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Abstract: This study investigates the problem of overlarge current protection for a DC–DC
synchronous buck converter with the existence of uncertainties and disturbances. Aiming to deal with
the hardware damage in the electric circuit of a DC–DC buck that may be caused by overlarge transient
current, a new nonsmooth current-constrained control (NCC) algorithm is proposed to replace the
traditional ones, which use conservative coefficients to satisfy current constraint, leading to a sacrifice
of dynamic performance. Based on the homogeneous system technique, a nonsmooth state feedback
controller is improved by adding a penalty term that prompts the adaptive gain of the controller
according to the inductor current and current constraint. Then by using two finite-time extended
state observers (FTESO), the unmatched disturbances and matched disturbances can be compensated
to enhance the robustness of the DC–DC synchronous buck converter. The effect of proposed scheme
has been verified by experimental results.

Keywords: DC–DC synchronous buck converter; nonsmooth control; current-constrained control;
finite-time extended state observer

1. Introduction

Distributed power supply systems are widely used in aerospace, marine, communications,
and other fields, the system only provides power bus, and the power supply inside the equipment
is solved by their own power converters to improve the stability of the system and facilitate the
maintenance of the system. As a kind of energy conversion device from DC to DC, a DC–DC converter
has a simple structure, capable of realizing high efficiency power conversion and being modularized.
DC–DC converters are widely used in power supply and load in this kind of power supply system
structure [1,2].

A DC–DC converter is a kind of variable structure system with switching devices [3]. The circuit
often contains capacitors, inductances and other energy storage elements, and their charging and
discharging behavior has the characteristics of time-varying nonlinearity. In addition, the modeling
process is too idealized, and some unmodeled dynamics are often neglected. These unmodeled dynamic
characteristics are usually generated by sensors, actuators, and so on. Therefore, it is necessary to study
the influence of unmodeled dynamics on a DC converter system. With the shortage of fossil energy,
renewable energy technologies, such as wind energy and solar energy, have developed rapidly, and the
capacity of distributed renewable energy generation systems have been increasing. However, there are
many characteristics such as unpredictability, intermittency, and non-dispatch in such renewable
energy systems. At the same time, there are a large number of non-linear and time-varying loads in the
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system. Due to these factors, input voltage and load resistance are uncertain, which affects the output
accuracy of the power converter [4,5]. Therefore, in the case of strong disturbance and parameter
uncertainties, the design of a robust controller [6–8] with high accuracy has become a research hotspot.

Due to the characteristics of DC–DC circuit and many situations in practical application,
which means adapting the control law for these switched systems is needed [9,10]. Pulse width
modulation technology based on linear control theory cannot meet the requirements in transient
characteristics and robustness. Many scholars have attempted to improve the performance of power
converters by using non-linear control methods. At present, for the control of power electronic
converters, common non-linear control methods include Bang-Bang control [11,12], sliding mode
variable structure control [13,14], fuzzy control [15,16], finite time control [2,3,17], and so on.

Nonlinear control algorithms such as Bang-Bang control, sliding mode variable structure control,
and fuzzy control can only theoretically guarantee the asymptotic stability of the control system.
In practical application, convergence performance is a key index. However, according to this kind of
control design method, the fastest convergence speed of a closed-loop system can only be in exponential
form, so these control methods belong to the solution of infinite-time stability problem [17,18].
Therefore, finite-time control is proposed. Theoretical analysis shows that when there are no external
disturbances, this method can make the system state meet the required target state in finite time.
Considering that disturbances are inevitable in practice, the closed-loop system still has better
accuracy, robustness, and disturbances rejection performance because of the existence of fractional
power term [19,20].

