
electronics

Article

Advanced Bad Data Injection Attack and
Its Migration in Cyber-Physical Systems

Wenping Deng 1, Ziyu Yang 2,*, Peng Xun 1 , Peidong Zhu 1 and Baosheng Wang 1

1 College of Computer, National University of Defense Technology, Changsha 410073, China
2 Institute of Systems Engineering, Academy of Military Sciences, Beijing 100000, China
* Correspondence: zyyang@nudt.edu.cn

Received: 11 July 2019; Accepted: 18 August 2019; Published: 26 August 2019
����������
�������

Abstract: False data injection (FDI) attack is a hot topic in cyber-physical systems (CPSs). Attackers
inject bad data into sensors or return false data to the controller to cause the inaccurate state estimation.
Although there exists many detection approaches, such as bad data detector (BDD), sequence pattern
mining, and machine learning methods, a smart attacker still can inject perfectly false data to go
undetected. In this paper, we focus on the advanced false data injection (AFDI) attack and its detection
method. An AFDI attack refers to the attack where a malicious entity accurately and successively
changes sensory data, making the normal system state continuously evaluated as other legal system
states, causing wrong outflow of controllers. The attack can lead to an automatic and long-term system
failure/performance degradation. We first depict the AFDI attack model and analyze limitations
of existing detectors for detecting AFDI. Second, we develop an approach based on machine learning,
which utilizes the k-Nearest Neighbor (KNN) technique and heterogeneous data including sensory
data and system commands to implement a classifier for detecting AFDI attacks. Finally, simulation
experiments are given to demonstrate AFDI attack impact and the effectiveness of the proposed
method for detecting AFDI attacks.

Keywords: false data injection; cyber-physical system; security; detector; heterogeneous data

1. Introduction

Many critical infrastructures, such as smart grid and smart transportation systems, are fundamentally
supported by the underlying cyber systems [1]. Efficient and convenient management can be achieved
by adopting cyber systems. However, there exist many vulnerabilities in cyber systems, like malformed
message attacks [2–4] and denial of service attacks [5]. Therefore, for modern cyber-physical systems
(CPSs), many new vulnerabilities from cyberspace have been exposed, and consequently, security has
been a crucial factor for these modern CPSs. For example, attackers can delay the data transmission
between cyberspace and physical space by intruding the cyberspace to cause the wrong control
of physical process [6]. Currently, a vast number of existing studies pay attention to attacks and their
migrations in CPSs [6–12]. In particular, FDI is a hot topic in CPSs. FDI attack refers to one kind
of attack that attackers modify measurements of sensors or return false sensory data to the controller,
causing the wrong state estimation [11,12]. Attackers can launch FDI attacks by injecting bad data
into sensors, intruding communication systems to modify feedback data, or modifying time stamps
of sensory data.

Previous works [13–19] have extensively studied FDI attacks. However, previous FDI attacks
mainly pay attention to masking the wrong system state or disturbing the state estimation by
launching just one attack. They did not discuss how to keep going undetected for a long time after
an FDI caused the system fault. Especially, continuously falsifying legal states by injecting legal data
into the normal systems to cause automatic and long-term disruption/performance degradation,

Electronics 2019, 8, 941; doi:10.3390/electronics8090941 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-5225-6118
http://dx.doi.org/10.3390/electronics8090941
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/9/941?type=check_update&version=2

Electronics 2019, 8, 941 2 of 21

is a research area with limited work. Legal data mean the measurements that can pass detectors
and can be estimated as legal system state. A legal state refers to the state where controllers consider
the system is normally running.

On the other hand, many effective detectors of FDI attacks have been proposed. For example,
detectors based on machine learning [20,21] and methods based on models [13,22] have been used to
detect FDI attacks. The above methods can better detect some special FDI attacks. However, an effective
detection method still needs to be explored when attackers elaborately falsify normal system states.
Especially, the above detection approaches are ineffective to identify FDI attacks that continuously
falsify other legal states when the systems run normally.

In this paper, we focus on FDI attacks and their migrations in large-scale CPSs. First, we depict
a complex FDI attack called advanced false data injection (AFDI) attack, where attackers infer system
parameters by long-term monitoring sensory data, and continuously inject legal data to modify
the normal system state as another legal system state, leading to automatic outflow of mismatched
commands. Consequently, long-term harm or performance degradation of physical systems is obtained.
Different from previous FDI attacks that only consider how to mask the system exception or disturb
the system by launching one FDI attack, AFDI attacks focus on how to cause automatic and successive
disruption by only injecting legal measurements under normal situations. Second, we prove that
the existing detection approaches, such as BDD, sequence pattern mining-based detectors, and Machine
Learning-Based detectors, cannot identify AFDI attacks. Third, bearing in mind that commands from
the controllers cause changes in sensory data, and attackers hope to inject false data to generate
wrong commands, we propose a novel detection method based on machine learning. The proposed
method utilizes the KNN technique and heterogeneous data, including commands from the controller
and sensory data to obtain a classifier for detecting AFDI attacks. Finally, our simulation experiments
validate the impact of AFDI attacks and the effectiveness of the proposed detection approach.

Our contributions can be summarized as follows.

• We depict the AFDI attack model, which can only directly and successively cause system
failure/performance degradation by injecting legal data into the normal system.

• We discuss the limitations of fundamental detectors for detecting AFDI attacks.
• A novel detector based on machine learning, Heterogeneous Data Learning Detector (HeteD),

is proposed, which can effectively identify AFDI attacks.

The rest of this paper is organized as follows. In Section 2, we introduce the system model of CPS
and FDI attack model. We depict the attack model of AFDI in Section 3. In Section 4, we discuss
the limitation of fundamental detectors and describe the proposed detection approach against AFDI
attacks. Numerical results are given in Section 5. The related works about FDI attacks and detection
are reviewed in Section 6. In Section 7, we conclude this work and propose future work.

2. Preliminaries

2.1. System Model of CPS

The model of a large-scale CPS is shown in Figure 1, which includes a cyber system, communication
system, and physical system. The cyber system is composed of the central controller and state estimator.
The physical system includes a vast number of PLCs and sensors. The communication system is
responsible for transmitting information between the physical system and cyber system. Each cycle,
sensors measure the physical process and send sensory data to the cyber system. Sensory data is first
transmitted to the state estimator and the state estimator evaluates the system state. If no exceptions
about sensory data exist, the estimated system state is sent to the central controller. Then, the central
controller issues commands based on the evaluated state to the physical domain by the communication
system. When commands reach the physical system, PLCs first receive commands and disaggregate
them into many subcommands to control the physical process. After that, the physical process has

Electronics 2019, 8, 941 3 of 21

a change and sensory data may be different from previous measurements. The above process can be
modeled in terms of a 5-tuple

P = {C, T, S, R, F}

where

• C = {c1, ..., cm} is a finite set of commands from the central controller. ck is the kth kind of command.
C(k) = {ci, ..., cj} indicates the commands issued by the central controller at time k.

• T = {t1, ..., tnT} is a finite set of time series. A time series is the measured values of one sensor
with the change of time. ti = {ti(1), ..., ti(k)}T means the time series from the ith sensor. ti(k)
denotes the measurement of the ith sensor at time instant k. nT means the number of sensors.

• S = {s1, ..., sn} is a finite set of physical system states. sj = {a1, ..., anS}T denotes the jth state
and ai ∈ R. Estimators can evaluate the system state at time k, S(k), based on values of sensors,
which can be computed by

T(k) = Cmatrix × S(k) (1)

where Cmatrix ∈ RnT×nS is called the Jacobian matrix of the system topology. S(k) ∈ S
denotes the evaluated state at time k, and under normal circumstances S(k) = S(k)
and T(k) ={t1(k), ..., tnT (k)}T . The system’s physical dynamics is described by the following
widely adopted discrete-time model [22].

