
electronics

Article

A Novel Address Scheme for Continuous-Flow
Parallel Memory-Based Real-Valued FFT Processor

Min Yuan , Zhenguo Ma, Feng Yu and Qianjian Xing *

Department of Instrument Science & Technology, Zhejiang University, Hangzhou 310027, China;
yuanminzju@zju.edu.cn (M.Y.); 850501@zju.edu.cn (Z.M.); osfengyu@zju.edu.cn (F.Y.)
* Correspondence: xingqianjian@zju.edu.cn; Tel.: +86-138-6812-8776

Received: 28 August 2019; Accepted: 13 September 2019; Published: 17 September 2019
����������
�������

Abstract: In this article, we present a modified constant-geometry based signal flow graph for
memory-based real-valued fast Fourier transform architecture. Without an extra permutation, the
corresponding address scheme solves the memory conflict and achieves continuous-flow operation
with the minimal memory and computation cycles requirement when compared to the state-of-the-art
designs. Besides, the address scheme meets the constraint of in-place operation, concurrent I/O,
normal-order I/O, variable size, and parallel processing. The experimental results demonstrate the
resource and frequency efficiency of the proposed address scheme.

Keywords: real-valued fast Fourier transform (RFFT); memory architecture; conflict-free addressing
scheme; normal-order I/O; continuous-flow

1. Introduction

Fast Fourier transform (FFT) is a most widely used algorithm. Most FFT architectures are
optimized for complex signals, marking as CFFT architectures. Recently, real-valued FFT (RFFT)
has been researched as many physical signals are real-valued, such as electrocardiogram and
electroencephalograph in biomedical applications [1,2]. When the inputs are real, approximately
half of the computations are redundant. Thus, a dedicated RFFT architecture can save more resources.

The FFT architectures can be categorized into two types: pipelined and memory-based
architectures. By employing separate processing elements (PEs) at each stage, the pipelined
architectures achieve a high throughput but consume more hardware resources. On the contrary, the
memory-based architectures reuse the PEs throughout all the stages, which will be resource-efficient
for large-size RFFT computations. In this article, we focus on achieving a conflict-free access scheme
for the memory-based normal-ordered I/O RFFT architecture.

A continuous-flow strategy means the processor handles each frame input without waiting
cycles. To achieve a continuous-flow N-point FFT architecture, three types of storages are needed:
N-word input buffers, N-word output re-ordering buffers, and N-word intermediate results buffers [3].
However, the input and output buffers can be merged by using the concurrent I/O strategy, which
means the inputs are written to the bank addresses where the outputs have just been read out, thus
achieving totally 2N minimal memory requirement. The authors of [4,5] do not take continuous-flow
operation into consideration. They have a scrambled output order, which is different from the
bit-reversal one [6] and makes it difficult to realize concurrent I/O. Therefore, they need totally 3N
memories to achieve continuous-flow and an extra permutation circuit to get the output in normal
order. The author of [7] achieves continuous-flow operation and saves the N-word output buffers.
However they do not solve the bank-conflict problem within the address scheme. Instead, they use an
extra permutation that consumes extra computation cycles and resources.

Electronics 2019, 8, 1042; doi:10.3390/electronics8091042 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-8805-6433
http://www.mdpi.com/2079-9292/8/9/1042?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8091042
http://www.mdpi.com/journal/electronics


Electronics 2019, 8, 1042 2 of 10

In this article, we develop a novel RFFT signal flow graph, which is based on a modified constant
geometry architecture [8]. The topological structure, which defines the locations of the data and the
PEs, is different from prior RFFT architectures [4,5,7]. With this topological structure, the permutation
between stages has a uniform representation, which makes it easy to conquer the address mismatch
between stages and frames, thus achieving in-place operation and concurrent I/O without the extra
permutation. Theoretically, the corresponding address mapping scheme achieves continuous-flow with
the 2N minimal memory requirement and the minimal computation cycles. Besides, as it is detrimental
to increase the working frequency to meet real-time requirement in low-power or high-throughput
applications, the address scheme also includes parallel-processing.

The rest of this article is organized as follows. Section 2 presents the proposed signal flow graph.
In Section 3, the proposed architecture is detailed. In Section 4, we compare the proposed design with
prior works. Finally, conclusions are drawn in Section 5.

