
electronics

Article

Comparison of CNN Applications for RSSI-Based
Fingerprint Indoor Localization

Rashmi Sharan Sinha and Seung-Hoon Hwang *

Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
* Correspondence: shwang@dongguk.edu; Tel.: +82-222-603-994

Received: 16 July 2019; Accepted: 2 September 2019; Published: 4 September 2019
����������
�������

Abstract: The intelligent use of deep learning (DL) techniques can assist in overcoming noise and
uncertainty during fingerprinting-based localization. With the rise in the available computational
power on mobile devices, it is now possible to employ DL techniques, such as convolutional neural
networks (CNNs), for smartphones. In this paper, we introduce a CNN model based on received
signal strength indicator (RSSI) fingerprint datasets and compare it with different CNN application
models, such as AlexNet, ResNet, ZFNet, Inception v3, and MobileNet v2, for indoor localization.
The experimental results show that the proposed CNN model can achieve a test accuracy of 94.45%
and an average location error as low as 1.44 m. Therefore, our CNN model outperforms conventional
CNN applications for RSSI-based indoor positioning.

Keywords: indoor localization; fingerprint; CNN; AlexNet; ResNet; ZFNet; Inception v3; MobileNet v2

1. Introduction

Despite decades of research, effective products for indoor localization products are still unavailable,
while indoor localization-based service demand continues to increase swiftly in smart cities [1]. Recent
years have witnessed much indoor localization research. Most of the research aims to provide a widely
used indoor localization scheme and achieve satisfactory performance similar to that of GPS in outside
environments. Of these approaches [2–5], fingerprinting-based methods are the most widely used
due to their effectiveness and the infrastructure’s independence. Fingerprinting-based localization
methods include magnetic fingerprinting and Wi-Fi, both of which are based on the assumption that
each location has a unique signal feature [6]. The fingerprinting localization process is usually divided
into two phases: offline training and online processing. In the offline phase, Wi-Fi-received signal
strength indicators (RSSI) or magnetic field strengths (MFS) at different reference points (RPs) are
collected to construct a radio map. In the online phase, the user samples the RSSI or MFS data at their
current position and finds similar signal patterns in the database. The corresponding location with the
most similar pattern is regarded as the positioning result.

The intelligent use of machine learning (ML) techniques can assist in overcoming noise and
uncertainty during fingerprinting-based localization. While traditional ML techniques work well
at approximating simpler input-output functions, computationally intensive deep learning (DL)
models are able to deal with more complex input-output mappings and can deliver superior accuracy.
Middleware-based offloading [7] and energy enhancement frameworks [8]. Zafari et al. [9] may be an
avenue to explore for computation and energy-intensive indoor localization services on smartphones.
Furthermore, with the rise in the available computational power on mobile devices, it is now possible
to deploy DL techniques such as convolutional neural networks (CNNs) on smartphones. A CNN
is a special type of deep neural network (DNN) for image matching and recognition. The most
popular aspect of CNN is that it can automatically identify necessary input features that have the
most significant impact on the accuracy of the final output. This process is known as feature learning.

Electronics 2019, 8, 989; doi:10.3390/electronics8090989 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-7629-7865
http://dx.doi.org/10.3390/electronics8090989
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/9/989?type=check_update&version=2


Electronics 2019, 8, 989 2 of 25

Prior to DL, feature learning was an expensive and time-intensive process that had to be performed
manually. CNN has been highly successful in complex image classification problems and is finding
new applications in many emerging domains (e.g., self-driving cars) [10]. In this paper, we propose a
new and efficient framework that employs CNN-based Wi-Fi fingerprinting to achieve a superior level
of indoor localization accuracy for a user with a smartphone. Our approach utilizes widely available
Wi-Fi access points (APs) without necessitating any customized/expensive infrastructure deployments.
The framework works on a user’s smartphone, within the device’s computational capabilities, and
utilizes the radio interfaces for efficient fingerprinting-based localization. This paper’s main novel
contributions can be summarized as follows.

We constructed a CNN model with optimum performance for RSSI-based fingerprint indoor
localization with dataset Schemes 1 and 2 [11], which were subsequently used to enhance indoor
localization robustness and accuracy. In our previous work [11], we developed augmentation techniques
for a CNN-based indoor positioning system. The CNN model in the previous work consisted of a
five-layer network with three convolutional layers and two fully connected (FC) layers. The first FC
layer contained 3072 nodes, and the second FC layer contained 1024 nodes, amounting to 4096 nodes.
However, in this work, there are four convolutional layers and two FC layers with 2176 nodes in the
first FC layer and 1024 nodes in the second FC layer and therefore 3200 nodes in total. This makes the
total number of parameters 233,418, while the total number of parameters in [11] was 2,266,698, which
was ~10 times higher than that of the current work. Therefore, with our proposed CNN model, test
accuracy has been improved from 90.46% to 94.45% for Scheme 1 and 91.32% to 94.11% for Scheme 2.

We compared this model to different CNN applications, specifically AlexNet, ResNet, ZFNet,
Inception v3, and MobileNet v2, for RSSI-based fingerprint datasets. We performed comprehensive
testing of our algorithms with these CNN applications to demonstrate the effectiveness of our proposed
framework. The remainder of the paper is structured as follows. First, Section 2 describes the previous
work in this area. The type of dataset and CNN application along with our proposed CNN model can
be found in the Methodology in Section 3. This leads to the experiments and results in Section 4.

2. Related Works

There are two main types of Wi-Fi-based indoor positioning technologies: the received signal
strength indicator (RSSI)-based ranging positioning algorithm [12–14] and the fingerprint-based
positioning algorithm [15–17]. The RSSI-based ranging positioning algorithm usually adopts the
received Wi-Fi signal to estimate the distance between the target (its location is unknown) and the
access point (its location is known) using the wireless radio signal propagation model and then
estimates the target position using trilateration or multilateration methods. For example, in [12], a
wireless mesh network (WMN) used a group of swarm robots equipped with wireless transceivers.
This method used the approximate relative positions of the robots estimated by their RSSIs to deploy
the WMN. The performance of Bluetooth low-energy (BLE) RSSI-based technology was explored
for an indoor positioning system in different transmission conditions [13]. Another BLE-based
scheme is proposed in [14], where the higher precision needed an extra training phase for localization.
Fingerprint-based positioning methods were explored in a machine learning-based method that was
developed in [15], where the support vector machine (SVM) was used to determine the different
postures of the user. Jang et al. [16] provided an explicit survey for the limitation of an offline fingerprint
map and overcame it with simultaneous localization and mapping (SLAM) methods. Meanwhile,
Guan et al. [17] introduced a heuristic method to detect anomalous fingerprints under the framework
of probabilistic fingerprint-based indoor positioning. A combination of the RSS-based fingerprint
system presented in [18], where temporal signal variation is considered to construct a robust method
for positioning, with the 15-month data collection time introduced here is used to overcome signal
variation affecting localization.

With the rapid development of deep learning technology, some researchers have attempted to use
deep learning methods in Wi-Fi positioning. Li [19] proposed tracking a user in an indoor environment



Electronics 2019, 8, 989 3 of 25

by integrating a back-propagation neural network optimized through particle swarm optimization
(PSO). In [20], a feed-forward neural network was adopted to detect the building and floor. To enhance
location estimation, the centroid method was used in [20], and Hsieh [21] attempted to construct a
recurrent neural network for indoor positioning. Variants of neural networks have been used in Wi-Fi
positioning (e.g., deep belief networks [22], DNNs [23], fuzzy neural networks [24], and artificial
synaptic networks [25]).