T(k) = A× T(k− 1) + B× g(u(k− 1)) (2)

where A ∈ RnT×nT and B ∈ RnT×m are constant matrices. u(k) = {u1(k), u2(k), ..., um(k)}T ∈ Rm×1

denotes the control signals determined by the control commands at time k. The value of ui(k)
is determined by the corresponding command ci. g() ∈ Rm×1 is a function of u(k).

• R = {r1, ..., ri, ..., rnR} is a finite set of relationships among states and commands. rk = si →
{ci, ..., cj} (rk ∈ R) indicates that when the system state is si, the central controller will issue
a set of commands {ci, ..., cj}. These commands may be activated by the corresponding state
or be input by operators.

• F = { f1, ..., fnF} is a subset of set S. Any state in set F is called an illegal state. A disruption
or degradation of performance occurs when the system state is fi.

Estimator

Controller

PLC PLC PLC

Physical Process

SensorSensor Sensor

Communication System

Cyber

System

Physical

System

Figure 1. Model of a large-scale cyber-physical system (CPS).

Electronics 2019, 8, 941 4 of 21

2.2. FDI Attack Model

We describe an FDI attack from three aspects: attack goal, attacker’s knowledge, and attack
capability. Attacks with different goals, knowledge, and capabilities can obtain different levels of impact.

Attack goal. Injecting false data can make the evaluated state S(t) differ from the real state S(t).
Based on different intents, the goal can be divided into two categories: (i) Inject bad data to mask
the wrong state S(t) = s f (s f ∈ F). (ii) Inject data to cause the outflow of wrong commands C(t)
(S(t)→ C(t) /∈ R).

Attacker’s knowledge. An attacker can have different levels of knowledge of the target system,
including (i) the sensory data, T; (ii) Jacobian matrix, Cmatrix; (iii) system commands, C; (iv) system
parameters A, B, and g; (v) and knowledge of states R and F. Depending on the assumptions made
on each of these components, we can envisage different attack scenarios. Typically, two main settings
are considered, referred to as attacks with perfect and limited knowledge.

• Perfect knowledge. In this case, everything of the targeted system assumes to be known
by the attacker. Components T and C can be obtained by intruding into the communication
system. An attacker can know F and Cmatrix from the public information and system theory.
Combining history data and Cmatrix, R can be obtained. If the attacker is a designer of systems,
{A, B, g}may be known.

• Limited knowledge. We assume that getting information from the public dataset and collecting
data by intruding into the CPS can be implemented, which means in this case, although there
exists a wide range of limited knowledge, {T, Cmatrix, C, F, R} can be obtained by the attacker.
Considering that the CPS may be complex, {A, B, g} cannot be obtained in many situations.

Attack capability. An attacker can have different levels of attack capability, including (i) attackers
can inject any value into a part of sensors; (ii) attackers can simultaneously modify sensory data
of all sensors, but the injected data is limited; and (iii) attackers can inject any sensory data into
any sensor.

• Situation (i) because there exist vulnerabilities in sensors and intruding into some sensors may
be easy, and a part of the sensor can be attacked and any bad data can be injected.

• Situation (ii) as described in the work by the authors of [18], attacks, such as time synchronization
attacks, can be launched to modify time stamps. All values of sensors can be simultaneously
modified; however, injected values of sensory data are in a limited range.

• Situation (iii) there exists a vast number of sensors and these sensors are distributed. Intruding
into all sensors is not practical. However, an attacker may intrude into the communication system
and modify feedback data transmitted from the sensors to the state estimator. For example,
in the work by the authors of [19], sensory data is fed back from PLCs to the state estimator.
There exist possibilities that attackers manipulate PLCs to modify all of the feedback data
(i.e., attack the website of firmware update of PLCs).

3. AFDI Attack Model

We first characterize the AFDI model from attack goal, attacker’s knowledge, and attack capability.
Then, we describe the attack process of AFDI.

AFDI Attack Goal. For AFDI attacks, the outflow of mismatched commands is needed to disrupt
the physical system. Considering that long-term disruption or performance degradation is the primary
target of AFDI attacks, continuously masking the fault state is also needed.

AFDI Attacker’s Knowledge. To go undetected for a long time, an attacker should know what
sensory data is proper for the current state, which means that knowledge {T, Cmatrix, C, F, R, A, B, g}
is needed. By analyzing historical data and public information, {Cmatrix, C, F, T, R} can be obtained.
In the latter paragraph, we propose a method that attackers without prior knowledge of {A, B, g} can
perfectly falsify system states. Launching an AFDI attack only requires limited knowledge.

Electronics 2019, 8, 941 5 of 21

AFDI Attack Capability. Considering that attacks last for a long time and measurements of any
sensor may be influenced, an AFDI attack requires the ability that attackers can modify all sensory data.
Therefore, the ability to inject any data into any sensor is needed by an attacker to launch AFDI attacks.

We assume that a high-skilled attacker can own the limited knowledge and the needed attack
capability in the follow-up discussion, which is feasible such as attack event stuxnet [23]. The attack
process is described as follows.

• Collect information and compute parameter A

A malicious entity collects sensory data {T(1), ..., T(N)} and system commands {C(1), ..., C(N)}.
Then, the attacker generates a collection V = null and adds any element < T(i), T(j) >, satisfying i < j,
S(i) = S(j), and C(i) = C(j) into V. Therefore, we can obtain

T(j + 1)− T(i + 1) = A× (T(j)− T(i)). (3)

By utilizing linear regression, A =

(XTX)−1XTY

where X = (..., T(j)− T(i), ...), Y = (..., T(j + 1)− T(i + 1), ...), and < T(i), T(j) >∈ V.

• Search state transition path

By analyzing historical data, a malicious entity can find the existing relationships R among states
and commands. Simultaneously, state transition paths are also mined. A state transition path denotes
the state sequence, such as {s1, s2, s3}, where the system state is s1 at the beginning, and then the state
is changed to s2. With the outflow of commands, the system state becomes s3.

In this case, an attacker needs to find two normal state transition paths:

Path 1 :Gs
Cd−→ si1

Ci1−→ si2

Ci2−→ sik ...
Cin−→ sin

Path 2 :Gs
Cf−→ sj1

Cj1−→ sj2

Cj2−→ sjk ...
Cjm−−→ sjm

where Cd, C f , Cik , and Cjk mean different sets of commands. Gs denotes a series of state transitions.

sk
Cik−→ sl denotes that when the system state is sk and commands Cik are issued from the controller,

the state becomes sl .

• Inject continuously bad data

At time l, the system state is sd (Gs = {s1, s2, ..., sd}), commands are C f (bf Path 2), and the attack
is launched at time l + 1. We use T(k) to represent the historical sensory data where the system state is sd
and commands are Cd (Path 1). In this case, attackers will continuously modify sensory data such that
the controller considers that the state path is Path 1. The injected bad data T(l + j)bad at time l + j satisfies

T(l + j)bad = T(k + j) + A× (T(l + j− 1)− T(k + j− 1)),

T(l)bad = T(l),

0 < j ≤ tbad j ∈ I,
(4)

where tbad means the duration of bad data injection.

Theorem 1. When injected bad data satisfies (4), the evaluated state at time l + j is the same to the state at time k+ j.

Electronics 2019, 8, 941 6 of 21

Proof. Based on (1), the estimated state at time l + j is

S(l + j)

= M(T(k + j) + A(T(l + j− 1)− T(k + j− 1)))

= S(k + j) + MA(T(l + j− 1) + G− G− T(k + j− 1))

= S(k + j) + S(l + j− 1)− S(k + j− 1)

= S(k + j),

where G = Bg(u(l + j− 1)) = Bg(u(k + j− 1)) and M = (CT
matrixCmatrix)

−1CT
matrix.

