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Abstract: We consider a robust design problem for achieving max-min fairness amongst users in an
uplink non-orthogonal multiple access system under imperfect channel state information. Contrary to
the conventional approach adopted in the literature, we propose an optimal decoding order-based
successive interference cancellation technique by introducing new binary variables, which results
in a difficult class of mixed-integer nonconvex optimization problem. For a practical application,
we devise an efficient suboptimal solution based on the inner convex approximation framework,
which solves a second-order-cone program at each iteration. Simulation results are provided to
demonstrate its performance gain over state-of-the-art designs. The proposed design also yields data
rates close to those obtained by an exhaustive search method.

Keywords: non-orthogonal multiple access; successive interference cancellation; max-min fairness;
quality-of-service; robust optimization

1. Introduction

Power domain non-orthogonal multiple access (NOMA) has recently been recognized as a
promising solution for next generation of mobile communications, due to its capability of delivering
higher throughput, improved reliability and increased spectral efficiency [1,2]. Contrary to the
well-known water-filling method, NOMA aims at concurrently allocating different power levels
to the users over the same spectrum. In particular, NOMA tends to allocate more power to the users
with poorer channel conditions to guarantee the user fairness, while users in better channel conditions
benefit from canceling the strong interference by using a successive interference cancellation (SIC)
technique [3].

In downlink NOMA systems, SIC technique should be performed at users who have high
processing power, especially in the case that the number of users in one resource block is large.
However, the probability of successful implementation of SIC may decrease gradually when the
number of users increases [4]. Therefore, a popular technique used in downlink NOMA systems is
either to pair two users or to group a few users into one cluster with distinct channel conditions.

Compared to downlink NOMA, there has been less attention on uplink (UL) NOMA (see [2] and
references therein). In a typical scenario of two-user uplink NOMA (i.e., users i and j), SIC is carried
out at the base station (BS) to detect the signal of user i first by treating user j’s signal as interference.
By using the SIC technique, it re-encodes the recovered signal and subtracts the interference imposed
by user i before decoding the user j’s signal. It is evident that the SIC decoding order has a strong
impact on the individual rate. The works in [5,6] considered a random decoding order with respect
to the users’ indices, leading to a suboptimal solution. Recently, the users’ descending channel
gain-based decoding order has been widely investigated in [7–11], which has the advantage in terms
of fairness. In this scheme, the signal of user with the strongest channel gain is decoded first and
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the signal of user with the weakest channel gain is decoded last. For the case of perfect channel
state information (CSI), the strongest user can transmit with full power, while the throughput of the
weakest user is clearly improved due to no multiuser interference (MUI). However, these results do
not hold true when imperfect CSI is taken into account. The reason is that the strongest user may not
be able to transmit with full power due to the additional term appearing in the denominator of the
signal-to-interference-plus-noise ratio (SINR) function caused by the channel estimation error. To the
authors’ best knowledge, optimization of individual rates of UL-NOMA systems taking the imperfect
CSI into account has not been investigated.

In this paper, we formulate a novel optimization problem to maximize the minimum data rate
among all users in the UL-NOMA system. Unlike the aforementioned works, the problem of interest
considers the following completely new issues: (i) a joint uplink users’ decoding order and power
control is investigated to better exploit different channel conditions, which is done by introducing
binary association variables; and (ii) imperfect channel state information (CSI) due to estimation
inaccuracies is taken into account. In addition, the MUI cannot be completely removed by SIC, and thus
a robust receiver together with an efficient power control method is crucial to guarantee user fairness.
Even for a fixed decoding order, the resulting problem is known to be NP-hard, and, thus, is nonconvex.
We first derive an optimal decoder based on the minimum mean-square error and SIC (MMSE-SIC) at
the BS to arrive at the robust design problem. To approximately solve this problem, we relax binary
association variables to be continuous and develop a low-complexity iterative algorithm based on
the inner approximation (IA) framework [12,13], which can be transformed into a second-order cone
programming (SOCP) at each iteration. The proposed algorithm is proved to converge monotonically
to at least locally optimal solution of the continuous relaxation problem. Finally, extensive numerical
results are provided to confirm that our proposed approach is efficient in terms of the rate fairness and
robustness against the estimation error under imperfect CSI.