Since the above describe target positioning as a classification problem that relies on a collected
fingerprint dataset, some regression algorithms have been applied, such as Gaussian regression [26],
support vector machines (SVMs) [27], or combinations of these methods [28]. Jang et al. [29] presented
robust image classification of the change in input data caused by the indoor multipath, where they built
a 2D virtual radio map from the original 1-D Wi-Fi RSSI signal values and then constructed a CNN
using 2-D radio maps as inputs. Channel state information (CSI)-based methods, such as [30–34], have
proposed several ideas to process the CSI from Wi-Fi-based orthogonal frequency division modulation
(OFDM) signals using deep CNNs. They fed the CSI directly into a CNN to train the position [30,31],
train using phase information [32], directly estimate the angle of arrival with a CNN using phase
fingerprinting [33], and combine these ideas [34]. However, the difference between their approaches
and ours lies in the nature of the underlying signals and the system setup. RSSI-based localization
requires a network of APs (i.e., a Wi-Fi network).

The DNN-based classifier in handwriting, such as MNIST in [35], has shown poor performance
for untrained fonts, even for identical letters. The major drawback of DNN-based methods is that
they are very sensitive to a change in the input data. To avoid this problem, the CNN was proposed.
Recent studies have shown that the CNN-based classifier gives a satisfactory performance for image
classification. The main advantage of a CNN is that it is able to learn the overall topology of an image
via a convolution operation using a filter [36].

Various CNN applications were used for indoor positioning applications in [37–40]. A visual
indoor positioning system was proposed in [37], where Alexnet was used to design a CNN for pedestrian
activity recognition, which can serve as landmarks for indoor localization. Here, one-dimensional
sensor data from accelerometers, magnetometers, gyroscopes, and barometers were considered network
inputs. This work needed specific sensor types and did not consider an RSSI-based non-visual dataset.
Valada [38] embedded geometric information derived from visual odometry. However, all of these
approaches are dependent on ResNet residual network-based methods to estimate the ground truth
camera poses required during fine-tuning the networks, which increases the infrastructure of the total
system setup. Hanni [39] applied a transfer learning approach for indoor scene recognition, where
the performance was compared with GoogLeNet and AlexNet. In this approach, a 3D image-type
dataset was used to capture the spatial interrelationship, while in our approach an RSSI-based
dataset is used, which generates a 2D grayscale image and achieves significantly higher accuracy
than the state-of-the-art architectures AlexNet and GoogleNet. Modal 3D object detection in indoor
environments using MobileNet [40] was used for an object detection network; the main idea of this
network is reducing the computational operation for processing 3D positions even if they are covered
with occlusions or cluttered by other objects. However, operating with 3D models increases the
computational power uncertainty due to the noisy and incomplete reconstructed 3D shape. Therefore,
a cost-effective method is always desirable to obtain a high-accuracy model. As shown in the above
works, CNN applications are employed for a visual 3D dataset to train and test CNN applications for an
indoor positioning application, which increases the total infrastructure of the indoor positioning system.
Therefore, the main idea behind using an RSSI-based image setup is that it is the most user-friendly and
infrastructure-free method. The terms user friendly and infrastructure free mean that there is no need
to install additional devices to implement an RSSI-based indoor positioning system. The surrounding
APs are sufficient for detecting the user’s location in an indoor environment with a smart device. We
used a Wi-Fi RSSI-based dataset with optimized parameters and reduced complexity, which made it
easy to implement and detect the indoor position without additional infrastructure demands.



Electronics 2019, 8, 989 4 of 25

3. Methodology

In this section, we will first introduce the experimental environment including the software and
hardware configuration. Afterward, the proposed CNN-based method will be introduced as follows:
the entire architecture of our CNN-based model, the data-processing approach, our network structure,
related theories, and vital training strategies. Finally, we introduce the CNN application models and
the fingerprint data image processing after each layer.

3.1. Hardware and Software Setup

The detailed software and hardware configuration information is given in Table 1. All our
experiments were conducted on a server with powerful computational capabilities. The server
contained 16 GB of memory and was equipped with two GeForce GTX 1080Ti graphics cards to
accelerate computing. We installed Windows 10 in conjunction with Python. Python has very efficient
libraries for matrix multiplication, which is vital when working with DNNs. TensorFlow is a very
efficient framework for implementing the CNN architecture. We also installed dependencies, such as
the CUDA Toolkit and CuDNN, before using TensorFlow. The CUDA Toolkit provides a comprehensive
development environment for NVIDIA GPU-accelerated computing. CuDNN can optimize CUDA to
improve the performance.

Table 1. Software and hardware configuration.

Software & Hardware Configuration Configuration

CPU Intel(R) Core™ i7–8700K CPU @ 3.70 GHz
Memory 16 GB
Graphics Card NVIDIA GeForce GTX 1080 Ti
CUDA Cuda 9.0
CuDNN CuDNN 9.0
Python Python 3.6
TensorFlow TensorFlow 1.6.0

3.2. Input Datasets

For our CNN model, a six-layer network was designed to predict 74 classes. The input image
was generated from RSSI values received during the experiment with 74 RPs. At each RP, the RSSI
value was recorded for 256 APs, though only a small subset of these APs was visible at each RP. These
RSSI values from different APs created a 16 × 16 image. As shown in the example in Figure 1, there
are nine visible APs out of 256 with RSSI values between 25 and 70, with the other APs having a
value of 0. The RSSIs from different APs are converted into a grayscale image. The image brightness
differs depending on the recorded RSSI values, with higher RSSI values being brighter. As shown in
Figure 1a, the highest RSSI value is 70, which produces the brightest spot in the grayscale image shown
in Figure 1b; the lowest value is 25, which is represented by the darkest nonblack spot. RSSI values of
0 produce no brightness, thus the remaining 247 spots are black. Similarly, the input RSSI files for the
other 73 RPs produced different images for input into the DL network.

Data Augmentation

As introduced in our previous work [11], data augmentation is commonly used to reduce the effect
of overfitting in deep learning. This is done by expanding an existing dataset using only available data,
whereby the learning algorithm can extract task-essential features more effectively. Big datasets are
required to train deep learning models; such datasets are usually gathered by manual data collection
or from existing databases. However, only limited datasets are available in some cases, and data
augmentation can be employed to expand such datasets. Two augmentation schemes, Schemes 1
and 2, were used as the input available dataset. Scheme 1 focuses on less-detailed data, facilitating
simple augmentation with respect to the RSSIs. From a small input data size (3–7 kilobytes), sizes of



Electronics 2019, 8, 989 5 of 25

~30–50 megabytes are achieved using this technique. Scheme 2 uses mean values and uniform random
numbers to add information into the dataset. From the same input file size, 3 to 7 kilobytes, Scheme 2
output augmented data size is approximately 300 to 700 megabytes. There were 122,760 and 585,722
input training images using Scheme 1 and 2, respectively. The total number of test images for the lab
simulations was 1479. We used both schemes as the input dataset given their similar performance,
with the only difference being the size of the augmented datasets.

Figure 1. Deep learning input file conversion from 256 received signal strength indicator (RSSI) values
to a 16 × 16 image. (a) Input comma-separated values (CSV) readings of the nine visible RSSIs from a
total of 256 access points (APs). (b) Converted grayscale image with nine bright spots representing APs
visible at the reference point (RP) [11].