It should be pointed out, that a DC–DC converter requires higher and higher voltage response
speed, resulting in a large overshoot of inductance current in the circuit when the converter starts [21].
If there are no restrictions, it is easy to damage the circuit hardware, especially for high-power
converters. One way to solve this problem is to add a current limiter to the hardware circuit to protect
the circuit. However, the cost of adding this protection circuit increases and the efficiency of energy
conversion decreases [22,23]. In [21], it is pointed out that another method is to consider current
constraints when designing the digital controllers of buck circuits to avoid additional burdens on
hardware circuits. In traditional control methods, conservative control parameters can be selected to
meet current constraints in controller design. For example, in proportion integration differentiation
(PID) control, measures to reduce proportional gain can be taken. However, such methods sacrifice the
dynamic characteristics of the system, which runs counter to the requirement of improving system
response. In recent years, the addition of a penalty mechanism in controls as an effective method to
solve the constraints in the system has been gradually developed. Model predictive control (MPC) is
one of the typical application modes. By making full use of future information, MPC transforms control
problems into optimization problems, so as to "actively" deal with constraints [24,25], i.e., to anticipate
the possibility of exceeding constraints in the future, and take necessary control actions in advance
to make it no longer happen [26]. In [27], a computationally friendly sub-optimal nonlinear model
predictive control (NMPC) algorithm based on infinity norm-based artificial Lyapunov function with
prior input-to-state stabilizing (ISS) guarantee is applied to the real-time control of buck DC–DC power
converter, which satisfies the limitation of inductance current. However, when MPC is adversely
affected by uncertainties and disturbances in the circuit model, its feedback regulation mode is relatively
slow [28]. In addition, MPC has a large number of computations due to the existence of optimization
problems, which put forward higher requirements for hardware. In addition, another application
is to use the barrier function when designing the Lyapunov function in the backstepping control
algorithm [29,30]. This method needs to use the barrier Lyapunov function for the constrained state
variables in the recursive design process of backstepping control, but it also leads to the constraints of
the virtual controller in the design process [23].

Considering the matched and unmatched disturbances in DC–DC converters,
disturbance observers are needed to meet the control requirements. Extended state observers
(ESO) are widely used because they require little information for dynamic systems and can estimate
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unmodeled dynamics, uncertainties, and external disturbances online [31]. A traditional ESO can only
satisfy the requirement of asymptotic stability. Therefore, the ESO needs to be designed based on
finite-time stability theory to achieve faster convergence rate and higher estimation accuracy.

This paper takes the common DC–DC synchronous buck converter in a DC distributed power
supply system as an example. Based on the homogeneous system technique, a nonsmooth algorithm
has been designed to achieve better convergence characteristics of the DC–DC synchronous buck
converter system. At the same time, a simple way to satisfy the current constraint is proposed by using
barrier Lyapunonv function (BLF). To counteract the matched/unmatched disturbances, two finite-time
extended state observers (FTESOs) are used which can guarantee fast convergence rate and robustness
of the converter system via the super-twisting algorithm

2. Model Description and Problem Formulation

2.1. Modeling the DC–DC Synchronous Buck Converter

The circuit topology of the DC-DC buck converter using synchronous rectification technology is
shown in Figure 1, where E is the input DC voltage source, VT1 and VT2 are the controllable switches
(VT1 is the main switch and VT2 is the synchronous rectifier), u ∈ [0, 1] is the duty ratio of pulse
width modulation (PWM) as the control signal, Vo is the output voltage, iL is the inductance current,
iR is the load current, L is the filter inductor, C is the filter capacitor, and R is the load resistance.
Firstly, for the buck converter with VT1 switching on and off, the corresponding operating modes
u = 1 and u = 0 respectively.
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Figure 1. Average model circuit of synchronous buck converter: (a) Circuit topology of synchronous
buck converter; (b) u = 1; (c) u = 0.

