
condition data (crack, rutting depth, and IRI), annual average daily traffic (AADT), equivalent single
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axle loads (ESAL), and maintenance timing. Maintenance is performed individually for each section,
maintenance timings vary depending on the road pavement conditions of each section, and maintenance
is performed every 8 to 12 years on average.

The RPM data are summarized in Table 1. The number of sections inspected in each inspection
year ranged from 2308 to 2445 and was different each year. The reason for the difference in sections was
that inspection could not be conducted, for reasons such as maintenance and repair, construction of the
respective sections, or changes in the locations of the monitoring sections. Because the purpose of this
study was to predict the pavement condition of the individual monitoring sections characterized by
time series data, the sections with pavement condition data for all 11 consecutive years were selected
for analysis. The number of sections for which RPM data was used in the final analysis was 1880.

Table 1. Specification of road pavement monitoring (RPM) dataset.

Classification
YEAR

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

No. of
Sections

Raw 2308 2314 2358 2375 2375 2445 2338 2351 2380 2380 2406

Adopted 1880

Rutting
depth (mm)

Avg. 7.3 6.9 5.8 5.8 5.0 5.3 7.7 7.8 7.6 7.4 7.4
Stdv. 2.2 2.2 2.5 2.6 2.6 2.0 2.8 2.3 2.4 2.9 2.9

Crack (%) Avg. 3.8 3.4 3.6 4.5 4.6 5.4 7.2 7.5 7.8 7.3 7.3
Stdv. 5.7 5.3 5.5 6.5 5.2 5.7 8.9 10.2 9.6 10.4 11.4

IRI (m/km) Avg. 2.3 2.1 2.6 2.7 2.5 3.0 2.4 2.6 2.6 2.5 2.5
Stdv. 0.7 0.6 0.7 1.0 0.7 1.5 0.7 0.7 0.7 0.8 0.8

In general, the status value of the road pavement condition was reset to 0 when maintenance
work was performed. The pavement condition deteriorated as time elapsed, and the status value
tended to increase. In addition, according to each pavement condition index, the road was damaged by
composite factors, which occurred independently of each other. Table 1 shows the average pavement
condition for the 1880 sections. Until the year 2012, the rutting depth was decreasing, whereas the
crack and IRI were increasing. This implies that the maintenance work until 2012 focused on sections
where plastic strain had occurred. After that year, the road pavement condition worsened regardless of
the road pavement status index. The overall road pavement condition has been improving since 2016.

The standard deviations for each pavement condition index for each year is shown in Table 1.
Compared with other indices, the distribution of crack rate is very different from the year 2013.
The standard deviations of crack rate between 2007 and 2012 were 5.3–6.5, but these significantly
increased to 8.9–11.4 after 2013. This is because of changes to the vendors of the equipment for
inspecting road pavement condition and the method of calculating crack rates, which were manually
calculated, in contrast to rutting depth and IRI, which were measured automatically by the equipment.
Therefore, in this study, a change of inspection equipment was set as a dummy variable and applied to
the deep learning analysis from 2013.

3.2. Selection of Explanatory Variables and Generation of Analysis Data

The Specification of Explanatory variables are summarized in Table 2. The independent
variables that were used in the analysis were broadly categorized into average daily traffic variables,
environmental variables, and dummy variables. First, for the average daily traffic variables, data were
obtained by dividing the AADT and ESAL data in each section (which could be obtained from the
RPM data) by the number of lanes in the section.
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Table 2. Specification of explanatory variables.