3.3. Various CNN-Based Methods

3.3.1. Our CNN Model

Figure 2 presents the architecture of our proposed method. Our CNN network comprises six
layers, the first having input 16 × 16 × 1 grayscale images with rectified linear unit (ReLU) and dropout.
Given the input dataset’s small size, the first layer does not use max pooling. The second layer consists
of a 16 × 16 convolution with ReLU and an 8 × 8 max pooling layer with 18,496 parameters, and it
produces output for the third 8 × 8 convolution layer (with ReLU and an 8 × 8 max pooling layer).
This output is fed to the fourth layer, which is an 8 × 8 convolution layer with ReLU and an 8 × 8 max
pooling layer. This output is fed directly to an FC layer with 2176 nodes, which leads to the next hidden
FC layer, with 1088 nodes. Finally, the output is calculated using a softmax layer with 74 nodes, which
is the total number of RPs in our setup. The inner width is 128, and the first three layers have no
dropout, while the fourth layer uses a dropout of 0.5. The learning rate of our CNN model is 0.001, and
the total number of parameters is 233,418. Table 2 summarizes all of the parameter settings. Figure 2
visualizes the activation of each convolutional network layer of our CNN model in a 2-dimensional (2D)
grid. To generate the 2D image, the model is trained with RSSI dataset, and then the highest accuracy
is used to visualize several kinds of features that a convolutional network learns at each layer of the
network. Figure 3a represents an input image to pass through the network to visualize the network
activation, and Figure 3b shows images of output that activates the neurons of the convolutional layers.
The final image is generated at the softmax layer. It is important to note, here we are not using a
deconvolutional layer; therefore, only features that a convolutional network learns at the following
layers of the network is shown in the pictures.



Electronics 2019, 8, 989 6 of 25

Figure 2. Proposed convolutional neural network (CNN) architecture for the indoor Wi-Fi positioning
system in this study.

Table 2. Hyperparameter description of CNN applications.

Description Our CNN Models AlexNet ResNet ZFNet Inception v3 MobileNet v2

Input Size 16 × 16 (144, 144, 3) (144, 144, 3) (144, 144, 3) (144, 144, 3) (144, 144, 3)
Number of Convolutional Layers 4 5 49 5 99 17

Filter Size 3 11, 5, 3 3 7, 5, 3 5, 3, 1 1 × 1, 3 × 3
Number of Feature Maps 32, 64 96–256 64–512 96–384 32–448 32–1280

Pooling Size 2 3 2 3 2 NA
Learning Rate 0.001 0.0001 0.0001 0.0001 0.001 0.001

Batch Size 1000 64 32 64 64 64
Stride 1 4 1 2 1 1

Number of FC Layers 2 3 1 3 1 1
Total Weights 0.23 million 60 million 25.6 million 60 million 23.9 million 3.47 million

Figure 3. Images for our CNN model. (a) Input image. (b) Output image with different convolutional layers.



Electronics 2019, 8, 989 7 of 25

3.3.2. AlexNet

Benefitting from large datasets and parallel computing technology, AlexNet first achieved success
on object classification tasks in 2012 [41], which substantially changed the field of DL in the computer
vision community. As shown in Figure 4, AlexNet consists of five convolutional layers followed by two
FC layers. The sizes of the convolution filters at the first and second convolutional layers are 11 × 11
and 5 × 5, respectively, but the size of the convolution filters at subsequent layers is 3 × 3. Figure 5
visualizes the activation of the 1st, 2nd, 4th, and 5th convolutional network layers for AlaxNet in a
2D grid.

Figure 4. The architecture of AlexNet [38].

Figure 5. Images for AlaxNet. (a) Input image. (b) Output image with different convolutional layers.



Electronics 2019, 8, 989 8 of 25

3.3.3. ResNet

Residual neural networks (ResNets) were introduced in [42]. As shown in Figure 6, their basic
building blocks are sequences of convolutions bypassed by skip connections, causing the model to
learn residual values in the convolutional layers. The ResNet-50 model, introduced in [40], consists
of 16 bottleneck blocks. The overall model contains 50 layers with trainable parameters, including a
convolutional layer after the input layer and an FC output layer. Figure 7 visualizes the activation of
the 1st, 2nd, 4th, and 5th convolutional network layers for ResNet in a 2D grid.

Figure 6. The architecture of ResNet [41].

Figure 7. Images for ResNet. (a) Input image. (b) Output image with different convolutional layer.



Electronics 2019, 8, 989 9 of 25

3.3.4. ZFNet

ZFNet was introduced in 2013, as [43] is a modified version of AlexNet with better accuracy. One
major difference in the approaches is that ZFNet only uses 7 × 7 sized filters, compared to AlexNet’s
11 × 11 filters. The rationale is that larger filters entails loss of a lot of pixel information, which can be
fixed by having smaller filter sizes in the earlier convolutional layers. As depth increases, the number of
filters increases. ZFNet network also uses ReLUs for activation and was trained using batch stochastic
gradient descent (Figure 8). Figure 9 visualizes the activation of the 1st, 2nd, 4th, and 5th convolutional
network layers for ZFNet in a 2D grid.

Figure 8. The architecture of ZFNet [43].

Figure 9. Images for ZFNet. (a) Input image. (b) Output image with different convolutional layer.



Electronics 2019, 8, 989 10 of 25

3.3.5. Inception v3

Another method to obtain higher classification accuracy is to widen the networks. Introduced in
2016, Inception v3 [44] is the combination of many ideas developed by several researchers. As shown
in Figure 10, three modules are used to construct Inception v3. For inception module A in Figure 10a,
two 3 × 3 convolutions replace a 5 × 5 convolution in the original inception module. For inception
module B in Figure 10b, an n × 1 convolution followed by a 1 × n convolution replaces a 3 × 3
convolution (n = 3 in this paper). Inception module C increases the model width by dividing a 3 × 3
convolution into two 1 × 3 and 3 × 1 convolutions, shown in Figure 10c. With these inception modules,
the number of parameters is reduced for the whole network to prevent overfitting. In Figure 11, a
grid size reduction block is used to replace max pooling to increase network efficiency. Auxiliary
classifiers were already suggested in a previous model of inception (i.e., Inception v1). There are some
modifications in Inception-v3 (i.e., only one auxiliary classifier is used on the top of the last 17 × 17
layer, instead of using two auxiliary classifiers). Even though Inception v3 is deeper and wider than
VGGNets, the computational cost and memory consumption of Inception v3 are much smaller than
those of VGGNets. Figure 12 visualizes the activation of the 25th, 35th, 59th and 83rd convolutional
network layers for Inception v3 in a 2D grid.

Figure 10. The architecture of inception module. (a) Inception module A, (b) Inception module B and
(c) Inception module C.



Electronics 2019, 8, 989 11 of 25

Figure 11. The complete architecture of Inception v3 [38].

Figure 12. Images for Inception v3. (a) Input image. (b) Output image with different convolutional layer.

3.3.6. MobileNet v2

MobileNet v2 [45] uses a depthwise convolution layer in Figure 13. In the depthwise convolution
layer, the number of input channels is equal to the number of filter channels. Using this layer keeps the
total number of parameters at a minimum. The 1 × 1 convolution layer is the new layer introduced
in the MobileNet v2 model, the purpose of which is to expand the number of channels in the data
before it goes into the depthwise convolution. How much the data gets expanded is represented by the
expansion factor, which is assumed to be ‘6’ in our work. The depthwise convolution layer is followed
by a 1 × 1 convolution layer, named the pointwise/projection convolution layer. The projection layer
projects the data with a high number of channels into output with a much lower number. The residual
connection works like ResNet in helping MobileNet v2 to add the gradients. ReLU6 is used to prevent
activations from happening too often. Figure 14 visualizes the activation of the 1st, 4th, 10th and 14th
convolutional network layers for Inception v3 in a 2D grid.