2. Proposed Signal Flow Graph

For an N-point discrete Fourier transform, let x represent the input signal; then, the output
spectrum X can be calculated as X(k) = ∑N−1

m=0 x(m) ×Wmk
N , in which k = 0, 1, · · · , N − 1, WN =

e−2jπ/N . When the input is real-valued, then the output X is conjugate symmetric: X(k) = X∗(N − k).
A conventional constant-geometry CFFT signal flow graph is illustrated in [8]. The constant geometry
is realized with the perfect shuffle permutation. If we use an n-bit index a to mark the symbol at the
present stage, then the output of the perfect shuffle permutation function f provides the index of the
symbol in the next stage:

f (a) = ∑n−2
k=0 ak2k+1 + an−1. (1)

Our proposed RFFT signal flow graph is shown in Figure 1. For an N(= 2n)-point RFFT, N/2
radix-2 butterfly computations are needed at each stage. In Figure 1, at each stage, the butterflies with
the same index are combined into one computation of the proposed PE. The proposed topological
structure is a modified version of conventional constant geometry. The topological structure of stage 1
is the same with Equation (1). From stage 2 to stage n− 2, the topological structure is constant. The
corresponding permutation function is shown in Equation (2). In the (n− 1)th and the nth stages,
identity permutation is applied to the topological structure. The dashed lines in the nth stage mean
these elements need no computation.

f1(a)= a0+ a121+
n−2

∑
k=3

ak2k−1+a22n−2+an−12n−1. (2)

As mentioned before, each PE handles 8 data in parallel. To maintain the corresponding
topological structure of the signal flow graph, the corresponding address mapping scheme will adopt
different interchange strategies of the PE output for the first stage, the [2, n− 2] stages and the [n− 1, n]
stages, respectively. The address mapping scheme is designed to support continuous flow. To realize
continuous-flow operation, if the previous input is stored in natural bit representation (NAT) , then
the next frame uses the reversed bit representation (REV) and vice versa. The proposed REV mapping
scheme is shown in Figure 2.

Section 3 provides an overview of our proposed architecture. The PE and the address mapping
scheme are detailed, which proves how the signal flow graph works mathematically and how N is
generalized. First, we bring in a conflict-free bank address mapping scheme based on the proposed
load and store scheme. Then, the row mapping formulas in the next stages and frames can be derived
using an initial condition and the conflict-free condition.



Electronics 2019, 8, 1042 3 of 10

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30

r31

stage1

0

1

1

2

2

3

3

0

0

1

1

2

2

3

3

0

1

16

17

8

9

24

25

4

5

20

21

12

13

28

29

2

3

18

19

10

11

26

27

6

7

22

23

14

15

30

31

r0

r8

r1

r9

r2

r10

r3

r11

r4

r12

r5

r13

r6

r14

r7

r15

r16

i16

r17

i17

r18

i18

r19

i19

r20

i20

r21

i21

r22

i22

r23

i23

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

r0

r4

r1

r5

r8

i8

r9

i9

r2

r6

r3

r7

r10

i10

r11

i11

r16

i16

r20

i20

r17

i17

r21

i21

r18

i18

r22

i22

r19

i19

r23

i23

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

r0

r2

r1

r3

r4

i4

r5

i5

r8

i8

r10

i10

r9

i9

r11

i11

r16

i16

r18

i18

r20

i20

r22

i22

r17

i17

r19

i19

r21

i21

r23

i23

r0

r1

r2

i2

r4

i4

r5

i5

r8

i8

r10

i10

r11

i11

r9

i9

r16

i16

r18

i18

r20

i20

r22

i22

r23

i23

r21

i21

r19

i19

r17

i17

r0

r1

r2

i2

r4

i4

r5

i5

r8

i8

r10

i10

r11

i11

r9

i9

r16

i16

r18

i18

r20

i20

r22

i22

r23

i23

r21

i21

r19

i19

r17

i17

stage2

0

stage3 stage4 stage5

0

0

0

0

1

1

1

1

2

2

3

3

2

2

3

3

: radix-2 butterfly .

W0

W1

W2

W3

W4

W5

W6

W7

W0

W4

W8

W12

W0

W2

W4

W6

W4

W0

W0

W8

W0

W8

W0

W8

0*

* : the same indexed butterflies are combined into one PE computation.

Figure 1. Proposed signal flow graph of a 32-point real-valued FFT (RFFT).

an-1 an-2 ... a2 a1 a0

a1 a2 ... an-2 an-1 a0

input order

output order

Figure 2. Proposed reverse representation.