Classification
YEAR

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

AADT (100
veh/lane)

No. of samples 1880
Avg. 27.1 25.9 26.7 26.6 26.4 26.7 27.2 27.6 28.7 29.9 30.6
Stdv. 24.3 23.8 23.5 23.0 23.1 23.1 23.8 24.1 25.0 26.1 26.4

ESAL (100
veh/lane)

No. of samples 1880
Avg. 3.3 3.4 3.4 3.4 3.1 3.0 2.4 2.4 2.5 2.6 2.6
Stdv. 3.0 3.3 3.0 3.0 3.2 3.0 2.3 2.4 2.5 2.6 2.6

Avg. Temp
No. of samples 74

Avg. 12.8 12.5 12.6 12.2 12.0 11.8 12.4 12.6 13.0 13.2 12.6
Stdv. 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.4 1.3 1.4 1.5

Avg. max
temp

No. of samples 74
Avg. 18.5 18.4 18.5 17.8 17.6 17.4 18.2 18.5 18.7 18.8 18.6
Stdv. 1.5 1.5 1.5 1.5 1.5 1.4 1.5 1.3 1.2 1.2 1.5

Avg. min
temp

No. of samples 74
Avg. 8.0 7.4 7.4 7.4 7.0 7.0 7.4 7.6 8.0 8.3 7.3
Stdv. 1.8 2.0 1.9 1.9 1.9 2.0 1.9 1.9 1.9 1.9 2.0

Total precip.
(100 mm)

No. of samples 74
Avg. 14.8 10.0 12.4 14.7 16.5 14.9 11.8 11.8 9.5 12.7 9.6
Stdv. 2.2 2.0 2.6 3.2 3.1 2.6 2.1 3.2 2.4 2.9 2.0

Deicing
(t/km)

No. of samples 18
Avg. 3.8 3.8 4.5 7.2 9.6 10.8 12.0 9.0 9.5 9.5 9.2
Stdv. 3.8 3.8 3.5 6.1 7.2 8.0 9.0 7.1 6.3 6.4 7.4

Equipment
(dummy) - 0 0 0 0 0 0 1 1 1 1 1

For the environmental variables for each section, data from the annual weather reports provided
by the Korea Meteorological Administration (KMA) were used. Among the 81 locations for which
data could be obtained, the data for 74 locations (excluding the locations in the islands) were used.
The data for snowfall amounts, which were anticipated to have affected road pavement deterioration,
were excluded because data were missing from some of the weather stations. Therefore, annual
average temperature, annual maximum average temperature, annual minimum average temperature,
and annual total precipitation were used for the analysis. The standard deviation of weather data
was shown to be somewhat low, implying that the weather differences between the regions were
relatively small at first. Moreover, the average of the annual data between the meteorological stations
was utilized, rather than the monthly data. To match the environmental variables that are provided
by the KMA to the RPM data, the KMA location nearest to each section was selected by utilizing the
ArcGIS software.

Deicing agents mainly use calcium chloride or sodium chloride, and excessive use may affect
road pavement damage. Therefore, the amount of desiccant use was considered as an explanatory
variable in this study. For the amount of deicing agent used for the general national highway, the data
in the Road Deicing System of the Ministry of Land, Infrastructure, and Transport were used. The
deicing agent data are provided as a total amount by each National Land Administration Office, not by
the general national highway route or by section. The national highway is divided into 18 National
Land Administration Offices, so the road pavement monitoring section can be divided into 18 areas.
Therefore, data on the amount of deicing agent used for each local land management office were
matched to the monitoring section managed by the National Land Administration Office and utilized
for analysis.
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The analysis data for model development were set with the dependent variables of rutting depth,
crack rate, and IRI, which were the pavement condition indices of each section. The independent
variables were AADT, ESAL, annual average temperature, annual total precipitation, annual maximum
average temperature, annual minimum average temperature, amount of deicing agent used,
and pavement condition inspection equipment (which was set as a dummy variable).

The coefficients of determination by section, between each independent variable and each
dependent variable (pavement condition index), excluding the dummy variables, are shown in
Table 3. The coefficient of determination was very low, with an average of 0.10–0.26 over all pavement
condition indices, which indicates that each independent variable has relatively little effect on the road
pavement deterioration.

Table 3. Coefficients of determination (R2 values) between variables.