From Theorem 1, we know that by utilizing the historical data, attackers can continuously falsify
other legal states by bad data injection satisfying (4). During the continuous attacks, the controller
considers that Path 1 is executed; however, the actual situation is shown in Path 3.

Path 3 :Gs
Cf−→ sj1

Ci1−→ sh2

Ci2−→ shk
...

Cin−→ shn

Command sequence {Ci1 , ..., Cin} is issued when the state sequence is {si1 , ..., sin}, but for state shk
,

commands Cik are not proper to manipulate the physical process, and the physical system may go into
illegal states {..., shk

, ...}(shk
∈ F) for a long time.

4. Limitation of Fundamental Detectors and Our Detection Approach

In this section, first, we discuss the limitations of existing fundamental detectors including BDD,
detector based on machine learning, and sequence pattern mining-based detector. Then, we propose
a novel and effective method to detect AFDI attacks.

4.1. Limitations of Fundamental Detectors

Reviewing the existing FDI detection approaches, we divide detectors into three categories, including
residual based BDD, detectors utilizing classifiers based on machine learning, and detectors based
on sequence pattern mining. Next, we discuss their limitations for detecting AFDI attacks, respectively.

4.1.1. Residual-Based BDD

Residual-based BDD utilizes the residual between the observed sensory data and estimated
sensory data to identify anomalies. Intuitively, the normal measured sensory data is close to the actual
values, and the bad data may move the estimated variables away from their true values [13].
Equation (5) represents the detection theory, where lBDD denotes the threshold.

T(k)

{
Bad ‖T(k)− Cmatrix × S(k)‖2 > lBDD

Normal Others
(5)

Although the residual based BDD can identify many types of bad data, previous studies
such as [13] have proved that when the bad data satisfies (6), attacks cannot be detected.

T(k)bad = T(k) + β (6)

where β is a linear combination of the column vectors of Cmatrix (i.e., β = Cmatrix × h). T(k)bad and T(k)
denote the bad data and normal data at time k, respectively.

Following the fore discussion, in Theorem 2, we show that an AFDI attack goes undetected
by the residual-based BDD.

Theorem 2. For the descriptor system (Equations (1) and (2)) and the residual-based BDD, the AFDI attacks
are always undetectable.

Electronics 2019, 8, 941 7 of 21

Proof. When the AFDI attack is launched at time t + 1 and the attacker hopes to falsify the state
transition path since time j + 1 (S(t) = S(j)), the difference between injected bad data and actual data is

T(t + l)bad − T(t + l)

= T(j + l) + A(T(t + l − 1)− T(j + l − 1))− T(t + l)

= A× T(t + l − 1) + G− T(t + l)

= T(t + l)− T(t + l)

= Cmatrix × 0,

where G = g(u(k + l − 1)) = g(u(k + j− 1) and 0 < l ≤ tbad.
Therefore, based on (6), the injected bad data can pass the residual based BDD.

4.1.2. Machine Learning-Based Detectors

In previous studies, the detector based on machine learning can be seen as a binary classification
problem. From the perspective of machine learning, there exist three modes including supervised
learning, semi-supervised learning, and unsupervised learning. Because methods based on supervised
learning provide better detection results [24], we mainly discuss their limitations.

Supervised machine learning techniques utilize a set of labeled training data (i.e., the samples
that we have known whether they are abnormal) to generate a classifier. When a new sample without
labeling is input into the classifier, the model will show its label. We mainly focus on two methods:
Class I: classifier based on sensory data T(t) [21,25]. Class II: classifier based on the difference between
two sensory data T(t)− T(t− ld) [24] , where ld ∈ I is a constant and its value depends on the setting
of defenders.

For Class I, samples with labels can be represented as {(T(1), y1), (T(2), y2), ..., (T(k), yk)},
where yi is the label of T(i). When bad data is injected at time i, yi = 1, otherwise, yi = 0.

For Class II, samples with labels can be represented as {(T(ld + 1) − T(1), y1), (T(ld + 2) −
T(2), y2), ..., (T(k)− T(k− ld))}. When bad data is injected at time i, yi−ld = 1, otherwise, yi−ld = 0.

Although there exists many machine learning techniques, such as KNN, random forest (RF),
support vector machine (SVM), and naive bayes (NB), they cannot provide effective detection results
by only using sensory data to train model when attackers inject bad data as described in Section 3.
Theorems 3 and 4 show that under some conditions, AFDI attacks go undetected by the supervised
learning techniques. Assume that the task is to predict the label of injected bad data T(t) at time t.
The machine learning technique, 1-nearest neighbor learning, is seen as an example.

Theorem 3. For the descriptor system (1) and (2) and Class I-based detector utilizing the 1-nearest neighbor
learning technique

yt = arg min
yj

‖T(t)− T(j)‖2,

the AFDI attacks are always undetectable.

Proof. When bad data is injected at time t, we can obtain the following information. (1) yt = 1;
(2) yj = yj = yj−1 = yj−1 = yt−1 = yt−1 = 0, where yi denotes the predicted label and yi denotes
the actual label; (3) T(t) = T(j) + A× (T(t− 1)− T(j− 1)).

Then, we predict the label of T(t), yt, as

arg min
yk

‖T(t)− T(k)‖

= arg min
yk

‖Cmatrix × S(t)− Cmatrix × S(k)‖

= arg min
yk

‖Cmatrix × (S(t)− S(k))‖.

Electronics 2019, 8, 941 8 of 21

When k = j, yt = yj = 0 because S(t) = S(j). Therefore, the AFDI attacks can go undetected.

Theorem 4. For the descriptor system (Equations (1) and (2)) and Class II-based detector utilizing the 1-nearest
neighbor learning technique

yt = arg min
yj

‖T(t)− T(t− ld)− (T(j)− T(j− ld))‖,

when attackers can find two paths satisfying Path 1 and Path 2 in the historical data and constant ld is smaller
than the duration of Gs, the AFDI attacks are undetectable.

Proof. Assume that bad data is injected at time t and T(t) = T(j) + A × (T(t − 1) − T(j − 1)).
Because ld is smaller than the duration of Gs, the evaluated system state S(t − ld) at time t − ld
is the same to the evaluated system state S(j− ld). Therefore, we can obtain

Cmatrix × (S(t)− S(t− ld)− (S(j)− S(j− ld))) = 0.

Based on the above result, it is easy to obtain yt = yj = 0 and AFDI attacks can go undetected.
Because most of machine learning techniques assume that similar samples tend to have similar

labels and attack data T(t) can always find the similar benign data T(j), the ability is also similar
for the detection of FDI attacks under different machine learning techniques [24]. Therefore, we say
that the type of approach is ineffective to identify AFDI attacks.

4.1.3. Sequence Pattern Mining-Based Detector

The sequence pattern mining-based detector utilizes a series of state transitions to denote
the normal system behaviors and abnormal system behaviors. An effective method has been proposed
in the works by the authors of [26,27], where defenders compute the number of occurrences of every
state transition path and use some methods to determine whether a path is normal. In general,
the larger the number of occurrences is, the larger the possibility that it is a normal path. An exception
is issued when the current path is not in the historical data. For example, Path 1 and Path 2 are normal,
but Path 3 is abnormal.

Although the method can effectively detect many attacks, when attackers inject bad data,
as described in Section 3, they cannot provide the effective detection results. Theorem 5 shows
that AFDI attacks can be undetectable by the detector based on sequence pattern mining.

Theorem 5. For the descriptor system (Equations (1) and (2)) and sequence pattern mining-based detector,
the AFDI attacks are always undetectable.

Proof. Assume that Path 1 and Path 2 often occur in the running process. When a malicious entity
launches attacks and falsifies the executed Path 2 as Path 1, the real state transition path is Path 3.
However, the controller and detector consider that Path 1 is executed. From the detector’s point
of view, Path 1 is normal and attacks do not occur. Therefore, AFDI cannot be detected by the sequence
pattern mining-based detector.