When the main switch VT1 is on and the synchronous rectifier VT2 is off, that is, u = 1.
diL
dt = 1

L (E−Vo)
dVo
dt = 1

C

(
iL −

Vo
R

) . (1)
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When the main switch VT1 is off and the synchronous rectifier VT2 is on, that is, u = 0. diL
dt = − 1

L Vo
dVo
dt = 1

C

(
iL −

Vo
R

) . (2)

Combining Equations (1) and (2), the differential equation model of synchronous buck converter
under two working modes of u = 1 and u = 0 is:

diL
dt = 1

L (uE−Vo)
dVo
dt = 1

C

(
iL −

Vo
R

) . (3)

The above formulas use the state space averaging method, that is to say, the final state space
averaging model (Equation (3)) is obtained by averaging u = 1 and u = 0 modes over one cycle,
in which Vo and iL are the average values of output voltage and inductance current over a switching
period [20].

2.2. Problem formulation

Let x1 = Vo −Vr, x2 =
.

Vo, where Vr is the desired output voltage. Consider the disturbances
caused by the change of load resistance and input voltage in synchronous buck converter and the
uncertainties of inductance and capacitance parameters, the converter system (Equation (3)) can be
rewritten as follows 

.
x1 = x2 = x2 + d1

.
x2 = uE0−Vr

L0C0
−

x1
L0C0
−

x2
R0C0

+ d2
, (4)

where x2, d1, and d2 are denoted by

x2 =
1

C0

(
iL −

Vo

R0

)
, (5)

d1 =

(
1
C
−

1
C0

)
iL −

(
1

RC
−

1
R0C0

)
Vo, (6)

d2 =

(
E

LC
−

E0

L0C0

)
u−

(
1

LC
−

1
L0C0

)
Vo −

(
1

RC
−

1
R0C0

)(
iL
C0
−

Vo

R0C0
+ d1

)
, (7)

and R0, C0, E0, and L0 denote the nominal values of R, C, E, and L respectively.

3. Controller Design

Definition 1. In this article, for the convenience of writing, the following simplifications are utilized

dxcα = |x|αsign(x), (8)

where α ∈ R, and sign(∗) is a standard sign function.

Since both matched and mismatched disturbances can lead to the decrease of the static accuracy,
the first step in the design of the controller was to estimate the matched and mismatched disturbances
by using two FTESOs. Secondly, a simple nonsmooth current-constrained controller based on
homogeneous system theory was designed to make the output voltage follow the reference value.
The control structure is shown in Figure 2.
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3.1. Finite-Time Extended State Observer Design

Assumption 1 [32]. Suppose that the unknown lumped disturbances which can be describe as Equations (6)
and (7) are continuously differentiable with respect to time.

Let z11, z21 denote the state variable x1, x2 and introduce the extended state variable z12, z22 denotes
the lumped disturbance d1, d2 with

.
zi2 = gi(t), i = 1, 2. For the lumped disturbances in DC–DC

synchronous buck dynamic model (Equation (4)), the FTESO proposed in [32] can be designed as follows
e11 = z11 − ẑ11.

ẑ11 = x2 + ẑ12 + β11
(
de11c

1
2 + e11

)
.
ẑ12 = β12

(
1
2 sign(e11) +

3
2 de11c

1
2 + e11

) , (9)


e21 = z21 − ẑ21.

ẑ21 = uE0−Vr
L0C0

−
x1

L0C0
−

x2
R0C0

+ ẑ22 + β21
(
de21c

1
2 + e21

)
.
ẑ22 = β22

(
1
2 sign(e21) +

3
2 de21c

1
2 + e21

) , (10)

where ẑi j is the estimation of the variables zi j, βi j > 0 is the gain of FTESO to be tuned, (i, j = 1, 2).

Assumption 2 [32,33]. The derivative of the extended state variable is unknown but bounded, i.e., existing a
positive constant g such that ‖gi(t)‖ ≤ g, i = 1, 2.