Notation: XT , XH and tr(X) are the transpose, Hermitian transpose and trace of a matrix X,
respectively. ‖ · ‖ denotes the Euclidean norm of a matrix or vector, while | · | stands for the absolute
value of a complex scalar. E[·] and <{·} denote the statistical expectation and the real part of the
argument, respectively. x ∼ CN (η, Γ) represents a random vector x following a complex circularly
symmetric Gaussian distribution with mean η and covariance matrix Γ. 1m×n denotes the m× n matrix
of all ones.

2. System Model

This section describes UL-NOMA system model and formulates an optimization problem for
achieving max-min fairness among all users.

2.1. Signal Model

In a UL system, as illustrated in Figure 1, we consider a BS equipped with N antennas serving
a set of K single-antenna UL users, denoted by K , {1, 2, . . . , K}. Assuming a frequency-flat fading
channel, the received signal at the BS is

y = ∑
k∈K

pkhkxk + n, (1)

where hk ∈ CN×1 is the channel vector from the kth UL user, denoted by Uk, to the BS; pk and xk with
E{|xk|2} = 1 are the transmission power coefficient and the transmit data symbol of Uk, respectively;
and n ∼ CN (0, σ2I) is the additive white Gaussian noise at the BS.
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Figure 1. Illustration of a UL-NOMA system with assumption that the decoding order is from U1 to UK .
A BS with N antennas serves K single-antenna users.

Let us introduce binary association variables αk` ∈ {0, 1} to represent the SIC decoding order at
the BS as

αk` =


1, if the Uk’s message is successfully

decoded prior to the U`’s one, ∀k 6= `, (2)

0, otherwise.

By following the NOMA principle, the following constraints must be satisfied:

αkk = 0, ∀k ∈ K, (3a)

αk` + α`k = 1, k 6= `, ∀k, ` ∈ K, (3b)∣∣11×Kαk − 11×Kαk′
∣∣ ≥ 1, k 6= k′, ∀k, k′ ∈ K, (3c)

where αk , [αk1, · · · , αkK]
T ∈ {0, 1}K. From Equation (2) and by applying MMSE-SIC receiver [14], the

data rate of Uk can be written as

Rk(α, p) = ln
(
1 + γk(α, p)

)
, ∀k ∈ K, (4)

where the SINR is defined by

γk(α, p) = p2
khH

k Φk(α, p)−1hk, ∀k ∈ K, (5)

with Φk(α, p) , ∑
`∈K

αk`p2
`h`h

H
` + σ2I, α , {αk`}k,`∈K, and p , {pk}k∈K. It is worth

mentioning that the interference-plus-noise matrix experienced by Uk is simplified to Φk(p) =
K

∑
`=k+1

p2
`h`h

H
` + σ2I, ∀k ∈ K, if the SIC decoding order is assumed to be from 1 to K [14].

2.2. CSI Model

For imperfect CSI, each channel vector hk is modeled as hk = h̄k + ∆hk, where h̄k is the channel
estimate and ∆hk is the CSI error due to estimation inaccuracies. In this paper, we assume that ∆hk
is independent of h̄k and distributed as ∆hk ∼ CN (0, ε2

kI), where ε2
k is the variance of the CSI error

and assumed to be known a priori [15]. Since ∆hk is unbounded, the actual rate Rk(α, p) cannot
be considered as a design metric. Toward a robust design, we consider the following worst-case
achievable rate of Uk:

R̄k(α, p) = min
hk∈Hk

Rk(α, p), ∀k ∈ K, (6)
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where Hk , {hk|hk = h̄k + ∆hk, ∆hk ∼ CN (0, ε2
kI)}.