Electronics 2019, 8, 989 12 of 25

Figure 13. The architecture of MobileNet v2 [38].

Figure 14. Image outputs for MobileNet v2. (a) Input Image. (b) Output image with different
convolution layers.

4. Experiments and Results

4.1. Dataset and Experimental Setup

While the dataset collected during measurement was in a text format, the DL code was designed
for a comma-separated values (CSV) input file. Given this, for training and testing, we converted the
text files into a CSV file. These CSV files contained 257 columns and 74 RPs in the 257th column as
labels. Data conversion was done using Python. The input for the file converter code (designed in
Python) was folders containing text files.

To assess the validity of our approach, we created several datasets over four weeks. These were
then used to assess which CNN layer is best to transfer knowledge from classification to indoor
positioning as well as identifying the optimal classification algorithm. Results show that a relatively
simple classification model fits the data well, producing ~95% generalization over a one-week period



Electronics 2019, 8, 989 13 of 25

in the lab-based simulations with Scheme 1. The long-term introduction of new APs and drift in the
existing APs need to be trained and learned.

To generate the dataset, the data is gathered over 7 days in four directions at the 74 RPs. It is
then divided into four (Set 1: 7 days of data; Set 2: 5 days of data; Set 3: 3 days of data; and Set 4: 2
days of data), each then subdivided into separate cases based on the ratio of reference to trial data.
For example, Set 1 (7 days of data) is divided into the three cases (6–1, 5–2 and 4–3). Datasets and
cases are summarized in Table 3. The dataset with 7 days of data has the maximum number of input
files; accordingly, it has better overall test accuracy than the other sets as shown in [11]. Therefore, Set
1/Case 1, which has six days of data for training and 1 day for testing, is used as the training and test
dataset in our work.

Table 3. Datasets and cases [11].

DATASET
Case 1 Case 2 Case 3

Reference -Test

Set 1: 7 Days 6–1 5–2 4–3
Set 2: 5 Days 4–1 3–2 -
Set 3: 3 Days 2–1 - -
Set 4: 2 Days 1–1 - -

RSSI fingerprint data collection and the final experiment were both performed on the 7th floor of
the new engineering building at Dongguk University, Seoul, South Korea, shown in Figure 15.

Figure 15. Indoor environment (radio map) for data collection divided into 74 reference points (2 m ×
2 m each).



Electronics 2019, 8, 989 14 of 25

4.2. Hyperparameter Settings

We trained the data on a network with different convolutional layers to find the best architecture.
In each architecture, we adjusted the filter size, number of feature maps, pooling size, learning rate
and batch size in the hyperparameter tuning process to retain the best configuration. We chose the
best architecture with the best parameter setting as the final configuration. Table 4 shows the list of
hyperparameters and their candidate values. The values in bold reflects the best hyperparameter
setting for our CNN model.

Table 4. Hyperparameter setting for Our CNN Model.

Hyperparmeters Values Epoch Time (minute) Loss Training Accuracy (%) Test Accuracy (%)

Number of
convolutional layers

3 0.13 1.20 45.55 91.32
4 0.12 0.70 76.12 94.45
5 0.13 0.90 55.74 93.88
6 0.13 1.10 56.48 93.70
7 0.15 1.00 53.18 92.92

Filter Size

2 0.13 1.20 56.26 90.19
3 0.12 0.60 77.32 94.44
4 0.22 0.50 80.78 93.44
7 0.28 0.20 93.49 93.37

11 0.42 0.10 97.20 93.44

Number of Feature
Maps

32 0.10 0.80 65.12 93.23
64 0.13 0.70 75.42 94.40

128 0.14 0.30 86.52 91.64
256 0.18 0.50 99.28 89.66

Pooling Size

1 0.13 0.70 73.67 93.78
2 0.13 0.70 73.89 94.42
3 0.15 0.70 73.37 93.23
4 0.15 0.70 74.07 92.56

Learning Rate

0.0001 0.13 0.80 67.37 93.30
0.001 0.12 0.70 76.33 94.43
0.005 0.13 0.60 77.08 93.03
0.01 0.13 0.70 74.47 92.76

Batch Size

250 0.03 1.10 57.83 93.23
500 0.03 1.20 52.91 91.95
1000 0.02 0.60 77.68 94.18
2000 0.02 1.40 44.32 90.32

To analyse the effect of the number of layers, the CNN-based classifier was applied with different
numbers of layers. The network with four convolutional layers outperformed others in all activities.
The reason lies in the fact that networks with fewer than four convolutional layers are not complex
enough to extract the appropriate features for activity recognition, whereas networks with four
convolutional layers tend to cause over-fitting due to the structure complexity. Four convolutional
layers are just enough to obtain good performance. The three-convolutional-layer network gives an
accuracy of 91.32; however, the loss is higher compared to other layer networks. The loss in the setting
signifies how well the CNN classifier learns from the training images to predict the test image correctly
for each reference point. Therefore, lower losses are ideal for the CNN classifier. The test accuracy
indicates how many test images are identified correctly by their own reference points or by a margin
of 1 or 2 reference points. A higher test accuracy is desirable in accuracy of positioning case, since it
reflects least error between training and testing environments. The epoch number is set to 20 due to
the fact that the size of the dataset is few megabytes; therefore, with minimum epoch value model
acquires high test accuracy. After 20–30 epochs, the model starts to overfit the result, and thus the total
test accuracy start decreasing.

A seven-layer model has a test accuracy of 92.92% with loss 1.10 greater than a four-layer model.
To determine the most appropriate filter size, the classifier was applied with different filter sizes
(the number of convolutional layers was set to four). When the filter size was larger than three,
the performance decreased with the increase of the filter size. The problem of overfitting occurs as filter
size increases to seven and eleven. Therefore, the filter size was set to three. The best performance



Electronics 2019, 8, 989 15 of 25

for each activity was achieved when the feature map was set to 64. The classification achieved the
best performance when the pooling size was set to two. After this point, the performance decreased
with the increase of the pooling size. Therefore, the pooling size was set to two. Table 4 shows that
when the learning rate is less than 0.001, the algorithm achieves a steady and reliable performance,
whereas a learning rate larger than 0.01 shows unstable results. The reason for the poor performance
with a large learning rate is that the variables update too quickly to change to the proper gradient
descent direction in a timely manner. However, a small learning rate with good performance is also
not the best choice, because it results in a slow update of variables and leads to a slow training process.
Therefore, the learning rate was set to 0.001. The activity increased as the batch size increased from 250
to 1000 and decreased as the batch size changed from 1000 to 2000. Therefore, the batch size was set to
1000. As shown in Table 4, the value in bold is the best setting of each hyperparameter.

All CNN applications require a different hyperparameter setting best suited for each application
model. To determine the best parameter setting for our RSSI-based indoor localization problem, the CNN
applications were performed by changing the learning rate and batch size. In Table 5, the value in bold
is the best hyperparameter setting of each CNN application for RSSI-based positioning. The remaining
hyperparameters of each application remained the same as their inbuilt by-default values.

Table 5. Hyperparameter setting for CNN applications.