By defining the observation error of the lumped disturbance as ei2 = zi2 − ẑi2, (i, j = 1, 2) and
combining with Equations (8) and (9), we can obtain the following dynamic error equation

.
ei1 = ei2 − βi1

(
dei1c

1
2 + ei1

)
.
ei2 = gi(t) − βi2

(
1
2 sign(ei1) +

3
2 dei1c

1
2 + ei1

) , i = 1, 2. (11)

According to [32], the dynamic error states variables in Equation (10) will converge to zero in
finite time under the Assumptions 1 and 2, and the estimated value ẑi j can converge to the real value
zi j in a finite time t f , (i, j = 1, 2).
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3.2. Nonsmooth Current-Constrained Control with Disturbance Compensation

Definition 2 [34]. Let f (x) = ( f1(x), · · · , fn(x))
T : Rn

→ Rn be a continuous vector field. If for any given
ε > 0, x ∈ Rn, there exists (r1, · · · , rn) ∈ Rn where ri > 0(i = 1, · · · , n), such that

fi(εr1x1, · · · , εr1xn) = εk+ri fi(x), i = 1, · · · n, (12)

then f (x) is to be homogeneous of degree k with respect to (r1, · · · , rn), where k > −min{r1, · · · , rn}.

Definition 3 [18]. Consider the following nonlinear system

.
x = f (x), x ∈ U0 ⊆ Rn, f (0) = 0, (13)

where f : U0 → Rn is a continuous function with respect to x, and U0 is the open neighborhood containing the
origin x = 0. For a given (r1, · · · , rn), if the vector function f (x) is homogeneous, then the system (Equation
(13)) is homogeneous.

Lemma 1 [35]. For the following system

.
x = f (x) + f̂ (x), x ∈ Rn, f̂ (0) = 0, (14)

where f (x) is a continuous vector field of homogeneous degree k < 0 with respect to (r1, · · · , rn), and f̂ (x)
is a continuous vector field defined on Rn. If x = 0 is the asymptotically stable equilibrium point of system
.
x = f (x) and satisfies for any ‖x‖= 1, the following formula holds

lim
ε→0

f̂i(εr1x1, · · · , εrnxn)

εk+ri
= 0, i = 1, · · · n. (15)

Then, x = 0 is a locally finite time equilibrium point of the system (14).

For DC–DC synchronous buck converter error dynamic equation (Equation (4)), a finite-time
current-constrained controller based on the FTESO designed above is designed as

u =
Vr

E0
−

L0C0

E0

k1dx1c
γ1 + k2dx2 + d̂1c

γ2 +
l

M2 − i2L
dx2 + d̂1c

γ3 + d̂2

, (16)

where d̂1, d̂2 are the lumped disturbances estimated by FTESO, M > 0 is a constant value and
0 < γ1 < 1,γ2 =

2γ1
1+γ1

,γ3 > γ2.

Remark 1. In this paper, considering the damage to the hardware circuit caused by current overshoot,
the inductance current is limited to a certain range in the design of the controller, so that the inductance current
satisfies the constraints |iL| ≤ M. It should be noted that the selection of current constraints will affect the
tracking performance of the output voltage [21], so it needs to be selected appropriately according to the actual
situation.

Remark 2 [21]. Unlike the BLF design method, in the backstepping algorithm [36,37], Equation (16) is to add
the BLF-based non-linear term directly to the control law. When the constrained current term iL tends to the
boundary value ±M, it will play a dominant role in the control law and penalizes the current, so it is also called
the penalty term.
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Theorem 1. For DC-DC synchronous buck error dynamic system (Equation (4)), the designed control method
(Equation (16)) can converge the output voltage to the reference set value in a finite time and satisfy the current
constraint condition |iL| ≤M if iL(0) ∈ (−M, M).

Proof. Define a candidate Lyapunov function for the system described by Equation (4) as

V1 = k1

∫ x1

0
dτcγ1 dτ+

1
2L0C0

x2
1 +

1
2

x2
2, (17)

and the first derivate of Equation (17) along Equation (4) is

.
V1 = k1dx1c

γ1x2 +
1

L0C0
x1x2 + x2

(
uE0 −Vr

L0C0
−

x1

L0C0
−

x2

R0C0
+ d2

)
. (18)

By substituting the controller (Equation (16)) into Equation (18), then

.
V1 = x2

−k2dx2 + d̂1c
γ2 −

l
M2 − i2L

dx2 + d̂1c
γ3 −

x2

R0C0
+ d2 − d̂2

. (19)