4.2. Our Methodology: Heterogeneous Data Learning Detector (HeteD) for Detecting AFDI Attacks

From the analysis in the previous subsection, it is clear to see that an AFDI attack can continuously
inject bad data to falsify system states, going undetected by the existing detectors. These detectors
mainly pay attention to sensory data, but the AFDI can perfectly modify data to be undetectable.
By analyzing the state transition path, we observe that although attackers can falsify the changes
in states, the commands from the controller are not modified. Actually, the impact of the attack
is created because of the improper combination between the system state and issued commands.

Electronics 2019, 8, 941 9 of 21

Therefore, defenders can utilize the information from commands to enhance the detector based
on sensory data learning. By utilizing the heterogeneous data including commands and sensory data,
we propose HeteD based on machine learning techniques to identify AFDI attacks.

As shown in Figure 2, HeteD receives sensory data from sensors and commands from the controller
every unit time. There are three components in the detector, including “Process Data” component,
“Generate Sample” component, and “Classifier” component. Each unit time, commands are transmitted
to the component “Process Data”. The component changes commands as a series of signals and then
sends them to component “Generate Sample”. “Generate sample” combines signals and measurements
of sensors to obtain a detectable sample and transmits it to “Classifier”. Classifier is responsible
for detecting the sample and deciding whether the data is abnormal based on KNN technique.
Next, we describe the above process in details.

Controller Sensors

Process data
Generate
Sample

ClassifierDetector

Commands Measurements

Signals
Sample

Alarms

Figure 2. The structure of the Heterogeneous Data Learning Detector (HeteD).

4.2.1. Process Heterogeneous Data

In this step, we change every command as a control signal. The control signal has two values “0”
and “1”. We divide different commands into two classes, including continuous commands and instant
commands. A continuous command denotes that when the command occurs, its impact on the system
state can last some time or the impact is broken until the next related command occurs. An instant
command represents that when the command occurs, its impact on the system state instantly occurs,
but cannot be kept. For example, command “turn on or off a valve” is a continuous command,
and command “Increase demands” in the smart grid case is an instant command. Data processing
of the two types of commands is described as follows.

• Continuous Command Processing

When a continuous command occurs, the value of the signal becomes “1” and it remains invariant
for a time interval. The duration depends on the character of the corresponding command. For example,
if the influence of the command only lasts a fixed time interval, the value of the signal becomes “0”
when the duration of “1” is equal to the fixed time interval. If the impact of a command is stopped
when another occurs, the value of the signal becomes “0” after the corresponding command occurs.
Figure 3a–c describes the two situations. In Figure 3a, a command that allocates resource for users
with effective limited time interval tinterval is issued at time 0. When the time is tinterval , the value
of the signal becomes “0”. In Figure 3b,c, we show the values of two signals about two commands
“turn on the valve” and “turn off the valve”. When “turn on the valve” occurs at time 0, the value
of the corresponding signal becomes “1”. When “turn off the valve” occurs at time tinterval , the value
of the signal about command “turn on the valve” becomes “0” and the value of the signal about
command “turn off the valve” is “1”.

• Instant Command Processing

When an instant command occurs, the value of the signal becomes “1” from “0” or changes
from “1” to “0”. The value of the signal remains invariant until its next outflow. In Figure 3d,

Electronics 2019, 8, 941 10 of 21

a command that increases demand into the smart grid is issued at time 0 and time tinterval . The value
of the corresponding signal changes from “0” to “1” at 0 and changes from “1” to “0” at tinterval .

Figure 3. An example of heterogeneous data processing.

4.2.2. Sample Generation

Each unit time, HeteD combines signals and sensory data to generate a sample and sends
the sample to “Classifier”. Next, we describe the structure of a sample.

We utilize variable VS(t) = {V(t)T, T(t)T}T to represent the combination of signals and time series
at time t, where V(t) = {v1(t), v2(t), ..., vm(t)}T denotes the signal vector at time t and vi(t) denotes
the signal of command ci at time t. To capture the temporal structure of data sequence, we generate
samples using the concept of first difference (the work by the authors of [24] used the technique
to implement FDML detector, which attributes to Class II introduced in Section 4.1.2). Therefore,
the new sample NS(t) at time t can be described as

VS(t)−VS(t− ld) (7)

where ld is the parameter and set by the detector.

4.2.3. Classifier

“Classifier” is implemented by utilizing the KNN technique. We assume that there are many
historical data, including normal samples and abnormal samples. If there are fewer abnormal samples,
we can obtain them by simulating attacks. Label is annotated on every historical sample. If the sample
is normal, the corresponding label is “0”, otherwise, the label is “1”.

When a new sample NS(t) is input into “Classifier”, the component will search Kc historical
samples satisfying

min
NS(k)

|NS(t)− NS(k)|2

subject to
k < t

where Kc ∈ I is a parameter of the detector.

Electronics 2019, 8, 941 11 of 21

For Kc selected samples, if the number of samples whose labels are equal to “1” is larger than
the number of samples whose labels are equal to “0”, the predicted label of NS(t) is “1”, otherwise,
the label is “0”. When the predicted label is “1”, an alarm is issued from the detector.

At last, we discuss the reason that HeteD can obtain better detection effect than FDML.
Considering the process of AFDI attacks, when attackers inject bad data satisfying (Equation (4))
since time t, bad sensory data T′(t) causes the outflow of wrong control commands. From HeteD’s
point of view, sensory data is T′(t), and the control commands are changed from C(t) to C′(t).
Next, we prove when AFDI attacks satisfy (Equation (4)), we can obtain

||N′s(t)− Ns(t− ld)− (Ns(k)− Ns(k− ld)||2 > ||Ns(t)− Ns(t− ld)− (Ns(k)− Ns(k− ld))||2 = 0.

Proof. Based on Theorem 3, we know ||T(t)− T(t − ld)− (T(k)− T(k − ld))||2 = 0. Considering
S(t) = S(k) and S(t− ld) = S(k− ld), we can obtain C(t) = C(k). Therefore, ||Ns(t)− Ns(t− ld)−
(Ns(k)− Ns(k − ld))||2 = 0. Because N′s(t) 6= Ns(t), we can obtain ||N′s(t)− Ns(t− ld)− (Ns(k)−
Ns(k− ld)||2 > 0. Therefore, the equation is proved.

According to the above conclusion, we say there exist possibilities that the normal situation
is evaluated as the normal sample and there exist possibilities that the abnormal situation is evaluated
as the abnormal sample. Therefore, comparing with FDML (Theorem 4), HeteD can obtain a better
detection effect.

5. Numerical Results

In this section, several simulations are given to validate the impact of AFDI attacks and evaluate
the performance of HeteD. Considering we have proved that BDD, sequence pattern mining-based
detector, and Class I-based detector utilizing machine learning have no ability to identify AFDI attacks,
we only compare the effectiveness of our method with the approach, FDML, using the first difference
between two sensory data in the work by the authors of [24].

5.1. Simulation on Smart Grid

5.1.1. Scenario

The imbalance between demand and generation can lead to deviation of the frequency from
its normal value. If the deviation is larger than a threshold for a long time, some generators may
be disconnected from the grid leading to the cascading failure [28]. Direct load control is responsible
for recovering the deviation in frequency. The model of the direct load control in the smart grid
is shown in Figure 4. The direct load controller can turn off or on electric appliances to change loads
of smart grid to decrease the deviation in frequency. When the frequency is lower than the normal
frequency, fn = 50 HZ, the direct load controller decreases the use of direct load. When the current
frequency is higher than the normal frequency, the direct load controller increases the use of direct
load [29]. Users can also randomly turn on or off appliances to increase or decrease loads of the smart
grid. Under normal situations, when demands of users have a change, generation of generators has
a change and the frequency oscillates until the frequency remains invariant. The generation G(t)
changes according to GTAR(t) = (

fsp − f (t)
0.04 fn

)× GMAX ,

G(t + ut) = G(t) + (GTAR(t)− G(t))×M× ut,

where fsp is the set point of frequency and GMAX denotes the max power of generators. M = 3 s and
ut = 1 s.