Applications Hyperparmeters Values Epoch Time (minute) Loss Training Accuracy (%) Test Accuracy (%)

AlexNet

Learning Rate

0.0001 1.30 79.85 70.52 91.56
0.001 1.34 31.74 87.22 88.14
0.005 1.34 429.82 1.64 6.75
0.01 1.34 429.89 1.63 6.53

Batch Size

32 1.61 45.80 82.99 90.49
64 1.41 63.25 90.00 91.98

128 1.33 65.28 75.62 91.90
256 1.30 79.85 70.52 91.56

ResNet

Learning Rate

0.0001 9.58 212.98 85.10 89.90
0.001 9.11 7437.61 2.97 14.20
0.005 9.12 12602.22 1.44 6.79
0.01 9.10 3063.91 3.80 12.36

Batch Size
32 10.34 257.93 84.33 89.74
64 9.15 443.44 55.19 84.78

128 9.56 363.75 71.00 85.44

ZFNet

Learning Rate

0.0001 3.51 46.76 82.90 91.71
0.001 9.11 7437.61 2.97 14.20
0.005 3.45 429.91 1.68 15.46
0.01 3.45 429.96 1.51 16.91

Batch Size

32 3.61 38.24 86.14 90.82
64 3.51 46.70 82.95 91.72

128 3.46 55.30 79.75 91.48
256 3.42 24.91 90.95 90.23

Inception v3 Batch Size

32 28.32 2.64 99.17 88.65
64 19.98 15.40 94.45 87.09

128 16.48 1.04 99.71 88.07
256 14.58 1.55 99.50 87.66

MobileNet v2 Batch Size
32 4.88 15.57 83.03 83.63
64 4.13 13.26 95.53 88.54

128 3.75 40.89 26.21 59.02

The learning rate varied at 0.01, 0.001, 0.005 and 0.0001 with batch size 32, 64, 128 and 256,
respectively. Once the CNN application achieves improved performance with a specific learning rate,
then the batch size is altered for that learning rate. Hence, both parameters were set for each CNN
application. For initial learning rate, the batch size is set to 32.

First, AlexNet performance is checked with the abovementioned learning rates. For learning
rates 0.01 and 0.005, the loss values start with ~429 and remain the same after 20 epochs. At 0.0001,
the initial loss value is 99.23 and test accuracy is highest, with 91.56% and loss value 79.85% after
5 epochs. At this learning rate, the batch size is varied, and batch size 64 achieved the highest test
accuracy of 91.98%, for AlexNet. The optimum learning rate for ResNet is 0.0001 with initial loss



Electronics 2019, 8, 989 16 of 25

value of 776.24, and after eight epochs the loss value is 212.98 with test accuracy 91.98%. At 0.005,
the loss value reaches the highest at 12602.22, and test accuracy reduces to 6.79. At 0.0001 learning rate,
batch size was tested for ResNet; batch size 32 produces the highest test accuracy of 89.74%, while
batch size 256 produces ‘resource exhaust error’, which means the machine ran out of memory for
allocating to the tensor. ZFNet gives the highest accuracy at 0.0001 learning rate, with a test accuracy
of 91.71% and loss 46.76 after 5 epochs. The best-suited batch size for ZFNet is 64, with a test accuracy
of 91.72%. In Inception v3 and MobileNet v2 the learning rate remained at 0.001. The total number of
convolution layers in Inception v3 is 99, while in MobileNet v2 it is 56 (including the inverted residual
blocks). Therefore, changing the learning rate exhausts the memory of the machine. The batch size for
Inception v3 is 64 with a test accuracy of 87.09% at the 5th epoch, because the remaining batch size has
overfitting results. For MobileNet v2, batch size 64 produces the highest test accuracy, with 88.54% and
loss of 13.26 at the 3rd epoch. The initial loss value for MobileNet is 24.36.

4.3. Comparison with Other CNN Classification Methods

In this section, a detailed analysis of RSSI-based dataset localization performance is presented.
To evaluate the performance of the prevailing CNNs, we investigated four aspects: validation accuracy,
test accuracy, loss and time for each epoch. The accuracy curves for different CNN applications are
shown in Figures 16–21. As presented in Figure 17, the features extracted from AlexNet are similar
to the observation for the RSSI dataset. In Figure 17, the loss for AlexNet is shown for both schemes.
The initial loss and accuracy values were 110.29 and 89.42%, respectively, for Scheme 1 and 15.46 and
92.19%, respectively, for Scheme 2. AlexNet achieved a maximum accuracy of 91.12% for Scheme 1
and 91.19% for Scheme 2. This means that the network is well-suited as an RSSI-type fingerprinting
dataset. The minimum loss values after 20 epochs were 2.37 and 0.66 for Schemes 1 and 2, respectively.
As presented in Figure 18, ResNet showed a maximum accuracy of 88.57% for Scheme 1 and 93.00% for
Scheme 2. However, the losses after 20 epochs were 246.70 and 50.1 for Schemes 1 and 2, respectively.
The accuracy further decreased even after the decrease of loss values. Therefore, the highest value
reported for the ResNet model was the optimum value for RSSI-type datasets. The initial accuracy
values for ResNet for Schemes 1 and 2 were 69.74% and 76.49%, respectively, and the losses were 596.81
and 427.04, respectively. As shown in Figure 19, due to its simple architecture similar to AlexNet,
ZFNet performed well for the RSSI dataset. Both training and testing showed accuracy values above
90%. The initial and highest accuracy values for ZFNet for Schemes 1 and 2 were 90.84% and 92.05%,
respectively, with losses of 99.05 and 13.52, respectively. The accuracies after 20 epochs were 86.29%
and 87.71%, with a loss of 1.76 and 0.48, respectively. Inception v3 was the lengthiest network to be
trained and tested for the RSSI data type. As shown in Figure 20, surprisingly, the highest accuracies
achieved for this network for Schemes 1 and 2 were 87.16% and 89.20%, respectively. The loss values
were 0.04 for Scheme 1 and 0.063 for Scheme 2. The initial loss values were 1.68 and 1.3 with accuracies
of 79.35% and 89.02%, respectively. The final loss and accuracy values for Inception v3 after 20 epochs
were 0.04 and 86.48%, respectively, for Scheme 1 and 0.05 and 87.77%, respectively, for Scheme 2.
Figure 21 shows loss and accuracy for MobileNet v2. MobileNet v2 achieved the highest accuracy of
88.52%, for Scheme 2 and 78.33% for Scheme 1, which showed the lowest accuracy among the CNN
applications. The initial and final loss values for MobileNet v2 were 19.95 and 0.6, respectively, for
Scheme 1 and 94.45 and 0.25, respectively, for Scheme 2.



Electronics 2019, 8, 989 17 of 25

Figure 16. Our CNN model (a) loss curves and (b) accuracy curves.

Figure 17. AlexNet (a) Loss curves (b) Accuracy curves.

Figure 18. ResNet (a) loss curves and (b) accuracy curves.



Electronics 2019, 8, 989 18 of 25

Figure 19. ZFNet (a) Loss curves (b) Accuracy curves.

Figure 20. Inception v3 (a) loss curves and (b) accuracy curves.



Electronics 2019, 8, 989 19 of 25

Figure 21. MobileNet v2 (a) loss curves and (b) accuracy curves.

A performance comparison of a CNN application on the basis of four aspects was performed
for the above models. As shown in Table 6, our CNN model outperformed other applications in
comparisons of epoch time, loss, validation and test accuracy.