Since the estimated value of the lumped disturbances d̂1, d̂2 can converge to the real values d1, d2 in
a finite time t f , Equation (19) can be rewritten as

.
V1 = x2

−k2dx2c
γ2 −

l
M2 − i2L

dx2c
γ3 −

x2

R0C0

 = −k2dx2c
γ2+1

−
l

M2 − i2L
dx2c

γ3+1
−

x2
2

R0C0
. (20)

Assume that [0, T) is the maximum time region satisfying iL(t) ∈ (−M, M), t ∈ [0, T) , where T > 0.
For any initial values of current and voltage iL(0) ∈ (−M, M), Vo(0) ∈ (−∞,∞), it yields

.
V1 ≤ 0, t ∈ [0, T) , (21)

then
V1(t) ≤ V1(0), t ∈ [0, T) . (22)

This indicates that

V1(0) = k1
∫ x1(0)

0 dτcγ1dτ+ 1
2L0C0

x2
1(0) +

1
2 x2

2(0)

≥ k1
∫ x1(t)

0 dτcγ1dτ+ 1
2L0C0

x2
1(t) +

1
2 x2

2(t) ≥
1

2L0C0
x2

1(t), t ∈ [0, T) .
(23)

Define N1 = (2L0C0V1(0))
1/2, then

∣∣∣x1(t)
∣∣∣ ≤ N1, t ∈ [0, T) , which means x1(t) is bounded. In the

same way, we can get x2(t), t ∈ [0, T) is bounded and can be expressed as
∣∣∣x2(t)

∣∣∣ ≤ N2, t ∈ [0, T) ,

where N2 = (2V1(0))
1/2.

Denote
V2 =

1
2

x2
2. (24)

Combining Equations (4)–(7) and Equation (16), it gives

.
V2 = −k1dx1c

γ1x2 − k2|x2|
γ2+1

−
l

M2 − i2L
|x2|

γ3+1
−

1
R0C0

x2
2 −

x1x2

L0C0
. (25)

Since both x1(t) and x2(t) are bounded, it follows

− k1dx1c
γ1x2 −

1
R0C0

x2
2 −

x1x2

L0C0
≤ k1N1

γ1N2 +
1

R0C0
N2

2 +
N1N2

L0C0
= N. (26)



Electronics 2020, 9, 16 8 of 14

When |iL| →M, x2 , 0 , we can get lim
|iL |→M,x2,0

− k2|x2|
γ2+1

−
l

M2−i2L
|x2|

γ3+1 = −∞ < −N.

When x2 = 0, we can get
.

V2 = 0. Therefore, there exists a constant M ∈ (0, M), such that
.

V2 ≤ 0,
iL(t) ∈

(
−M,−M

]
∪

[
M, M

)
, t ∈ [0, T) . Combining that x2(t) is continuous, iL(t) ∈ (−M, M), t ∈ [0,∞)

is satisfied if iL(0) ∈ (−M, M). Define an invariant set Ω :
{
(x1, x2)

∣∣∣∣ .
V1 ≡ 0

}
. According to Equation (20),

it implies that
.

V1 ≡ 0 leads to x2 ≡ 0 and
.
x2 ≡ 0. Then x1 ≡ 0 is further given by Equations (4) and

(16). Based on LaSalle’s invariant principle [38], it can be concluded that (x1(t), x2(t))→ 0 as t→∞ ,
that is, the system (Equation (4)) is asymptotically stable under the controller (Equation (16)) if
iL(0) ∈ (−M, M).

Under the controller (Equation (16)), the error system (Equation (4)) can be rewritten as{ .
x1 = f1(x1, x2)

.
x2 = f2(x1, x2) + f̂2(x1, x2)

, (27)

where
f1(x1, x2) = x2, (28)

f2(x1, x2) = −k1dx1c
γ1 − k2dx2c

γ2 , (29)

f̂2(x1, x2) = −
l

M2 − i2L
dx2c

γ3 −
x2

R0C0
−

x1

L0C0
. (30)

Consider the system { .
x1 = f1(x1, x2)
.
x2 = f2(x1, x2)

, (31)

and choose the Lyapunov function as

V3 = k1

∫ x1

0
dτcγ1dτ+

1
2

x2
2, (32)

then the derivative is
.