Electronics 2019, 8, 941 12 of 21

Direct Load Controller

Electric grid

Data Centers

Household Electric

Appliances

Users

Electric Vehicle

Figure 4. The model of the direct load control.

When the frequency becomes stable, the frequency may not be equal to the normal frequency.
Then, as described in the work by the authors of [30], the direct load controller is activated
and the output load LD satisfies

min {Lterminal(t)−
fsp − fn

2
∗ GMAX , LU(t)} f (t) < fn

min {
fsp − fn

2
∗ GMAX − Lterminal(t), LR(t)} f (t) > fn

where the output load refers to the load that the direct load controller will turn on or off. Lterminal(t)
denotes the sum of terminal loads at time t. LU(t) denotes the number of loads that can be turned
off at time t and LR(t) means the number of loads that can be turned on at time t.

We use Matlab to implement the direct load control. We only pay attention to the sensors that
measure the frequency of the smart grid and demands of users. The frequency can be computed
by the relationship between demands and generation [30], described as

ω(t) = 2π × f (t),

α =
2× GMAX × h

ω2
nor

,

1
2

α×ω2(t + ut) =
1
2

α×ω2(t) + (G(t)− Lterminal(t))× ut,

f (t + ut) =
ω(t + ut)

2π
,

(8)

where ωnor denotes the rotating frequency at normal frequency and h = 4.
The system has 14 commands, shown in Table 1, where commands C1–C8 are automatically

issued from the direct load controller and commands C9–C16 are from the changes in users’ demands.
The direct load controller issues commands based on the frequency and current demands of users.
Users’ demands can be changed randomly by users. When the frequency becomes higher than 50.2 HZ
or lower than 49.8 HZ and lasts for 40 s, generators or electrical appliances will be broken.

Electronics 2019, 8, 941 13 of 21

Table 1. Description of commands in the smart grid.

Command Description

C1/C16 Turn on a load of X ∈ (0 MW, 120 MW)

C2/C15 Turn off a load of X ∈ (0 MW, 120 MW)

C3/C14 Turn on a load of X ∈ [120 MW, 240 MW)

C4/C13 Turn off a load of X ∈ [120 MW, 240 MW)

C5/C12 Turn on a load of X ∈ [240 MW, 480 MW)

C6/C11 Turn off a load of X ∈ [240 MW, 480 MW)

C7/C10 Turn on a load of X ∈ [480 MW, +∞)

C8/C9 Turn off a load of X ∈ [480 MW, +∞)

We randomly change users’ demands, LU(t) and LR(t), to collect a series of normal historical data.

5.1.2. Attack Effect on the Smart Grid

In the subsection, we pay attention to two normal situations:
Situation 1: As shown in Figure 5, at time t = 0, demands change from 2400 MW to 2220 MW and

the frequency begins to oscillate. Until the frequency becomes stable at time t = 22, the direct load
controller issues command C3 and the frequency returns to the normal value.

Situation 2: As shown in Figure 5, at time t = 0, demands change from 2400 MW to 2760 MW and
the frequency begins to oscillate. Until the frequency becomes stable at time t = 22, the direct load
controller issues command C6 and the frequency returns to the normal value.

Based on the two situations, we study two AFDI attack cases:
Case 1: When situation 1 occurs, attackers use measurements of demands and frequency under

situation 2 to replace the real measurements of demands and frequency, and the attack lasts for 100 s.
Case 2: When situation 2 occurs, attackers use measurements of demands and frequency under

situation 1 to replace the real measurements of demands and frequency, and the attack lasts for 100 s.

(a) Demands under normal situations (b) Frequency under normal situations

Figure 5. Measurements under normal situations

The real measurements under two attack cases are shown in Figure 6. For case 1, comparing Figure 6a
with Figure 5a, due to false data injection using measurements of situation 2, the direct load controller
thinks that the frequency is lower than the normal frequency; therefore, command “turn off loads”
is issued at time t = 22. However, the real demand is smaller than the generation and the operation makes
the deviation of frequency larger as shown in Figure 6b. At last, the frequency is higher than 50.2 HZ
and remains invariant for a long time. Until time t = 100, generators will be disconnected and electrical
appliances may be broken.

Electronics 2019, 8, 941 14 of 21

(a) demands under attacks (b) frequency under attacks

Figure 6. Real measurements under two attack cases.

For case 2, comparing Figure 6a with Figure 5a, due to false data injection using measurements
of situation 1, the direct load controller thinks that the frequency is higher than the normal frequency;
therefore, command “turn on loads” is issued at time t = 22. However, the real demand is larger
than the generation and the operation makes the deviation of frequency larger as shown in Figure 6b.
At last, the frequency is lower than 49.8 HZ and remains invariant for a long time. Until time t = 100,
generators will be disconnected and electrical appliances may be broken.

From the above results, we can know AFDI attacks in the smart gird can obtain large disruption.

5.1.3. Performance of HeteD on the Smart Grid

We first introduce two performance metrics, including false positive ratio and false negative ratio.
False positive ratio refers to the ratio of samples that are secure and classified as anomalies

to all secure samples. False negative ratio is the ratio of samples that are anomalies, but are classified
as normal samples to all abnormal samples.

For commands C1–C16, we see them as instant commands. To compare the detection performance
of our approach with FDML, we launch 50,000 AFDI attacks at different time points to obtain 50,000
attack samples. Every attack lasts 120 s. We use the same 50,000 situations without attacks as normal
samples. Forty-nine-thousand attack samples and 49,000 normal samples are used as training samples,
and extra samples are testing samples.

We implement two detectors—HeteD and FDML—by python. The detection performance of two
detectors on the corresponding dataset is shown in Figure 7 where Kc=5. With different values of ld,
we can see the false positive ratio of HeteD is lower than FDML in Figure 7a. With different values
of ld, we can also clearly observe that the false negative ratio of HeteD remains lower than FDML
in Figure 7b. Comparing the detection results of HeteD and FDML in the smart grid, we can know
that when we use HeteD and set ld = 1, the false positive ratio is very small, the false negative ratio
is lower than 20%, and good detection effect can be achieved.

Next, we analyze the reason that the two detection methods have different detection effects.
When we use FDML to detect exceptions, the samples are constructed by demands and frequency.
As described in Equation (4), when ld is small, there exists a vector T(k) satisfying Theorem 4. Therefore,
most of abnormal situations may be seen as normal samples and many normal situations are seen
as abnormal samples. For example, when case 1 in Figure 6 occurs, the bad data (frequency and demands
under situation 2) can be seen as normal samples and FDML can not detect anomalies. When case 2
in Figure 6 occurs, the same conclusion is obtained. Actually, malicious samples and normal samples
have the same vectors. Therefore, the detection effect is very poor. When we use HeteD to detect
exceptions, the samples are constructed by sensory data and control commands. The abrupt changes
in control commands lead to the situation that most of attacks can not be seen as normal samples and
most of normal running situations are not seen as attack samples. For example, when case 1 in Figure 6

Electronics 2019, 8, 941 15 of 21

occurs, the bad data (frequency demands under situation 2) cannot match with the command sequence
{C13, C6} because {C12, C6} are issued under normal situations. When case 2 in Figure 6 occurs, the bad
data (frequency, demands under situation 1) can not match with command sequence {C12, C3} because
{C13, C3} are issued under normal situations. When ld = 1, the above two examples can be identified.
Therefore, HeteD can provide the better detection effect.