Table 6. The performance of CNN application models trained on RSSI datasets and the assessment of
four aspects.

Applications
Epoch Time (minute) Loss Training Accuracy Test Accuracy

Scheme 1 Scheme 2 Scheme 1 Scheme 2 Scheme 1 Scheme 2 Scheme 1 Scheme 2

Our CNN Model 0.03 0.13 0.7 0.4 69.87 86.99 94.45 94.11
AlexNet 1.41 6.78 63.27 15.46 87.28 94.61 91.12 92.19
ResNet 9.49 44.39 246.70 56.54 81.88 96.44 88.57 93.00
ZFNet 3.54 16.47 99.05 13.52 62.56 95.18 90.83 92.05

Inception v3 4.17 20.38 0.07 0.23 97.68 91.52 87.64 89.20
MobileNet v2 4.15 20.32 11.88 0.11 98.09 99.67 78.33 88.52

The highest test accuracy achieved by our CNN model was 94.45% for the loss value of 0.7 with
Scheme 1. Scheme 2 performed similarly, with a test accuracy of 94.11 and loss of 0.4. The epoch time
was ~2 seconds for Scheme 1 and ~8 seconds for Scheme 2. The training accuracies were 69.87% and
86.99% for Schemes 1 and 2, respectively.

The second highest test accuracy was achieved by ResNet, with 93.00% for Scheme 2. The training
accuracy was 96.44%. However, the epoch time was as high as 44.39 min while the loss was 56.54 for
Scheme 2. For Scheme 1, the training accuracy was 81.88% and the test accuracy was 88.57%.

AlexNet performed best in terms of epoch time, with 1.41 and 6.78 min for Schemes 1 and 2,
respectively, and test accuracies of 91.12% and 92.19%, respectively. The test accuracies for ZFNet were
90.83% and 92.05%, and the epoch times were 3.54 and 16.47 min for Schemes 1 and 2, respectively. The
lowest test accuracy was exhibited by Inception v3, with 87.64% for Scheme 1 and 89.20% for Scheme 2.
The epoch times for Schemes 1 and 2 were 4.17 and 20.38 minutes, and the training accuracies were
97.68% and 91.52%, respectively. MobileNet v2 showed epoch times of 4.15 min and 20.32 min with
test accuracies of 78.33% and 88.52% for Schemes 1 and 2, respectively.

As shown in Table 7, the number of RPs predicted accurately by the applications was called the
zero-margin accuracy. Our CNN model had the highest zero-margin prediction, with 45.43% and
46.54% accuracy for Schemes 1 and 2, respectively. A two-meter difference between the actual and



Electronics 2019, 8, 989 20 of 25

predicted RP was termed the one-margin accuracy. Our CNN model and ZFNet had similar outcomes,
with 52.63% and 52.34% one-margin accuracy, respectively, for Scheme 1 and 51.23% and 51.14%,
respectively, for Scheme 2. A difference of four meters between the predicted and actual outputs was
called the two-margin accuracy. The highest two-margin accuracy was shown by our CNN model,
with 94.45% and 94.11% for Schemes 1 and 2, respectively. The lowest two-margin accuracy was shown
by MobileNet v2, with 78.33% and 88.52% for Schemes 1 and 2, respectively.

Table 7. Accuracy comparison for 0, 1 and 2 margins for CNN application models trained on RSSI datasets.

Accuracy
0 - Margin 1 - Margin 2 - Margin

Scheme 1 Scheme 2 Scheme 1 Scheme 2 Scheme 1 Scheme 2

Our CNN Model 45.43 46.54 52.63 51.23 94.45 94.11
AlexNet 42.05 45.67 51.99 49.01 91.12 92.19
ResNet 39.42 46.81 45.23 46.48 88.57 93.00
ZFNet 41.48 43.54 52.34 51.14 90.84 92.05

Inception v3 40.21 43.26 39.24 38.26 87.64 89.66
MobileNet v2 38.89 42.23 37.42 36.45 78.33 88.52

An indoor localization system is best evaluated on the basis of performance statistics using the
mean value, variations and standard deviation. The mean is the total number of errors in meter units
for indoor localization and is best if closest to zero. As shown in Table 8, our CNN model achieved
mean errors as low as 1.44 m and 1.48 m for Schemes 1 and 2, respectively, with standard deviations of
2.12 m and 2.35 m, respectively. AlexNet performed the best among the other CNN applications, with
means of 1.80 and 1.67 m and standard deviations of 2.42 and 2.55 m for Schemes 1 and 2, respectively.
Inception v3 showed mean errors of 4.39 and 4.23 m, standard deviations of 8.19 and 7.57 m and
variations of 67.06 and 57.34 m for Schemes 1 and 2, respectively. The highest mean error is shown by
MobileNet v2, with 4.39 m and 4.23 m and standard deviations 8.19 m and 7.57 m for Schemes 1 and
2, respectively.

We also evaluated the effectiveness of indoor positioning (i.e., positioning accuracy), defined as
the cumulative percentage of location error within a specified distance (Figure 22). Our CNN model
outperformed the other CNN applications over the entire range of the graph. Our CNN model with
Schemes 1 and 2 did not differ greatly by positioning accuracy, such as in cases with error distance <5 m.
Both schemes had probability values above 94% within <5 m error distance. However, for cumulative
distribution functions over 94%, the positioning accuracy of Scheme 1 fell behind that of Scheme 2.
Under 94%, the error distance for our CNN model was approximately 1.44 m, and Scheme 1 is ~0.03 m
more accurate than Scheme 2. The gap between the two schemes increased gradually, and the error
distance eventually rose to nearly 38 m. AlexNet and ZFNet achieved a probability of 91% within a
5-m error distance. Both had an error distance of 1.8 meters from the beginning and end of the graph
with Scheme 1. ResNet lagged behind, with an error distance of 2.44 m and an accuracy of 88.57%.
The gap eventually increased, and the error distance rose to 18 m for AlexNet, 26 m for ZFNet and 58
m for ResNet, which is the maximum value. Inception v3 had a maximum error distance of 4.13 m and
87.64% position accuracy within 5 m. The error distance for Inception v3 eventually increased to 54 m.
With Scheme 2, the distance errors for AlexNet, ResNet and ZFNet became 1.7 m with ~92% accuracy
for cumulative distribution functions. Therefore, the graphs for these models overlapped. The error
distance eventually increased after 5 m. The error distance for AlexNet increased to 38 m, while that
for ZFNet increased to 32 m. ResNet outperformed both models, with an error distance of up to 48 m.
Inception v3 had an error distance of 4.10 m with an accuracy of 89.66%. After 5 m, the error distance
for Inception v3 with Scheme 2 increased to 48 m. MobileNet v2 showed an error distance of 4.39 m
with an accuracy of 78.38% for Scheme 1 and 4.23 m with 88.52% for Scheme 2.



Electronics 2019, 8, 989 21 of 25

Table 8. The performance statistics of CNN application models trained on RSSI datasets.

Applications
Mean (m) Variation (m) Standard Deviation (m)

Scheme 1 Scheme 2 Scheme 1 Scheme 2 Scheme 1 Scheme 2

Our CNN Model 1.44 1.48 4.44 5.54 2.12 2.35
AlexNet 1.80 1.67 5.86 6.52 2.42 2.55
ResNet 2.44 1.76 25.41 10.70 5.04 3.27
ZFNet 1.84 1.72 6.28 5.94 2.51 2.43

Inception v3 4.13 4.10 49.09 51.67 7.01 7.19
MobileNet v2 4.39 4.23 67.06 57.34 8.19 7.57

Figure 22. Cumulative distribution function (CDF) curves comparing position accuracy for CNN
applications with our CNN model. (a) CDF for Scheme 1. (b) CDF for Scheme 2.