3. Problem Formulation

3.1. Optimization Problem Formulation

We are interested in the robust optimization problem for achieving rate fairness, which can be
mathematically expressed as

max
α,p

min
k∈K

R̄k(α, p) (7a)

s.t. p2
k ≤ Pmax

k , ∀k ∈ K, (7b)

α ∈ {0, 1}K×K, (7c)

αkk = 0, ∀k ∈ K, (7d)

αk` + α`k = 1, k 6= `, ∀k, ` ∈ K, (7e)∣∣11×Kαk − 11×Kαk′
∣∣ ≥ 1, k 6= k′, ∀k, k′ ∈ K, (7f)

where Pmax
k is the transmit power budget of Uk. Herein, Equation (7b) represents the power constraint

at each user while the constraints in Equations (7c)–(7f) guarantee the SIC-based decoding order for K
users. The constraint in Equation (7e) is a direct result from Equation (2). In addition, the constraint in
Equation (7f) is sufficient condition to ensure that the BS will decode a single signal at each iteration,
which can be explained intuitively as follows. Assuming that BS decodes the signals following the
order from U1 to UK. The optimal values of α should have the following form:

α1,1 α1,2 . . . α1,K
α2,1 α2,2 . . . α2,K

...
...

. . .
...

αK,1 αK,2 . . . αK,K

 =


0 1 . . . 1
0 0 . . . 1
...

...
. . .

...
0 0 . . . 0

 .

It can be seen that the object in Equation (7a) is a non-concave and non-smooth function
and Equation (7f) is also a non-convex constraint, which result in the mixed-integer non-convex
optimization problem in Equation (7).

3.2. Relations to Exhaustive Search and Random SIC

Exhaustive Search

With K users, there are K! possible cases of decoding order, in which the following subproblem
for given α:

max
p

min
k∈K

R̄k(p|α) (8a)

s.t. p2
k ≤ Pmax

k , ∀k ∈ K, (8b)

corresponds to one possible case. In other words, it requires to solve K! subproblems of Equation
(8), and the final optimal solution corresponds to the solution of the subproblem having the highest
objective value. It is clear that the exhaustive search method can provide the global optimal solution,
but its computational complexity is extremely high, especially when K increases. Thus, the solution of
Equation (8) is considered the benchmark (an upper bound) for our considered problem.

On the other hand, the random decoding order at the BS, so-called random SIC, is widely used
in [14,16] due to its low complexity. Clearly, the optimization problem based on random SIC is a
subproblem of Equation (8), which can be stated as:
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max
p

min
k∈K

R̄′k(p) (9a)

s.t. p2
k ≤ Pmax

k , ∀k ∈ K, (9b)

where R̄′k(p) is derived from R̄k(p|α) for a random value of α.
It can be foreseen that the two problems in Equations (8) and (9) are also non-convex due to

their non-concave objective functions. However, the solutions for these two problems can be found
by applying the proposed algorithm for solving Equation (7) presented shortly, after some slight
modifications.

4. Proposed Method for Solving Equation (7)

In this section, we derive an optimal MMSE-SIC receiver to further simplify the worst-case
achievable rate in Equation (6) and then propose an IA-based algorithm to solve the resulting
nonconvex problem.

4.1. Robust MMSE-SIC Receiver

We first derive an optimal MMSE-SIC receiver to further simplify Equation (6). Let ȳk ∈ CN×1

and r?k ∈ CN×1 be the post-SIC signal and the output of the optimal MMSE-SIC receiver corresponding
to Uk under imperfect CSI, respectively.

Lemma 1. The optimal MMSE-SIC receiver r?k can be obtained by solving

r?k = arg min
rk

E
[
|xk − rH

k ȳk|2
]

, ∀k ∈ K, (10)

which is given as
r?k = pk

(
p2

k h̄kh̄H
k + Φ̄k(α, p)

)−1h̄k, ∀k ∈ K, (11)

where Φ̄k(α, p) , ∑
`∈K

αk`p2
` h̄`h̄

H
` + ∑

`∈K
p2
`ε2

`I+ σ2I. By treating CSI errors as noise, the worst-case achievable

rate of Uk in Equation (6) can be re-expressed as

R̄k(α, p) = ln
(
1 + γ̄k(α, p)

)
, ∀k ∈ K, (12)

where
γ̄k(α, p) = p2

k h̄H
k
(
Φ̄k(α, p)

)−1h̄k, ∀k ∈ K. (13)

Proof. The proof of Lemma 1 is given in Appendix A.