(a) False Positive Ratio of Detectors (b) False Negative Ratio of Detectors

Figure 7. Detection performance of detectors on the smart grid.

5.2. Simulation on Tank System

5.2.1. Scenario

A tank system [7,31] is simulated by using Matlab/Simulink, and its structure is shown in Figure 8.
The controller of the tank system receives requests from users to produce liquid C, E, F, and G
by the neutralization process of ingredient A, ingredient B, and ingredient D. Liquid C is produced
when the ratio of ingredient A to ingredient B is 1. When the ratio is 3, liquid G is produced. Liquid E
is produced when the ratio of ingredient A to ingredient D is 1, and when the ratio is 3, liquid F
is obtained. Every time the tank system only generates one kind of product. Every ingredient can be
supplied by three tanks and flows out from tanks by 3 mL/second. Every tank has a sensor to measure
the current amount of ingredient or product. Moreover, from the tank with the ingredient to the
tank neutralizing product, there exist pumps controlling the input of product tank. When a product
is neutralized, the corresponding valves of outputting liquid are open and the liquid flows out from
their tanks by 6 mL/second. The tank system also provides a sensor to measure which service is needed
by users. Services include service 1: 60× 3× 2 mL liquid C, service 2: 60× 3× 4 mL liquid C, service 3:
60× 3× 4 mL liquid G, service 4: 60× 3× 2 mL liquid E, service 5: 60× 3× 4 mL liquid E, and service
6: 60 × 3 × 4 mL liquid F.

Producing liquid C with 60 × 3 × 4 mL is described as an example to demonstrate the process.
The initial state is s0. When service 2 is requested, the state becomes s2 and the controller issues
commands to turn on two pumps that input ingredient A to tank P2 (i.e., p11 and p12). Then the state
changes from s2 to s8. Until the system state becomes s14, commands which close pumps are issued.
After 60 s, the system automatically issues commands to turn on the valve V11. Then the system state
becomes s19. Tables 2 and 3 show the system commands and system states. We randomly request
different services for a long time and obtain a set of normal data.

Electronics 2019, 8, 941 16 of 21

 A A A

Pump

 C/G

Valve
V11

Central Controller

P11
P12
P13

B B B

Pump

P21
P22
P23

Tank11Tank12Tank13 Tank21 Tank22 Tank23

TankP2

D D D

Tank31Tank32Tank33

Pump

E/F

Valve
V21

P41
P42
P43

Pump

P31
P32
P33

TankP1

Figure 8. The structure of the tank system.

Table 2. Description of commands in the tank system.

Command Description

P11o/P11f Switch on/off Pump P11
P12o/P12f Switch on/off Pump P12
P13o/P13f Switch on/off Pump P13
P21o/P21f Switch on/off Pump P21
P22o/P22f Switch on/off Pump P22
P23o/P23f Switch on/off Pump P23
P31o/P31f Switch on/off Pump P31
P32o/P32f Switch on/off Pump P32
P33o/P33f Switch on/off Pump P33
P41o/P41f Switch on/off Pump P41
P42o/P42f Switch on/off Pump P42
P43o/P43f Switch on/off Pump P43
V11o/V11c Open/Close Valve V11
V21o/V21c Open/Close Valve V21

Rs 1-6 Request Service 1–6

Table 3. Description of states in the tank system.

State Description

s0 No request
s1/s2 Request service 1/service 2
s3/s4 Request service 3/service 4
s5/s6 Request service 5/service 6
s7/s8 Output ingredient under service 1/service 2
s9/s10 Output ingredient under service 3/service 4
s11/s12 Output ingredient under service 5/service 6
s13/s14 The product is obtained under service 1/service 2
s15/s16 The product is obtained under service 3/service 4
s17/s18 The product is obtained under service 5/service 6

s19 Valve V11 is open
s20 Valve V12 is open

Electronics 2019, 8, 941 17 of 21

5.2.2. Attack Impact on the Tank System

In this subsection, we use an attack case to illustrate the attack effect. By analyzing the history
data, we first obtain parameter A = E11×11, where E denotes the identify matrix. Every time users
request a service, the system state is s0 at the beginning. We select two state transition paths from
the historical data to generate the attack case

Path 4 :s0
RS5−−→ s5

p33o,p32o,p42o,p41o−−−−−−−−−−−→ s11 −→ s17
p33 f p32 f ,p41 f ,p42 f ,V21o−−−−−−−−−−−−−−→ s20

Path 5 :s0
RS3−−→ s3

p11o,p12o,p13o,p21o−−−−−−−−−−−→ s9 −→ s15
p11 f ,p12 f ,p13 f ,p21 f ,V11o−−−−−−−−−−−−−−→ s19

Since time t = 2580, the system state is s0 and users need liquid G. At t = 2581, an AFDI
attack is launched and false data is injected to tell the controller that service 5 is needed. Attackers
hope the controller will execute Path 4. Figure 9a,b shows the situation about production in TankP2
and TankP1 under the normal situation and attacked situation. In Figure 9a, we can clearly observe
that liquid G and liquid F are successively needed. However, in Figure 9b, the actual production
is liquid E (service 5). The above results illustrate the AFDI attack impact on the tank system.

(a) Production under the normal situation (b) Production under the attacked situation

Figure 9. Production under the normal situation and the attacked situation.

5.2.3. Performance of HeteD on the Tank System

Commands RS1 ∼ RS6 are seen as instant commands and others are continuous commands.
We randomly launch 50,000 AFDI attacks at different time points. Every FDI attack lasts 120 s. We also
select the same data without attacks as the normal samples. 49,000 attack samples and 49,000 normal
samples are used as the training samples, and residual 1000 attack samples and 1000 normal samples
are testing samples.

In Figure 10, we show the detection performance with changes in the values of ld under two
detectors, where Kc = 5. With the increase of ld, we can see that the false positive ratio and false
negative ratio of HeteD keeps invariant and all of attacks can be identified. The detection results are
very good and all of attacks can be detected. For FDML, when ld = 1, the best detection results can be
achieved. FDML is ineffective to detect AFDI attacks because of extremely high false positive ratio
and extremely high false negative ratio. Next, we analyze the reason that HeteD has better detection
effect than FDML. When AFDI attacks are launched, measurements of tanks are modified and the bad
data can be evaluated as normal system states. According to Theorem 4, normal samples and abnormal
samples have the same vectors and the detection model based on machine learning will provide poor
results. For HeteD, taking the attack case as an example, when attackers modify the state from s3 to s5,
control command RS3 is not modified as RS5. When the detection sample is constructed, the abnormal
sample is not the same as the normal sample. Therefore, HeteD can provide better detection results.

Electronics 2019, 8, 941 18 of 21

(a) False Positive Ratio (a) False Negative Ratio

Figure 10. Detection performance of detectors on the tank system.

Based on the attack cases in the smart grid and tank system, we can see that AFDI attacks
can successively degrade the system performance or disrupt the physical system for a long
time. By analyzing the detection effect of FDML and HeteD in the smart grid and tank system,
the proposed detection method is better than FDML when detecting AFDI attacks. Although our
method, in effect, detects AFDI attacks in many CPSs, the following issues, not explored in this paper,
should be considered in the case of real attacks. (1) A vast number of commands and sensors may
decrease the performance of HeteD, which may be solved by decreasing the dimension of the sample.
(2) Noise of measurements may impact the injected bad data and detection performance. (3) External
input of control commands may impact the detection results.

6. Related Work

In this section, we review the previous works from two aspects, including FDI attacks and
detection methods.