Variables
Crack Rate Rutting Depth IRI

Avg Stdev Min Max Avg Stdev Min Max Avg Stdev Min Max

AADT 0.21 0.22 0.00 0.96 0.19 0.20 0.00 0.95 0.18 0.19 0.00 0.97
ESAL 0.18 0.19 0.00 0.89 0.17 0.19 0.00 0.87 0.15 0.17 0.00 0.88

Avg. temp 0.16 0.17 0.00 0.83 0.26 0.21 0.00 0.92 0.13 0.14 0.00 0.83
Avg. max temp 0.17 0.17 0.00 0.85 0.26 0.21 0.00 0.85 0.14 0.15 0.00 0.84
Avg. min temp 0.14 0.16 0.00 0.94 0.20 0.19 0.00 0.87 0.11 0.13 0.00 0.80

Total precip. 0.11 0.13 0.00 0.71 0.18 0.16 0.00 0.79 0.10 0.11 0.00 0.64
Deicing 0.21 0.21 0.00 0.87 0.14 0.15 0.00 0.75 0.17 0.17 0.00 0.88

The crack rate was found to be affected most by AADT, deicing, and ESAL, whereas the rutting
depth was found to be affected most by the annual average temperature, annual maximum temperature,
and IRI by the AADT and deicing index. This confirms that the independent variables that affect
each pavement condition index were different from each other, despite the overall low coefficient of
determination. Furthermore, each variable had a high maximum coefficient of determination, 0.64–0.97,
which confirms that there were sections heavily influenced by each independent variable.

The results show that the effect of the independent variables on the deterioration of the road
pavement was relatively small, from a statistical perspective. This might be because the data for AADT
and ESAL were obtained from the inspection locations near the RPM section, not from the RPM section
itself, and the weather data were sometimes obtained from distant weather stations. Despite the low
statistical relationship, the RNN algorithm was used with these independent variables to predict the
road pavement condition indices in this study.

4. Methodology

Deep learning refers to the use of algorithms in which hidden layers are added to the existing
neural network structure. The software that helps analysis and development to be conducted easily
using a deep learning algorithm is known as a deep learning framework and is mostly distributed
in the form of open-source software. Representative deep learning frameworks include Theano,
TensorFlow, Torch, Caffe, MXnet, CNTK, and Keras, and it is very important to select a framework that
is appropriate for the analysis purpose and data type. Among these software products, TensorFlow
has a structure that focuses on the structure of the deep learning from the researcher’s perspective,
not on hardware elements, so it has the merit of improving productivity [36]. Therefore, TensorFlow
1.5 was the deep learning open-source framework selected for this study.

A RNN has the added ability to handle time series data, unlike a general neural network, because
of its ability to memorize the previous information in the hidden layer. Because RNNs have an added
recurrent time series structure, the information can be sustained internally, learning proceeds by
memorizing past data in the hidden area. Therefore, it is a suitable model for time series data.
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Figure 2 shows the profile of the recurrent structure of the RNN. The RNN repeatedly receives the
input data and previous data together and processes them. Therefore, it is possible for it to learn the
effect of the past data on the subsequent data. With these characteristics, RNNs can be used to predict
time series data, such as stock prices, whose input data take the form of a time sequence.
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Long short-term memory (LSTM) solves the vanishing gradient problem of the RNN and makes
it effective in capturing long-term dependencies. Therefore, it is effective in learning issues associated
with various time series data and can be extended. It is already being utilized in voice recognition,
language modeling, translation, and other fields, in combination with other neural networks.

The structure of LSTM is shown in Figure 2. It is composed of a memory movement cell that
can maintain a state over time and three nonlinear gates that control data flow in and out of the
cell. That is, LSTM introduces a concept called a cell (Ct) to update the status (ht) at a specific time
and decide whether information inside should be updated by using the status from the input until
now. In addition, there are several gate types: the input gate (it), forget gate ( ft), and output gate (ot),
which control the data flow of the cell. The forget gate ( ft) can be determined by Equation (1).
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The output of the previous cell (ht−1) and the current input (xt) are applied in the sigmoid function
active layer to obtain a value in the range [0,1]. This value is multiplied by the current state and the
elements, and the cell chooses whether to retain or remove this information during the process.