4.2. Proposed IA-Based Algorithm

To tackle the discrete part of Equation (7), we first relax binary variables to be continuous, which is
a standard step in solving a mixed-integer problem. To this end, we consider the following continuous
relaxation of Equation (7):

max
α,p

min
k∈K

R̄k(α, p) (14a)

s.t. 0 ≤ αk` ≤ 1, ∀k, ` ∈ K, (14b)

p2
k ≤ Pmax

k , ∀k ∈ K, (14c)

αkk = 0, ∀k ∈ K, (14d)

αk` + α`k = 1, k 6= `, ∀k, ` ∈ K, (14e)∣∣11×Kαk − 11×Kαk′
∣∣ ≥ 1, k 6= k′, ∀k, k′ ∈ K, (14f)
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which can be rewritten equivalently as

max
α,p,ν

ν (15a)

s.t. R̄k(α, p) ≥ ν, ∀k ∈ K, (15b)

0 ≤ αk` ≤ 1, ∀k, ` ∈ K, (15c)

p2
k ≤ Pmax

k , ∀k ∈ K, (15d)

αkk = 0, ∀k ∈ K, (15e)

αk` + α`k = 1, k 6= `, ∀k, ` ∈ K, (15f)∣∣11×Kαk − 11×Kαk′
∣∣ ≥ 1, k 6= k′, ∀k, k′ ∈ K, (15g)

where ν is a newly introduced variable. It can be easily foreseen that Equation (15b) must hold with
equality at optimum, leading to the equivalence between Equations (14) and (15). Since the objective is
monotonic in its argument, we now focus on convexifying the nonconvex constraints in Equations
(15b) and (15g).

Convex approximation of the constraint in Equation (15b): Let (α(i), p(i)) be a feasible point found
at iteration i of the proposed IA algorithm presented shortly. By customizing the inequality [16]
(Equation (20)) a global lower bound of R̄k(α, p) is given by

R̄k(α, p) ≥ A(i)
k + B(i)k pk − C

(i)
k (α, p), ∀k ∈ K, (16)

where

A(i)
k , ln

(
1 + γ̄k(α

(i), p(i))
)
− γ̄k(α

(i), p(i)),

B(i)k , 2γ̄k(α
(i), p(i))/p(i)k ,

C(i)k (α, p) , p2
k h̄H

k Θ
(i)
k h̄k + ∑

`∈K
αk`p2

` h̄H
` Θ

(i)
k h̄` + ∑

`∈K
p2
`ε2

`tr(Θ
(i)
k ) + σ2tr(Θ(i)

k ),

with

Θ
(i)
k , (Φ̄

(i)
k )−1 −

(
(p(i)k )2h̄kh̄H

k + Φ̄
(i)
k
)−1,

Φ̄
(i)
k , ∑

`∈K
α
(i)
k` (p(i)` )2h̄`h̄

H
` + ∑

`∈K
(p(i)` )2ε2

`I + σ2I.

We note thatA(i)
k and B(i)k are constant, while C(i)k (α, p) is a nonconvex function due to the product

of αk`p2
` , leading to a non-concavity of the right-hand side of Equation (16). We now introduce new

variables τ , {τk}k∈K to iteratively replace Equation (15b) by{
A(i)

k + B(i)k pk − C
(i)
k (α, p, τ) ≥ ν, ∀k ∈ K, (17a)

p2
k ≤ τk ≤ Pmax

k , ∀k ∈ K, (17b)

where

C(i)k (α, p, τ) , p2
k h̄H

k Θ
(i)
k h̄k + ∑

`∈K
αk`τ`h̄

H
` Θ

(i)
k h̄` + ∑

`∈K
p2
`ε2

`tr(Θ
(i)
k ) + σ2tr(Θ(i)

k ).