6.1. FDI Attack

In the work by the authors of [13], FDI attack was first introduced and attackers could inject
proper bad data to be undetectable by BDD of the smart grid. Attackers only need partial knowledge
to launch FDI attacks for masking the system exception or disturbing the normal running. In the work
by the authors of [14], FDI attacks with perfect knowledge were proposed to disturb the system running.
However, the above two works only discussed a single attack and does not concern how to launch
successive attacks. In the work by the authors of [15], attackers with perfect knowledge injected false
data to successively mask transmission line outages leading to a serious situation without awareness.
With further research, attack strategies have been improved, for example, optimal FDI attack actions are
studied to mask the exceptional frequency leading to the largest disruption of generators in the work
by the authors of [16]. In the work by the authors of [17], FDI attacks with limited knowledge
are described to mask the line outages. In the work by the authors of [18], time synchronization
attack was introduced. Attackers falsified the GPS signal to generate sensory data with bad time
stamps, masking the system faults. Different from previous works, this method does not need system
knowledge. In the work by the authors of [19], FDI attacks with perfect knowledge were used
to cooperate with false command injection attacks. False command injection caused the system failure
and FDI could delay the time of attack detection and develop impact of attacks. Based on the above
discussion, the characters of FDI attacks [13–19] are summarized in Table 4. We can clearly see that
the FDI attack becomes more complex, hides the traces of attacks better, and causes greater disruption.
However, previous FDI attacks mainly pay attention to masking system exceptions or conducting
the system exception by only launching one FDI. Previous works do not discuss how to keep going
undetected for a long time after an FDI causes the exception. Especially, continuously falsifying
legal states by injecting legal data into the normal systems to cause the automatic and long-term
disruption/performance degradation, is a research area with limited work.

Electronics 2019, 8, 941 19 of 21

Table 4. Characters of previous FDI attacks.

Works Attack Goal Knowledge Successive Attack

[13] Mask wrong system state or cause the system fault Perfect No

[14] Cause the system fault Perfect No

[15] Mask wrong system state Perfect Yes

[16] Mask wrong system state Perfect Yes

[17] Mask wrong system state Limited Yes

[18] Mask wrong system state Limited No

[19] Mask wrong system state Perfect No

HeteD Cause system faults and mask wrong system state Limited Yes

6.2. Detection of FDI Attacks

For FDI detection, many effective approaches have been proposed. In the work by the authors of [11],
the method based on correlation mining between data was proposed. However, when attackers can
know the correlations among different types of data and modify multiple types of sensory data like time
synchronization attack, the detection results are poor. In works by the authors of [12,20,21,25], the method
based on machine learning utilizing classification models was depicted. Although the above approaches
can detect some FDI attacks escaping from BDD, other complex FDI attacks, such as an elaborate time
synchronization attack, cannot be detected. In the work by the authors of [24], a new machine learning
method based on first difference was utilized to detect time synchronization attacks. In the work
by the authors of [26], the authors built a system model and used sequential pattern mining to analyze
state paths and detect anomalies. However, AFDI can not be detected by this method. The above
methods can better detect some special FDI attacks. However, an effective detection method still needs
to be explored when attackers elaborately falsify normal system states. Especially, the above detection
approaches are ineffective to identify AFDI attacks. The characters of the above detection methods are
summarized in Table 5, where time cost refers to the duration from analyzing data to obtaining detection
results. The difference between HeteD and previous works is that HeteD utilizes the control commands
and sensory data to train the detection model.

Table 5. Characters of Previous FDI Attacks.

Works Using Data AFDI Detection Accuracy Time Cost

[11] sensory data 0 Instant

[12,20,21,25] sensory data 20% 45% Instant

[24] first-difference sensory data 30% 55% Instant

[26] sensory data 0 Instant

HeteD first-difference sensory data and control commands 80% 100% Instant

7. Conclusions

We have described the AFDI attack model, which can directly cause long-term disruption
of physical systems by injecting continuously data into the normal system. For example, in the smart
grid, with the injection of bad sensory data, the frequency largely changes and the traditional detectors
cannot identify. The deviation of frequency exceeds its threshold and the smart grid may encounter
cascading failure. For the tank system, with the injection of bad sensory data, the production
process is broken and wrong produce is achieved; however, traditional detectors cannot identify
these situations. We also prove that the traditional attack detectors are ineffective to detect AFDI
attacks. Most importantly, we propose a novel and effective ML-based method by utilizing commands
and sensory data to identify AFDI attacks. The simulation results show that our detector, HeteD,

Electronics 2019, 8, 941 20 of 21

can effectively identify AFDI attacks with low false positive ratio and low false negative ratio.
For example, in the scenario of smart grid, our detector can identify most of AFDI attacks with 2.3% false
positive ratio and 13.8% false negative ratio. The FDML provides worse detection results with 60% false
positive ratio and 50% false negative ratio. In the scenario of the tank system, our detector identified
all AFDI attacks with 0% false negative ratio. The FDML provides worse detection results with 70%
false positive ratio and 28% false negative ratio. From the above results, we can know that the proposed
detection method is very effective. In the future, a detailed analysis of the convergence of detecting
other attacks in real-world applications will be provided.

Author Contributions: Conceptualization , W.D. and Z.Y.; Methodology, P.X.; Formal Analysis, W.D. and P.Z. and
P.X.; Data Curation, P.X.; Draft Preparation, Z.Y.; Project Administration, B.W.

Funding: The authors would like to thank support from the National Natural Science Foundation of China
under Grant No. 61572514, Changsha Science and Technology Program under Grant K1705007, and Science and
Technology Planning Project of Changsha under Grant ZD1601042.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Xu, J.; Wei, L.; Wu, W.; Wang, A.; Zhang, Y.; Zhou, F. Privacy-preserving data integrity verification by using
lightweight streaming authenticated data structures for healthcare cyber-physical system. Future Gener.
Comput. Syst. 2018, in press. [CrossRef]

2. Tsiatsikas, Z.; Kambourakis, G.; Geneiatakis, D.; Wang, H. The Devil is in the Detail: SDP-Driven Malformed
Message Attacks and Mitigation in SIP Ecosystems. IEEE Access 2019, 7, 2401–2417. [CrossRef]

3. Geneiatakis, D.; Kambourakis, G.; Lambrinoudakis, C.; Dagiuklas, T.; Gritzalis, S. A Framework for Protecting
a SIP-based Infrastructure Against Malformed Message Attacks. Comput. Netw. 2007, 51, 2580–2593. [CrossRef]

4. Aziz, S.; Gul, M. A self learning model for detecting SIP malformed message attacks. In Proceedings
of the 2010 3rd IEEE International Conference on Broadband Network and Multimedia Technology
(IC-BNMT), Beijing, China, 26–28 October 2010; pp. 744–749.

5. Yuan, Y.; Yuan, H.; Ho, D.W.C.; Guo, L. Resilient Control of Wireless Networked Control System Under
Denial-of-Service Attacks: A Cross-Layer Design Approach. IEEE Trans. Cybern. 2018, 1–13. [CrossRef]
[PubMed]

6. Deng, R.; Zhuang, P.; Liang, H. CCPA: Coordinated Cyber-Physical Attacks and Countermeasures in Smart
Grid. IEEE Trans. Smart Grid 2017, 8, 2420–2430. [CrossRef]

7. Li, W.; Xie, L.; Deng, Z.; Wang, Z. False Sequential Logic Attack on SCADA System and Its Physical Impact
Analysis. Comput. Secur. 2016, 58, 149–159. [CrossRef]

8. Mishra, S.; Li, X.; Pan, T.; Kuhnle, A.; Thai, M.T.; Seo, J. Price Modification Attack and Protection Scheme
in Smart Grid. IEEE Trans. Smart Grid 2016, 8, 1864–1875. [CrossRef]

9. Rahman, M.S.; Mahmud, M.A.; Oo, A.M.T.; Pota, H.R. Multi-Agent Approach for Enhancing Security
of Protection Schemes in Cyber-Physical Energy Systems. IEEE Trans. Ind. Inform. 2017, 13, 436–447.
[CrossRef]

10. Han, Q.; Nguyen, P.; Eguchi, R.T.; Hsu, K.L.; Venkatasubramanian, N. Toward an Integrated Approach
to Localizing Failures in Community Water Networks (DEMO). In Proceedings of the 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017;
pp. 2505–2506.