Figure 23 presents the average test accuracy with two lab test simulation results. Scheme 2
performed better with all CNN applications. The localization techniques proposed with our CNN
model provide higher accuracy overall (i.e., a smaller error). We observed that CNN can fully exploit
the additional measurements, making it a promising technique for environments with a high density
of APs. In addition to the improved performance, our CNN model provides a fingerprinting approach
that requires a less laborious offline calibration phase.



Electronics 2019, 8, 989 22 of 25

Figure 23. Average test accuracy.

5. Conclusions

This paper presents a novel approach to indoor localization that is proven sufficiently efficient to
achieve a low error distance with high test accuracy. In this study, we developed a CNN model for a DL
scheme for Wi-Fi-based localization. In the offline stage of DL, a four-layer CNN structure is trained
to extract features from fluctuating Wi-Fi signals and to build fingerprints. In the online positioning
stage, the proposed CNN-based localizer estimates the position of the target. Our CNN model was
compared with five CNN applications: AlexNet, ResNet, ZFNet, Inception v3 and MobileNet v2. Each
application achieved a maximum simulation success rate of ~90%, while our CNN model achieved a
success rate of 94%. This indicates that the proposed CNN model can better handle the instability and
variability of RSSIs for Wi-Fi signals in complex indoor environments. This means it is more powerful
in classification tasks in fingerprint indoor positioning. Future research will expand our CNN model
and CNN applications for testing under real-time environments to work seamlessly through indoor
positioning systems and compare the output of each model. We can then identify the best-performing
CNN model for indoor positioning systems.

Author Contributions: R.S.S. and S.-H.H. contributed to the main idea of this research. R.S.S. wrote the
computation codes, performed the simulations, experiments, and database collection. The research activity was
planned and executed under the supervision of S.-H.H. R.S.S. and S.-H.H. contributed to the writing of this article.

Funding: This research received no external funding.

Acknowledgments: The authors would like to offer their sincere gratitude to Sang Moon Lee, CTO of JMP
Systems, Korea, for providing the equipment for database collection and setting up the experimental environment.

Conflicts of Interest: The authors declare no conflict of interests regarding the publication of this article.

References

1. Wu, S.; Chen, T.; Wu, Y.; Lytras, M. Smart cities in Taiwan: A perspective on big data applications.
Sustainability 2018, 10, 106. [CrossRef]

2. Mier, J.; Jaramillo-Alcázar, A.; Freire, J.J. At a Glance: Indoor Positioning Systems Technologies and Their
Applications Areas. In Advances in Intelligent Systems and Computing, Proceedings of the International Conference
on Information Technology & Systems, Quito, Ecuador, 6–8 February 2019; Springer: Cham, Switzerland, 2019;
pp. 483–493.

3. Youssef, M.; Agrawala, A. The Horus WLAN location determination system. In Proceedings of the
International Conference on Mobile Systems, Applications, and Services, Seattle, WA, USA, 6–8 June 2005;
pp. 205–218.

http://dx.doi.org/10.3390/su10010106


Electronics 2019, 8, 989 23 of 25

4. Perera, C.; Aghaee, S.; Faragher, R.; Harle, R.; Blackwell, A.F. Contextual Location in the Home using
Bluetooth Beacons. IEEE Syst. J. 2018, 20, 2720–2723. [CrossRef]

5. Liu, T.; Shuai, Z. Self-Positioning System and Algorithm in Wireless Sensor Networks. In Proceedings of the
2018 3rd International Workshop on Materials Engineering and Computer Sciences (IWMECS 2018), Jinan,
China, 27–28 January 2018. [CrossRef]

6. Choosaksakunwiboon, S.; Terawong, C.; Suttisirikul, S.; Anantavrasilp, I.; Thiemjarus, S.; Wisadsud, S.;
Kaemarungsi, K. A Pre-processing Technique for BLE-based Indoor Localization. In Proceedings of the 12th
International Convention on Rehabilitation Engineering and Assistive Technology, Shanghai, China, 13–16 July 2018;
Therapeutic, Assistive & Rehabilitative Technologies (START) Centre: Singapore, 2018; pp. 241–244.

7. Gomes, A.; Pinto, A.; Soares, C.; Torres, J.M.; Sobral, P.; Moreira, R.S. Indoor Location Using Bluetooth
Low Energy Beacons. In Advances in Intelligent Systems and Computing, Proceedings of the World Conference
on Information Systems and Technologies, Galicia, Spain, 16–19 April 2018; Springer: Cham, Switzerland, 2018;
pp. 565–580.

8. Mittal, A.; Tiku, S.; Pasricha, S. Adapting convolutional neural networks for indoor localization with smart
mobile devices. In Proceedings of the 2018 on Great Lakes Symposium on VLSI, Chicago, IL, USA, 23–25
May 2018; pp. 117–122.

9. Zafari, F.; Gkelias, A.; Leung, K.K. A survey of indoor localization systems and technologies. IEEE Commun.
Surv. Tutor. 2019, 21, 2568–2599. [CrossRef]

10. Chishti, S.O.; Riaz, S.; Bilal Zaib, M.; Nauman, M. Self-Driving Cars Using CNN and Q-Learning.
In Proceedings of the 2018 IEEE 21st International Multi-Topic Conference (INMIC), Karachi, Pakistan, 1–2
December 2018; pp. 1–7.

11. Sinha, R.S.; Lee, S.-M.; Rim, M.; Hwang, S.-H. Data Augmentation Schemes for Deep Learning in an Indoor
Positioning Application. Electronics 2019, 8, 554. [CrossRef]

12. Hattori, K.; Tatebe, N.; Kagawa, T.; Owada, Y.; Shan, L.; Temma, K.; Hamaguchi, K.; Takadama, K. Deployment
of wireless mesh network using RSSI-based swarm robots. Artif. Life Robot. 2016, 21, 434–442. [CrossRef]

13. Neburka, J.; Tlamsa, Z.; Benes, V.; Polak, L.; Kaller, O.; Bolecek, L.; Sebesta, J.; Kratochvil, T. Study of the
performance of RSSI based Bluetooth Smart indoor positioning. In Proceedings of the 2016 26th International
Conference Radioelektronika (RADIOELEKTRONIKA), Kosice, Slovakia, 19–20 April 2016; pp. 121–125.

14. Wang, Y.; Ye, Q.; Cheng, J.; Wang, L. RSSI-based bluetooth indoor localization. In Proceedings of the 2015
11th International Conference on Mobile Ad-hoc and Sensor Networks (MSN), Shenzhen, China, 16–18
December 2015; pp. 165–171.

15. Zhang, S.; Guo, J.; Luo, N.; Wang, L.; Wang, W.; Wen, K. Improving Wi-Fi Fingerprint Positioning with a
Pose Recognition-Assisted SVM Algorithm. Remote Sens. 2019, 11, 652. [CrossRef]

16. Jang, B.; Kim, H. Indoor Positioning Technologies Without Offline Fingerprinting Map: A Survey.
IEEE Commun. Surv. Tutor. 2018, 21, 508–525. [CrossRef]

17. Guan, R.; Harle, R. Signal Fingerprint Anomaly Detection for Probabilistic Indoor Positioning. In Proceedings
of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France,
24–27 September 2018; pp. 1–8.