From [17] (Equation (B.1)) we make use of inequality

αk`τ` ≤
α
(i)
k`

2τ
(i)
`

τ2
` +

τ
(i)
`

2α
(i)
k`

α2
k`, ∀k, ` ∈ K, (18)
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to convexify Equation (17a) as

R̄(i)
k (α, p, τ) , A(i)

k + B(i)k pk − C̄
(i)
k (α, p, τ) ≥ ν, ∀k ∈ K, (19)

where

C̄(i)k (α, p, τ) , p2
k h̄H

k Θ
(i)
k h̄k + ∑

`∈K

( α
(i)
k`

2τ
(i)
`

τ2
` +

τ
(i)
`

2α
(i)
k`

α2
k`

)
h̄H
` Θ

(i)
k h̄` + ∑

`∈K
p2
`ε2

`tr(Θ
(i)
k ) + σ2tr(Θ(i)

k ). (20)

Note that R̄(i)
k (α, p, τ) is concave and satisfies R̄(i)

k (α(i), p(i), τ(i)) = R̄k(α
(i), p(i)).

Convex approximation of constraint in Equation (15g): We note that Equation (15g) is a nonconvex
constraint due to the quasi-convexity of the left-hand side. Herein, we define bk , 11×Kαk and
bk′ , 11×Kαk′ to rewrite Equation (15g) equivalently as

|bk − bk′ | = 2 max(bk, bk′)− (bk + bk′) ≥ 1, ∀k, k′ ∈ K. (21)

To overcome the nonsmooth function max(bk, bk′), we consider the following lower bound:

max(bk, bk′) ≥
1
Ω

(
ln
(

exp(Ωbk) + exp(Ωbk′)
)
− ln(2)

)
, ψ(bk, bk′), (22)

which is done by using the smooth approximation via the log-sum-exp function with Ω being a
predefined positive large number. In Equation (22), ψ(bk, bk′) is a convex function with respect to
(bk, bk′), which can be easily proved by checking its Hessian matrix. By using the IA method, we
iteratively replace Equation (21) by the following convex constraint:

ψ(i)(bk, bk′) ≥
1
2
(bk + bk′ + 1), k 6= k′, ∀k, k′ ∈ K, (23)

where

ψ(i)(bk, bk′) , ψ(b(i)k , b(i)k′ ) +
exp(Ωb(i)k )

(
bk − b(i)k

)
exp(Ωb(i)k ) + exp(Ωb(i)k′ )

+
exp(Ωb(i)k′ )

(
bk′ − b(i)k′

)
exp(Ωb(i)k ) + exp(Ωb(i)k′ )

(24)

is the lower bound concave function of ψ(bk, bk′) at the feasible point (b(i)k , b(i)k′ ) = (11×Kα
(i)
k , 11×Kα

(i)
k′ ).

Summing up, the approximate convex program of Equation (14) solved at iteration (i + 1) is
given by

max
α,p,ν,τ

ν (25a)

s.t. p2
k ≤ τk ≤ Pmax

k , ∀k ∈ K, (25b)

0 ≤ αk,` ≤ 1, ∀k, ` ∈ K, (25c)

αkk = 0, ∀k ∈ K, (25d)

αk` + α`k = 1, k 6= `, ∀k, ` ∈ K, (25e)

R̄(i)
k (α, p, τ) ≥ ν, ∀k, ` ∈ K, (25f)

ψ(i)(bk, bk′) ≥
1
2
(bk + bk′ + 1), k 6= k′. (25g)

We note that the problem in Equation (25) can be cast as an SOCP since all the constraints are
linear and quadratic.
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Convergence and complexity analysis: After solving the problem in Equation (25) at each iteration, the
involved variables are updated for the next iteration until convergence. Since the approximate functions
in Equations (19) and (23) satisfy the IA properties presented in [13], the non-decreasing sequence of
the objective values in Equation (25a) is not difficult to see (i.e., ν(i+1) ≥ ν(i)). In addition, the proposed
iterative algorithm is guaranteed to converge due to the limited transmit power. Following the
same convergence analysis in [13], we can prove that the optimal solution obtained from Equation (25)
satisfies the Karush–Kuhn–Tucker (KKT) conditions of Equation (14). The problem in Equation (25) has
(K + 1)2 real variables and 4K2 + 2K conic constraints. Then, the worst-case per-iteration complexity
for solving Equation (25) is O

(√
4K2 + 2K(K2 + 2K)3).