3. Proposed Architecture

The proposed radix-2 RFFT architecture is shown in Figure 3. A memory-based RFFT architecture
comprises three parts: memory, PE, and the address control module. For an N(= 2n) point RFFT,
P (P = 2p, p ≥ 0) PEs can be utilized in parallel. The 2N-word memories are divided equally
into two memory groups to work in ping-pong mode. Each memory group is partitioned into
B(= 2b, b ≥ 3, b = p + 3) memory banks. Each bank has a depth of N/B words. The B 2-port
multiplexers are used to switch between the two memory groups or to switch between the PE outputs
and the frame input. The B B-port multiplexers are used to reorder the B parallel-handled data before
or after the PE computation. Through the whole duration, the B processed data should be mapped
back to the locations where they were read from, which is called the in-place operation. Therefore,
there exists problem of memory conflict. Thus, a conflict-free memory mapping scheme is needed.
Meanwhile, the access scheme combined with specific PE need to be designed carefully to generalise
the signal flow graph to any N. In the following, we will describe the proposed PE and the address
mapping scheme.



Electronics 2019, 8, 1042 4 of 10

I/O interface

MEM group1

bank1,0,...,bank1,B-1

MEM group2

bank2,0,...,bank2,B-1

PE(0) PE(P-1)

...

... ...

... ...

... ...

B 2-Port 

multiplexers

B 2-Port 

multiplexers

... ...

... ... ... ...

... ...

... ...
Address

module

B B-Port multiplexers

B B-Port multiplexers

B 2-Port multiplexers

Figure 3. Proposed high-level RFFT architecture using P processing elements (PEs).

3.1. Proposed Address Mapping Scheme

The address mapping scheme includes the load/store schemes and the bank/row mapping
formula. Firstly, load/store schemes are used at different stages to maintain the topological structure
for any N and to realize normal-ordered I/O operation. Then the bank/row mapping formula is used
to map the load/store indexes to realize the in-place and concurrent I/O.

The problem of traditional RFFT architecture is that their address mapping scheme exists bank
conflict when considering normal order I/O and in-place operation even under the same parallelism
with ours. Besides, their address mapping scheme did not consider the address mapping derivation
between frames. In their implementation, they all need an extra permutation to adjust the frame
output. Our derived address mapping scheme makes concurrent I/O conflict-free. Meanwhile, as the
permutations between stages and frames appear periodically, the address mapping scheme is periodic.
Thus the extra permutation can be avoided. In the following, we first demonstrate the load/store
scheme including a generalisation of N and P. Then, based on the bank address mapping scheme and
in-place constraint, we obtain the periodic presentation of the row address mapping scheme.

For an N-point RFFT, we use an (n− b)-bits counter c = {cn−b−1, ..., c1, c0} to count the clock
cycles in each stage. As mentioned before, we use a to represent the indices of each element. At first,
we define a novel address mapping scheme modified from [8] as an initial condition:

r(a) =
n−b−1

∑
i=0

ai+b2i, (3)

m(a) = a0 + (
n−b+1
⊕

i=1
ai)2 +

b−2

∑
i=2

(ai ⊕ an−b+i)2
i + (

n−1
⊕

i=b−1
ai)2b−1. (4)

in which, n−b≥2 and ⊕ denotes bit-wise XOR operation. r(a) is the mapped row address for the first
stage in the first frame, and m(a) is the mapped bank address in NAT representation.

3.1.1. Conflict-Free Property of the Bank Address Mapping Scheme

For each computation cycle, we use LD(i, k) and ST(i, k) to represent the ith operand of the kth
PE and the ith result of the kth PE, respectively, where i = ∑2

m=0 im2m and k = ∑
p−1
m=0 km2m. Specifically,

let C := c ∗ 2p + k. We conclude that there are four load/store modes as follows.
(1) In the first stage, each PE inputs 8 real data and outputs 4 real data and 2 complex data. We

use Ti(a) to represent the time domain index of the ath element. For example, in Figure 1, Ti(1) in stage
2 equals to 8. The strategy involves two steps. Step 1 is to float the real outputs in the upper half and



Electronics 2019, 8, 1042 5 of 10

to sink the complex outputs in the below half. Step 2 is to arrange the output with odd Ti to locate
below those with even Ti. The load/store scheme is given as below:

LD(i, k)= {i0, i1, Cn−4..., C1, C0, i2}, (5)