18. Mendoza-Silva, G.; Richter, P.; Torres-Sospedra, J.; Lohan, E.; Huerta, J. Long-term WiFi fingerprinting
dataset for research on robust indoor positioning. Data 2018, 3, 3. [CrossRef]

19. Li, G.; Geng, E.; Ye, Z.; Xu, Y.; Lin, J.; Pang, Y. Indoor positioning algorithm based on the improved RSSI
distance model. Sensors 2018, 18, 2820. [CrossRef]

20. Kim, K.S.; Lee, S.; Huang, K. A scalable deep neural network architecture for multi-building and multi-floor
indoor localization based on Wi-Fi fingerprinting. Big Data Anal. 2018, 3, 4. [CrossRef]

21. Hsieh, H.-Y.; Prakosa, S.W.; Leu, J.-S. Towards the Implementation of Recurrent Neural Network Schemes
for WiFi Fingerprint-Based Indoor Positioning. In Proceedings of the 2018 IEEE 88th Vehicular Technology
Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–5.

22. Wang, R.; Li, Z.; Luo, H.; Zhao, F.; Shao, W.; Wang, Q. A Robust Wi-Fi Fingerprint Positioning Algorithm
Using Stacked Denoising Autoencoder and Multi-Layer Perceptron. Remote Sens. 2019, 11, 1293. [CrossRef]

http://dx.doi.org/10.1109/JSYST.2018.2878837
http://dx.doi.org/10.2991/iwmecs-18.2018.40
http://dx.doi.org/10.1109/COMST.2019.2911558
http://dx.doi.org/10.3390/electronics8050554
http://dx.doi.org/10.1007/s10015-016-0300-y
http://dx.doi.org/10.3390/rs11060652
http://dx.doi.org/10.1109/COMST.2018.2867935
http://dx.doi.org/10.3390/data3010003
http://dx.doi.org/10.3390/s18092820
http://dx.doi.org/10.1186/s41044-018-0031-2
http://dx.doi.org/10.3390/rs11111293


Electronics 2019, 8, 989 24 of 25

23. Le, D.V.; Meratnia, N.; Havinga, P.J.M. Unsupervised Deep Feature Learning to Reduce the Collection of
Fingerprints for Indoor Localization Using Deep Belief Networks. In Proceedings of the 2018 International
Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018;
pp. 1–7.

24. Dai, P.; Yang, Y.; Wang, M.; Yan, R. Combination of DNN and Improved KNN for Indoor Location
Fingerprinting. Wirel. Commun. Mob. Comput. 2019, 2019, 9. [CrossRef]

25. Cheng, C.-H.; Yan, Y. Indoor positioning system for wireless sensor networks based on two-stage fuzzy
inference. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718780649. [CrossRef]

26. Adege, A.; Lin, H.-P.; Tarekegn, G.; Jeng, S. Applying deep neural network (DNN) for robust indoor
localization in multi-building environment. Appl. Sci. 2018, 8, 1062. [CrossRef]

27. Sun, W.; Xue, M.; Yu, H.; Tang, H.; Lin, A. Augmentation of Fingerprints for Indoor WiFi Localization Based
on Gaussian Process Regression. IEEE Trans. Veh. Technol. 2018, 67, 10896–10905. [CrossRef]

28. Wei, Y.; Hwang, S.-H.; Lee, S.-M. IoT-Aided Fingerprint Indoor Positioning Using Support Vector Classification.
In Proceedings of the 2018 International Conference on Information and Communication Technology
Convergence (ICTC), Jeju, Korea, 17–19 October 2018; pp. 973–975.

29. Xu, H.; Wu, M.; Li, P.; Zhu, F.; Wang, R. An RFID indoor positioning algorithm based on support vector
regression. Sensors 2018, 18, 1504. [CrossRef] [PubMed]

30. Jang, J.-W.; Hong, S.-N. Indoor Localization with WiFi Fingerprinting Using Convolutional Neural Network.
In Proceedings of the 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN),
Prague, Czech Republic, 3–6 July 2018; pp. 753–758.

31. Niitsoo, A.; Edelhäußer, T.; Eberlein, E.; Hadaschik, N.; Mutschler, C. A Deep Learning Approach to Position
Estimation from Channel Impulse Responses. Sensors 2019, 19, 1064. [CrossRef] [PubMed]

32. Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-based fingerprinting for indoor localization: A deep learning
approach. IEEE Trans. Veh. Technol. 2016, 66, 763–776. [CrossRef]

33. Won, M.; Sahu, S.; Park, K.-J. DeepWiTraffic: Low Cost WiFi-Based Traffic Monitoring System Using Deep
Learning. arXiv 2018, arXiv:1812.08208.

34. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international
conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678.

35. Li, H.; Ota, K.; Dong, M.; Guo, M. Learning human activities through Wi-Fi channel state information with
multiple access points. IEEE Commun. Mag. 2018, 56, 124–129. [CrossRef]

36. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning
algorithms. arXiv 2017, arXiv:1708.07747.

37. Zhou, B.; Yang, J.; Li, Q. Smartphone-Based Activity Recognition for Indoor Localization Using a
Convolutional Neural Network. Sensors 2019, 19, 621. [CrossRef] [PubMed]

38. Valada, A.; Radwan, N.; Burgard, W. Deep auxiliary learning for visual localization and odometry.
In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
QLD, Australia, 21–25 May 2018; pp. 6939–6946.

39. Hanni, A.; Chickerur, S.; Bidari, I. Deep learning framework for scene based indoor location recognition.
In Proceedings of the 2017 International Conference on Technological Advancements in Power and Energy
(TAP Energy), Kollam, India, 21–23 December 2017; pp. 1–8.

40. Maisano, R.; Tomaselli, V.; Capra, A.; Longo, F.; Puliafito, A. Reducing Complexity of 3D Indoor Object
Detection. In Proceedings of the 2018 IEEE 4th International Forum on Research and Technology for Society
and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–6.

41. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international
conference on Multimedia, Orlando, Florida, USA, 3–7 November 2014; pp. 675–678.

42. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

43. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Lecture Notes in Computer
Science, Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014;
Springer: Cham, Switzerland, 2014; pp. 818–833.

http://dx.doi.org/10.1155/2019/4283857
http://dx.doi.org/10.1177/1550147718780649
http://dx.doi.org/10.3390/app8071062
http://dx.doi.org/10.1109/TVT.2018.2870160
http://dx.doi.org/10.3390/s18051504
http://www.ncbi.nlm.nih.gov/pubmed/29748503
http://dx.doi.org/10.3390/s19051064
http://www.ncbi.nlm.nih.gov/pubmed/30832327
http://dx.doi.org/10.1109/TVT.2016.2545523
http://dx.doi.org/10.1109/MCOM.2018.1700083
http://dx.doi.org/10.3390/s19030621
http://www.ncbi.nlm.nih.gov/pubmed/30717199


Electronics 2019, 8, 989 25 of 25

44. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 27–30 June 2016; pp. 2818–2826.

45. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–23 June 2018; pp. 4510–4520.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Methodology 
	Hardware and Software Setup 
	Input Datasets 
	Various CNN-Based Methods 
	Our CNN Model 
	AlexNet 
	ResNet 
	ZFNet 
	Inception v3 
	MobileNet v2 


	Experiments and Results 
	Dataset and Experimental Setup 
	Hyperparameter Settings 
	Comparison with Other CNN Classification Methods 

	Conclusions 
	References