V3 = −k2|x2|
γ2+1

≤ 0. (33)

Similar to the above, the system (Equation (31)) is asymptotically stable. Moreover, it can be verified
that the system (Equation (31)) is homogeneous of degree k = (γ1 − 1)/2 with r1 = 1, r2 = (γ1 + 1)/2
by Definition 2.

If f̂2(x1, x2) of the system (Equation (27)) satisfies lim
ε→0

f̂2(εr1 x1,εr2 x2)

εk+r2
= 0 and k ∈

(
−

1
2 , 0

)
, then it can

be proved that the system (Equation (27)) is locally finite time stable invoking Lemma 1. By virtue of
the fact that γ3 > γ2 which means r2γ3 > k + r2, this can be shown as follows for any ‖(x1, x2)‖= 1

−lim
ε→0

εr1 x1
L0C0

+ εr2 x2
R0C0

εk+r2
= −lim

ε→0

(
εr1−k+r2x1

L0C0
+
ε−kx1

L0C0

)
= 0, (34)

−lim
ε→0

l
M2−(εr2 iL)

2 dε
r2x2c

γ3

εk+r2
= −lim

ε→0

l(
M2 − ε2r2 i2L

)
εk+r2

dεcr2γ3dx2c
γ3 = 0, (35)

then

lim
ε→0

f̂2(εr1x1, εr2x2)

εk+r2
= 0. (36)

Thus, the proof is completed. �
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4. Implementation and Validation

In this section, the feasibility and effectiveness of the proposed nonsmooth control algorithm was
validated by using a DC–DC synchronous buck converter experimental platform. The experimental
platform is shown in Figure 3, including: two DC-DC synchronous buck converters (one is used
to realize the sudden change of input voltage), DSP LaunchPad TMS320F28379D (used as a control
platform), a DC power supply, digital oscilloscope, DC electronic load, PC-MATLAB/Simulink (used to
obtain the data from the sensors for monitoring). The synchronous buck converter in this experiment
is controlled by a basic PWM gate drive, and the frequency of PWM drive signals generated by DSP is
20 kHz. Similarly, the sampling frequency of the control system is also 20 kHz. The nominal values of
its parameters are listed in Table 1.Electronics 2019, 8, x FOR PEER REVIEW 10 of 14 
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Table 1. Parameters of the DC–DC synchronous buck converter.

Descriptions Parameters Nominal Values

Input Voltage E 30 (V)
Desired Out Voltage Vr 15 (V)

Inductance L 15 (mH)
Capacitance C 470 (µF)

Load Resistance R 20 (Ω)

In order to evaluate the advantages of the proposed controller, the widely used PID controller
was selected for comparison. At the same time, to verify the disturbance rejection ability of the
proposed method, the nonsmooth current-constrained controller was also employed in the experiment.
The proper parameters of the selected controllers are listed in Table 2.
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Table 2. Control parameters.

Controllers Parameters

NCC + FTESO
l = 200, M = 2, k1 = 8× 105, k2 = 1.3× 104, γ1 = 1/2, γ2 = 2/3,

γ3 = 1,
β11 = 120, β12 = 5400, β21 = 400, β22 = 8.2× 104

NCC l = 200, M = 2, k1 = 8× 105, k2 = 1.3× 104, γ1 = 1/2, γ2 = 2/3,
γ3 = 1

PID (High gain) kp = 8, ki = 500, kd = 43
PID (Low gain) kp = 3, ki = 320, kd = 38

As described in Table 2, the PID controller selected a group of high-gain parameters to obtain
a faster dynamic response speed, and a group of low-gain parameters to meet the current constraints
(|iL| ≤ 2A). At the same time, in order to have a fair comparison, the parameters of the proposed method
were selected at the same values as those of nonsmooth current-constrained control (NCC). In this
paper, experiments were carried out under three conditions: different reference voltages, a sudden
load change and a sudden input voltage change. The latter two can show the improvement of the
matched/unmatched disturbances rejection ability of the proposed controller.