Recovering binary solution from continuous relaxation: We have numerically observed that some
relaxed association variables obtained from solving Equation (25) do not take binary values. To
guarantee the feasibility of Equation (7), we further consider a post-processing. We first introduce
the rounding process, i.e., α?k` =

⌊
α
(i)
k` + 1

2
⌋
, to obtain exact binary values of the association variables,

and then re-run the algorithm with fixed α to find the optimal solution of p by solving the following
convex program:

max
p,ν

ν (26a)

s.t. p2
k ≤ Pmax

k , ∀k ∈ K, (26b)

A(i)
k + B(i)k pk − C

(i)
k (p) ≥ ν, ∀k ∈ K. (26c)

The proposed method for solving Equation (7) is summarized in Algorithm 1.

Algorithm 1 Proposed IA-based Algorithm for Solving Equation (7)

Initialization: Set i := 0 and generate feasible initial points (α(0), p(0), τ(0)).
Phase-1: Solving continuous relaxation problem in Equation (14)

1: repeat

2: Solve Equation (25) to obtain the optimal solution (α?, p?, τ?).
3: Update (α(i+1), p(i+1), τ(i+1)) = (α?, p?, τ?).
4: Set i := i + 1.
5: until Convergence
6: Output-1: (p?, τ?, α?) = (p(i), τ(i), α(i)).

Phase-2: Recovering binary solution for Equation (7)
7: Set α?k` =

⌊
α
(i)
k` + 1

2
⌋
, ∀k, ` ∈ K.

8: Run Steps 1–5 again to find p with α found in Step 7 (replace Equation (25) in Step 2 by Equation

(26)).
9: Output-2: (p?, α?)

5. Numerical Results

In this section, we demonstrate the effectiveness of the proposed method by using SeDuMi solver
in MATLAB environment. We consider a small-cell network with a centered-BS serving K = 4 users,
which are randomly and uniformly distributed in the area from 10 m to 100 m. The path loss (in dB)
from a user to BS is modeled as PLdB = 145.4 + 37.5 log10(d), where d is the distance in meters. The
signal bandwidth and noise power spectral density are set to 10 MHz and −174 dBm/Hz, respectively.
All the users are assumed to use the same power budget, i.e., Pmax

k = Pmax, ∀k ∈ K. The variance of
the CSI errors is modeled as ε2

k , µξ−θ
k (k ∈ K), where µ, θ ≥ 0 capture a variety of CSI acquisition

schemes and ξk denotes the SNR of the kth link [15]. For performance comparison, “Exhaustive search”
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and “Random SIC” schemes (i.e., (8) and (9)) are considered. In addition, the SIC decoding order based
on the descending channel gains, called “SIC-channel gain” for short, is also investigated [18].

We evaluate the effect of imperfect CSI on different resource allocation schemes as a function
of µ for N = 4 in Figure 2a and N = 8 in Figure 2b. As expected, Algorithm 1 yields the max-min
rate very close to the exhaustive search method, especially for a small µ. However, we note that
the exhaustive search method requires solving L! subproblems of the power control, which is
computationally expensive even for networks of small-to-medium size, and thus it only acts as
a benchmark. As can be seen, the proposed algorithm significantly outperforms the random SIC and
SIC-channel gain schemes. For µ = 0 corresponding to the case of perfect CSI, the SIC-channel gain
offers better user fairness compared to the random SIC, and performs close to the proposed algorithm
when N = 8. However, the performance of this scheme drops quickly in the case of imperfect CSI
(i.e., µ > 0) and tends to worse than that of other schemes. This also supports our statement given in
Section 1. Another observation is that the post-processing procedure (i.e., Step 8 in Algorithm 1) is
needed to refine the optimal solution.
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Figure 2. Comparison of different schemes in terms of average max-min rate (Pmax = 18 dBm and
θ = 1).
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In Figure 3, we demonstrate the robustness of Algorithm 1. Herein, “Non-Robust” refers to the
problem in Equation (7), where we use the presumed CSIs h̄k, ∀k ∈ K (rather than the true ones) to
compute the solutions and then evaluate the resultant worst-case achievable rate. We can see that
the proposed algorithm achieves much better max-min rate performance compared to the non-robust
design. Moreover, the performance gap is found to rapidly increase as Pmax increases.
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Figure 3. Improvement of average max-min rate based on robust design (µ = 4 and θ = 1).