ft = σ
(
W f × [ht−1, xt] + b f

)
, (1)

where σ represents the activation function, W f is the weight of the forget gate, and b f is the bias. In the
input gate it it is decided which information shall be stored in the cell, as shown in Equation (2).
This process is broadly categorized into two stages: (1) decide what to update by using the sigmoid
function, and (2) create a candidate cell (C̃t) which is used during a new cell status update by using the
hyperbolic tangent (tanh) function, through Equation (3).

it = σ(Wi × [ht−1, xt] + bi), (2)

C̃t = tanh(Wc × [ht−1, xt] + bc) (3)

where Wi and Wc are the weights of the input gate and candidate cell, respectively, and bi and bc

represent the biases of the input gate and candidate cell, respectively. After this, the cell status (Ct−1)
(in the past) and the candidate cell status (C̃t) are combined, as shown in Equation (4), and the current
cell status (Ct) is updated.

Ct = ft ×Ct−1 + it × C̃t. (4)

Finally, the output gate ot decides which part of the cell status should be the output by using
the sigmoid function, as in Equation (5). The cell status is multiplied by the activated cell status (Ct)
by using the hyperbolic tangent function, as shown in Equation (6), to update the status (ht) at a
specific time.

ot = σ(Wo[ht−1, xt] + bo), (5)

ht = ot × tan h(Ct) (6)

where Wo is the weight of the output gate and bo is the bias.
LSTM calculates the final output values through the hidden variables, with the method similar to

that of a standard RNN. However, LSTM adjusts the information flow by appropriately using the gates
during the variable calculation process of the hidden layer. As a result, the RNN using LSTM cells
handles gradient loss without any problem, even for data with long process sequences, such as time
series data of stock prices.

5. Results and Discussion

5.1. Optimization of Recurrent Neural Network

In general, the hyperparameters of the RNN algorithm comprise the learning rate, number of
epochs, and sequence length (SQL). An optimal model is constructed by heuristic methods, such as a
trial and error method. As mentioned in Section 1, in this study, a prediction model was intended to
be developed for each pavement condition by the RPM section, not by the individual performance
prediction model for the pavement condition indices (crack rate, rutting depth, and IRI).

The data structures are summarized in Table 4. A RNN algorithm was constructed to predict the
pavement condition indices for the year 2017 by utilizing the time series data for 10 years from 2007
to 2016 as learning and test data. To prepare the learning model, 70% of the data were used, and the
remaining 30% were used for testing data. This algorithm learned (or tests) the time series data for
10 years, and the SQL usable for optimizing the algorithm was limited to a maximum of 8. The reason
is that, if SQL was 9, the datasets for 2007–2015 were required to predict the pavement condition in the
year 2016. In this case, with only the datasets for 2007–2015, the minimum dataset criteria (at least 2
datasets were required for dividing the train and test data sets) could not be satisfied.
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Table 4. Data structures of sequence lengths (SQL) and number of data sets.

SQL No. of Data Sets By Each Section
(a)

No. of Data Sets (1880 Sections)

Total
(a × 1880) Train Test

1 9
(07, 08, 09, 10, 11, 12, 13, 14, 15 years) 16,920 11,844 5076

2
8

(07–08, 08–09, 09–10, 10–11, 11–12, 12–13, 13–14,
14–15 years)

15,040 10,528 4512

3
7

(07–09, 08–10, 09–11, 10–12, 11–13, 12–14, 13–15
years)

13,160 9212 3948

4 6
(07–10, 08–11, 09–12, 10–13, 11–14, 12–15 years) 11,280 7896 3384

5 5
(07–11, 08–12, 09–13, 10–14, 11–15 years) 9400 6580 2820

6 4
(07–12, 08–13, 09–14, 10–15 years) 7520 5264 2256

7 3
(07–13, 08–14, 09–15 years) 5640 3948 1692

8 2
(07–14, 08–15 years) 3760 2632 1128

The following are some examples of the implementation process of the LSTM model. SQL 1
indicates that the pavement condition is predicted based on the t year pavement condition indicators
and explanatory variables, while only considering the description variables of t + 1 (same as the NN
algorithm). Moreover, SQL 3 refers to the use of data for three years (t − 2 to t years) to predict the
pavement condition index for t + 1 years.