Case 1 (Dynamical performance under different reference voltages): In this case, the reference
voltage of the synchronous buck converter changed from 15 V to 20 V at 0.1 s, and the other parameters
remained the same as the nominal values. It can be seen from the output voltage and inductance current
response curves in Figure 4 that the four controllers could stabilize the output voltage to the reference
value. Among them, PID (High gain) had a shorter convergence time, but also had a larger transient
inductor current, especially in the start-up phase, its value can reach nearly 3.8 A, which would damage
the hardware circuit. Although PID (Low gain) could meet the current constraints, the convergence time
of output voltage was greatly increased. Compared with PID (High gain), the dynamic performance
of output voltage of the proposed control method is sacrificed to some extent to guarantee the current
constrain, but it still has a short convergence time.
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Case 2 (Robustness against sudden load resistance change): In the same way, the load resistance
was reduced from 20 Ω to 10 Ω at 0.1 s by a DC electronic load. The response curves of output voltage
and inductance current are shown in Figure 5. The traditional PID controllers still recovered the output
voltage to 15 V after the sudden change of load resistance happened while the NCC method does not.
By adding FTESOs to estimate and compensate the matched/unmatched disturbances, this problem can
be solved, moreover the composite controller achieves a shorter recovery time than the PID method.
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Case 3 (Robustness against sudden input voltage change): Similarly, only the parameter of input
voltage value was reduced from 30 V to 18 V at 0.1 s here. The corresponding output voltage and
inductance current curves are shown in Figure 6. It can be observed that NCC + FTESO had better
disturbance rejection ability and robustness compared with the NCC method and had shorter recovery
time compared with the PID method.
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More details about the convergence time and steady state error in different cases are shown in
Tables 3 and 4.

Table 3. Convergence time in different cases.

Controllers Start-Up
(Vr:0 V→15 V)

Reference Voltage
Change

(Vr:15 V→20 V)

Load Resistance
Change

(R:20 Ω→10 Ω)

Input Voltage
Change

(E:15 V→20 V)

PID (High gain) 0.0055 (s) 0.0043 (s) 0.0277 (s) 0.0217 (s)
PID (Low gain) 0.0096 (s) 0.0083 (s) 0.0370 (s) 0.0242 (s)

NCC 0.0063 (s) 0.0055 (s) / /
NCC + FTESO 0.0063 (s) 0.0046 (s) 0.0207 (s) 0.0097 (s)
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Table 4. Steady state error in different cases.

Controllers Start-Up
(Vr:0 V→15 V)

Reference Voltage
Change

(Vr:15 V→20 V)

Load Resistance
Change

(R:20 Ω→10 Ω)

Input Voltage
Change

(E:15 V→20 V)

PID (High gain) 0.10 (V) 0.11 (V) 0.11 (V) 0.10 (V)
PID (Low gain) 0.10 (V) 0.10 (V) 0.11 (V) 0.09 (V)

NCC 0.07 (V) 0.13 (V) / /
NCC + FTESO 0.06 (V) 0.08 (V) 0.09 (V) 0.08 (V)

5. Conclusions

In this paper, a nonsmooth current-constrained control method for a DC-DC synchronous buck
converter with two finite-time extended state observers is proposed. The proposed control method
used the barrier Lyapunov function to satisfy the current constraints. Then the FTESOs were used
to estimate the integrated matched/unmatched disturbances and considered in the design process
of the controller to achieve the better disturbance rejection ability and robustness. The feasibility of
the proposed method has been verified by experimental results. Since it is still a difficult work to
define a prior uncertainty bound in the actual converter system, this will be the focus of our future
research [39–41].
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