11. Wang, Y.; Zhang, Z.; Xu, L.; Gu, G. SRID: State Relation Based Intrusion Detection for False Data Injection
Attacks in SCADA. In Proceedings of the European Symposium on Research in Computer Security,
Wroclaw, Poland, 6–10 September 2014; pp. 401–408.

12. Gao, W.; Morris, T.; Reaves, B.; Richey, D. On SCADA control system command and response injection
and intrusion detection. In Proceedings of the 2010 eCrime Researchers Summit, Dallas, TX, USA,
18–20 October 2010; pp. 1–9.

13. Liu, Y.; Ning, P.; Reiter, M.K. False data injection attacks against state estimation in electric power grids.
In Proceedings of the 16th ACM Conference on Computer and Communications Security, Chicago, IL, USA,
9–13 November 2009; pp. 21–32.

http://dx.doi.org/10.1016/j.future.2018.04.018
http://dx.doi.org/10.1109/ACCESS.2018.2886356
http://dx.doi.org/10.1016/j.comnet.2006.11.014
http://dx.doi.org/10.1109/TCYB.2018.2863689
http://www.ncbi.nlm.nih.gov/pubmed/30369460
http://dx.doi.org/10.1109/TSG.2017.2702125
http://dx.doi.org/10.1016/j.cose.2016.01.001
http://dx.doi.org/10.1109/TSG.2015.2509945
http://dx.doi.org/10.1109/TII.2016.2612645

Electronics 2019, 8, 941 21 of 21

14. Liang, J.; Sankar, L.; Kosut, O. Vulnerability Analysis and Consequences of False Data Injection Attack
on Power System State Estimation. IEEE Trans. Power Syst. 2016, 31, 3864–3872. [CrossRef]

15. Liu, X.; Li, Z.; Liu, X.; Li, Z. Masking Transmission Line Outages via False Data Injection Attacks. IEEE Trans.
Inf. Forensics Secur. 2016, 11, 1592–1602. [CrossRef]

16. Tan, R.; Nguyen, H.H.; Foo, E.; Dong, X.; Yau, D.K.; Kalbarczyk, Z.; Iyer, R.K.; Gooi, H.B. Optimal
False Data Injection Attack against Automatic Generation Control in Power Grids. In Proceedings of
the 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS), Vienna, Austria,
11–14 April 2016; pp. 1–10.

17. Chung, H.; Li, W.; Yuen, C.; Chung, W.; Zhang, Y.; Wen, C. Local Cyber-Physical Attack for Masking Line
Outage and Topology Attack in Smart Grid. IEEE Trans. Smart Grid 2019, 10, 4577–4588. [CrossRef]

18. Zhang, Z.; Gong, S.; Dimitrovski, A.D.; Li, H. Time Synchronization Attack in Smart Grid: Impact
and Analysis. IEEE Trans. Smart Grid 2013, 4, 87–98. [CrossRef]

19. Gacia, L.; Brasser, F.; Cintuglu, M.; Sadeghi, A. Hey, My Malware Knows Physics Attacking PLCs
with Physical Model Aware Rootkit. In Proceedings of the Network & Distributed System Security
Symposium, San Diego, CA, USA, 16–17 February 2017; pp. 1–15.

20. Esmalifalak, M.; Nguyen, N.T.; Zheng, R.; Han, Z. Detecting stealthy false data injection using machine
learning in smart grid. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM),
Atlanta, GA, USA, 9–13 December 2013; pp. 808–813.

21. Ozay, M.; Esnaola, I.; Vural, F.T.Y.; Kulkarni, S.R.; Poor, H.V. Machine Learning Methods for Attack Detection
in the Smart Grid. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1773–1786. [CrossRef] [PubMed]

22. Vu, Q.D.; Tan, R.; Yau, D.K.Y. On applying fault detectors against false data injection attacks in cyber-physical
control systems. In Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International
Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; pp. 1–9.

23. Karnouskos, S. Stuxnet worm impact on industrial cyber-physical system security. In Proceedings
of the IECON 2011—37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, Australia,
7–10 November 2011; pp. 4490–4494.

24. Wang, J.; Tu, W.; Hui, L.C.K.; Yiu, S.M.; Wang, E.K. Detecting Time Synchronization Attacks in Cyber-Physical
Systems with Machine Learning Techniques. In Proceedings of the 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 2246–2251.

25. Yan, J.; Tang, B.; He, H. Detection of false data attacks in smart grid with supervised learning. In Proceedings
of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada,
24–29 July 2016; pp. 1395–1402.

26. Pan, S.; Morris, T.; Adhikari, U. Developing a Hybrid Intrusion Detection System Using Data Mining
for Power Systems. IEEE Trans. Smart Grid 2015, 6, 3104–3113. [CrossRef]

27. Pan, S.; Morris, T.; Adhikari, U. Classification of Disturbances and Cyber-Attacks in Power Systems Using
Heterogeneous Time-Synchronized Data. IEEE Trans. Ind. Inform. 2015, 11, 650–662. [CrossRef]

28. Short, J.A.; Infield, D.G.; Freris, L.L. Stabilization of grid frequency through dynamic demand control.
IEEE Trans. Power Syst. 2007, 22, 1284–1293. [CrossRef]

29. Mohsenian-Rad, A.H.; Leon-Garcia, A. Distributed Internet-Based Load Altering Attacks Against Smart
Power Grids. IEEE Trans. Smart Grid 2011, 2, 667–674. [CrossRef]

30. Xun, P.; Zhu, P.D.; Maharjan, S.; Cui, P.S. Successive direct load altering attack in smart grid. Comput. Secur.
2018, 77, 79–93. [CrossRef]

31. Xun, P.; Zhu, P.; Hu, Y.; Cui, P.; Zhang, Y. Command Disaggregation Attack and Mitigation in Industrial
Internet of Things. Sensors 2017, 17, 2408. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPWRS.2015.2504950
http://dx.doi.org/10.1109/TIFS.2016.2542061
http://dx.doi.org/10.1109/TSG.2018.2865316
http://dx.doi.org/10.1109/TSG.2012.2227342
http://dx.doi.org/10.1109/TNNLS.2015.2404803
http://www.ncbi.nlm.nih.gov/pubmed/25807571
http://dx.doi.org/10.1109/TSG.2015.2409775
http://dx.doi.org/10.1109/TII.2015.2420951
http://dx.doi.org/10.1109/TPWRS.2007.901489
http://dx.doi.org/10.1109/TSG.2011.2160297
http://dx.doi.org/10.1016/j.cose.2018.03.009
http://dx.doi.org/10.3390/s17102408
http://www.ncbi.nlm.nih.gov/pubmed/29065461
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	System Model of CPS
	FDI Attack Model

	AFDI Attack Model
	Limitation of Fundamental Detectors and Our Detection Approach
	Limitations of Fundamental Detectors
	Residual-Based BDD
	Machine Learning-Based Detectors
	Sequence Pattern Mining-Based Detector

	Our Methodology: Heterogeneous Data Learning Detector (HeteD) for Detecting AFDI Attacks
	Process Heterogeneous Data
	Sample Generation
	Classifier

	Numerical Results
	Simulation on Smart Grid
	Scenario
	Attack Effect on the Smart Grid
	Performance of HeteD on the Smart Grid

	Simulation on Tank System
	Scenario
	Attack Impact on the Tank System
	Performance of HeteD on the Tank System

	Related Work
	FDI Attack
	Detection of FDI Attacks

	Conclusions
	References