The Parameters of the RNN algorithm are summarized in Table 5. A total of 1880 sections were
used for analysis. The number of epochs (repetitions of learning) needs to be decided: Learning should
be stopped when the best prediction model has been constructed. It is important to stop learning at
an early stage because computing resources are limited and learning time is restricted. The optimal
number of epochs can be determined by plotting the number of epochs against the loss function result.
In this study, experiments showed that the best loss function could be obtained when the number of
epochs was between 400 and 500, and the loss value was almost unchanged after 500 rounds.

Table 5. Parameters of the RNN algorithm.

Classification Data

Hyper-parameter
Learning rate 0.001
No. of epochs 500

Sequence length 1, 2, 3, 4, 5, 6, 7, 8

Input variable
Traffic AADT, ESAL

Climate Avg. temp, Avg. max. temp, Avg. min. temp,
Total rainfall, Deicing agent

Dummy Equipment (0, 1)

Output variable Crack, Rutting depth, IRI

Therefore, to establish a model with an optimal performance for each section, the learning rate
was maintained as 0.001 and the number of epochs was set to 500 consistently in this study.
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In addition, by varying the SQL between 1 and 8, the value that minimized the root-mean-square
error (RMSE) was judged to be the optimized value of SQL for each section.

First, as shown in Figure 3a, the RMSE and the coefficient of determination (R2) in all of the
sections, for each value of SQL, were examined. As the SQL increased, the RMSE decreased and the R2

values increased. When SQL was 8, the RMSE of the crack rate decreased by 19%, the rutting depth
RMSE decreased by 19.4%, and the IRI RMSE decreased by 28.2%, as compared with the values when
SQL was 1. The R2 for the crack rate increased by 221.8%, the rutting depth by 56.6%, and the IRI by
57.9%. This might be because the time series data required for the prediction of the pavement condition
indices for the year 2017 were increased as the SQLs increased. Figure 3b shows the number of sections
for which RMSE was minimized by each value of SQL. The RMSE was minimized when SQL was 8 for
a large number of sections and for all pavement condition indices. This might be because, in the case
of an SQL of 8, the trend of pavement deterioration in the past is reflected to the maximum extent.Electronics 2020, 9, x FOR PEER REVIEW 11 of 15 
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Figure 3. Scenario analysis: (a) sequence length optimization, (b) number of sections with minimal
root-mean-square error (RMSE) for each sequence length.

However, some sections had high prediction performance even in the case of SQL in the range 1–7;
this might be because results depended on the deterioration characteristics and the maintenance and
repair history. This meant that the SQL required for optimizing each section had to be set differently
because the pavement condition index, deterioration characteristics, and maintenance timings differed
for each section. In addition, the optimal value of SQL was different for each pavement condition index.
This might have been caused by differences in the deterioration speed for each pavement condition.

The above results indicate that the SQL necessary for optimization of each section differed
because there were differences in pavement type, traffic loads, and environmental factors of each
section. Furthermore, even in the same section, the optimal SQL differed for different pavement
condition indices.

Therefore, the optimization process was executed to choose the SQL that would minimize the
RMSE for each pavement condition index for each section. The optimization results in Table 6
showe that, compared with a SQL of 1, the RMSE was reduced by 58.3–68.2% and the coefficients
of determination (R2) were in the range 0.71–0.87, which represents a high prediction performance.
In the case of Rutting depth, R2 was shown to be somewhat lower if SQL was 5, but the overall trend
did not exhibit any significant difference. Closer examination reveals that pavement maintenance
was implemented based on the Rutting depth index in some sections, which somewhat affected the
predictions of SQL 5.
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Table 6. Results of analysis.