In Figure 4, we show the impact of the number of users on the system performance. We have
numerically observed that the exhaustive search method may be infeasible in terms of the
computational complexity when K ≥ 6 due to the requirement of solving K! subproblems of the
power control. It can be seen that the average max-min rates of all the considered schemes are
dramatically degraded as K increases. Again, our proposed algorithm provides better performance
compared to random SIC and SIC-channel gain, and its performance gains are even more higher
when K is relatively large. This result further confirms the importance of jointly optimizing SIC
decoding order.
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Figure 4. Average max-min rate versus the number of users (Pmax = 18 dBm, N = 4, µ = 4 and θ = 1).



Electronics 2019, 8, 930 11 of 13

Figure 5 illustrates the average max-min rate versus Pmax. We note that increasing Pmax also
results in a strong severe interference situation. Thus, when Pmax becomes larger, the performance
gain of the proposed scheme over the random SIC one is more remarkable, thanks to the optimal
SIC decoding order. Figure 6 plots the cumulative distribution functions (CDFs) of the max-min rate.
Again, the proposed scheme tends to outperform the random SIC scheme when the number of receive
antennas is relatively small.
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Figure 5. Average max-min rate versus Pmax with different schemes (N = 4, µ = 4 and θ = 1).
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6. Conclusions

We propose a novel optimization problem of maximizing the minimum rate among all users by
jointly considering users’ decoding order and transmit power in a UL-NOMA system. The IA-based
algorithm has been developed to solve the nonconvex optimization problem, which can be cast as
an SOCP. Numerical results reveal that the proposed algorithm is very efficient in the scenario of
strong network interference. In addition, the robustness of the proposed design against CSI errors was
confirmed.
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Abbreviations

The following abbreviations are used in this manuscript:

ICMC Information Communication, Materials, and Chemistry Convergence
NOMA Non-orthogonal multiple access
SIC Successive interference cancellation
UL Uplink
BS Base station
NP-Hard Non-deterministic polynomial-time hard
MMSE Minimum mean-square error
IA Inner approximation
SOCP Second-order cone programming
SINR Signal-to-interference-plus-noise ratio
KKT Karush–Kuhn–Tucker
CSI Channel state information
CDF Cumulative distribution function

Appendix A

We note that a detailed analysis for Lemma 1 with similar structure can be found, e.g., in Appendix
C of [19]. However, to be self-contained, we follow the same steps as those in [19] but customize them
to our considered problem. It follows from r?k = arg min

rk
E
[
|xk − rH

k ȳk|2
]

that

r?k = arg min
rk
{1− 2pkrH

k h̄k + rH
k Ckrk}, (A1)

where Ck , E{ȳkȳH
k } = p2

k h̄kh̄H
k + Φ̄k(α, p). Then, r?k in Equation (11) is easily found by solving

∇rk{1− 2pkrH
k h̄k + rH

k Ckrk} = 0, (A2)

which is achieved at rk = pkC−1
k h̄k, as shown in Equation (11). Next, by treating CSI errors as noise,

the SINR of Uk can be expressed as

γ̄k(α, p) =
p2

krH
k h̄kh̄H

k rk

rH
k Φ̄k(α, p)rk

. (A3)

As a result, we can further simplify γ̄k(α, p) as



Electronics 2019, 8, 930 13 of 13

γ̄k(α, p) =
(
1− p2

k h̄H
k C−1

k h̄k
)−1−1. (A4)

Making use of the Woodbury matrix identity to have

1− p2
k h̄H

k C−1
k h̄k =

(
1 + p2

k h̄H
k (Φ̄k(α, p))−1h̄k

)−1, (A5)

we arrive at the compact form of SINR in Equation (13).
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