Classification
Sequence Length Optimization

1 2 3 4 5 6 7 8

Rutting
Depth

RMSE 2.40 2.40 2.36 2.29 2.15 2.01 2.00 1.93 0.93
R2 0.14 0.15 0.16 0.17 0.16 0.17 0.17 0.22 0.78

Crack
RMSE 6.59 6.58 6.58 6.53 6.46 6.38 5.95 5.34 2.75

R2 0.08 0.08 0.09 0.10 0.11 0.13 0.18 0.26 0.71

IRI
RMSE 0.44 0.44 0.44 0.43 0.43 0.38 0.35 0.32 0.14

R2 0.25 0.26 0.26 0.27 0.28 0.33 0.35 0.40 0.87

5.2. Application of Recurrent Neural Network Models

To evaluate the prediction performance of the RNN algorithm, the pavement condition indices
in 2017 predicted by the algorithm and the pavement condition indices measured from the site were
directly compared. Figure 4 shows the coefficients of determination for the rutting depth, crack rate,
and IRI between the actual measurements and prediction.
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In general, the coefficients of determination were in the range 0.71–0.87, indicating that
deterioration prediction is possible at a high level of accuracy if the deterioration characteristics
in each section are considered. Of the three pavement condition indices, the coefficient of determination
for the IRI was the highest, 0.87, while the coefficient of determination for the crack rate was lowest,
0.71. This might be because of high analysis errors or because the IRI and rutting depth were
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measured automatically by the inspection equipment, whereas the crack rate was measured manually.
Additionally, the result mainly depends on the high number of 0 values measured for the crack rate
that were not predicted by the RNN model. Despite such errors, even the prediction performance for
the crack rate was high, implying the possibility of prediction with a high accuracy.

6. Summary and Concluding Remarks

This study was conducted at Hanbat National University based on data collected by public
research institutes and the open-source deep learning framework called TensorFlow to introduce the
concept of open innovation to the deep learning field.

This study aimed to predict road pavement deterioration conditions in each RPM section from
the RPM data from the Korean NHPMS, using a RNN algorithm. The RNN was implemented
using Tensorflow. The algorithm was constructed to predict the pavement condition indices
(crack, rutting depth, and IRI) by using the time series data for 10 years (2007–2016) as learning
data. The independent variables for analysis were AADT, ESAL, annual average temperature, annual
total precipitation, annual maximum temperature, annual minimum temperature, and amount of
deicing agent used, and the pavement condition inspection equipment was set as a dummy variable.

In the RNN model, the optimal value of SQL (an important RNN hyperparameter) was determined
separately for each section and for each pavement condition index. This is because analysis results
showed that the pavement type, traffic loads, and environmental factors were different for each section,
and there were differences between the deterioration characteristics of the different pavement condition
indices. The optimization process minimized the RMSE by optimizing the SQL for each section and for
each pavement condition index. This showed that the RMSE was reduced by 58.3–68.2%, compared
with an SQL of 1, while the coefficients of determination were as high as 0.71–0.87, indicating that
prediction performance for pavement deterioration is high.

Nevertheless, there are some limitations of this study, as follows.
First, independent variables related to the maintenance history (such as maintenance timing,

maintenance method, number of maintenance), service life, and pavement structure that greatly
affect the pavement deterioration speed could not be obtained because of missing data. In addition,
the RNN algorithm was not optimized by the learning rate, number of epochs, or activation function.
However, this study already provided good results by exploiting the road pavement big data and
by applying the RNN algorithm to the fields of road property management and road pavement
engineering. The results obtained from this study indicate that it is possible to predict pavement
deterioration indices with a high degree of accuracy with a RNN algorithm, after SQL is optimized and
the characteristics of each section and each pavement deterioration index are considered. Furthermore,
because this study uses a new approach, in the form of a RNN algorithm, it could be a basis for future
research on the prediction of road pavement deterioration.
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