ST(i, k)= {i1, Cn−4, ..., C1, C0, i2, i0}. (6)

To avoid bank conflict, the following conditions should be satisfied if i1 6= i2, or k1 6= k2:

m(LD[i1, k1]) 6= m(LD[i2, k2]), (7)

m(ST[i1, k1]) 6= m(ST[i2, k2]). (8)

In Equation (5), the variation of i can be represented by LD0, LDn−2 and LDn−1, where LDm is
the mth bit of LD. Moreover, k can be represented by LD1, LD2, ...LDb−3. According to Equation (4),
LD0, LD1, LD2, ...LDb−3, LDn−2, and LDn−1 are mapped into the 0th to the (n − 1)th bit of m(LD)
respectively. Therefore, the combinations of i and k are one-to-one mapped into m(LD). Therefore,
Equation (7) can be satisfied. Equation (8) can also be proved to be true. Thus, the conflict-free property
of the bank address mapping scheme is proved in the first stage.

(2) The 2nd to the (n − 2)th stages: we use s to mark the stage index. In these stages, the
load/store scheme can be summarized into two types: type I switches four complex data and type
II switches four real data and two complex data. Type I will adopt strategy the same with stage 1.
Type II only adopt its second step. Using the two strategies, we can derive that PE computations
satisfying (C < 2n−1 & mod(C, 2s−2) == 0) are of type I and the rest are of type II. Moreover, the
constant geometry in the [2, n − 2] stages can be maintained for any N. In all, for s = [2, n− 2], the
following loading/storing scheme is given in Algorithm 1. Similarly, the proposed load and store
scheme can be proved to satisfy Equations (7) and (8), as all bits of i and k are mapped into divided
bit-wise locations of the bank address.

Algorithm 1 Load and store scheme of the [2, n− 2] stages

if (C < 2n−1 & mod(C, 2s−2) == 0) then

LD[i, k] = {Cn−4, i1, Cn−5, ..., C0, i2, i0}.
ST[i, k] = {C, i1, i2, i0}.

else

LD[i, k] = {Cn−4, i0, Cn−5, ..., C0, i2, i1}.
ST[i, k] = {C, i2, i1, i0}.

end if

(3) The (n−1)th stage: In this stage, symbols with the index L1 = {an−1, an−2, ..., aw, 1,
aw−2, ..., a1, a0} and L2 = {an−1, an−2, ..., aw, 1, ˜aw−2, ..., ã1, a0} are managed in one computation and
switched to obtain the frequency domain output in NAT order, where w = blog2(C)c and the tilde
notation means negation operation. The load and store scheme is given in Algorithm 2. The variation
of i and k can be represented by LD0, LD1, ..., LDb−2, LDw+2, where w + 2 ∈ [b− 1, n− 2]. The above
b-bits are one-to-one mapped into the b−bits of m(LD) as shown in Equation (4). Similar analysis can
be applied to the store scheme. Therefore, bank conflicts can be avoided in the (n− 1)th stage.

(4) The nth stage and the I/O mode: In the nth stage, only the first two data are involved and
the store indices equal the load indices. In the I/O mode, the NAT and the REV representations are
used in turn. If the input data is mapped in the NAT order, the bank mapping scheme at each stage is
the same with Equation (4). When the input is in the REV order, the bank mapping scheme should be



Electronics 2019, 8, 1042 6 of 10

bit-reverse symmetric to Equation (4), which is given in Equation (9). Based on the symmetric property,
the bank conflict in the I/O mode can be avoided.

m(a)=a0+(
n−1
⊕

i=b−1
ai)2+

b−2

∑
i=2
(an−i⊕ab−i)2

i+(
n−b+1
⊕
i=1

ai)2b−1. (9)

Algorithm 2 Load and store scheme of the (n− 1)th stage

1: w = blog2(C)c;
2: if w == −∞ then

3: LD(i, k) = i2?{C, i2, i0, i1} : {C, i};
4: ST(i, k) = {C, i};
5: else

6: k1 = (w ≥ p)?(C− 2w) : (k− 2w);
7: LD(i, k) = 2w+3 + ĩ0(i2(2w+2 − 1 − ĩ1 − 2k1) + ĩ2(i1 + 2k1)) + i0(i2(2w+3 − 1 − ĩ1 − 2k1) +

ĩ2(2w+2 + i1 + 2k1));
8: ST(i, k) = 2w+3 + ĩ1(i2(2w+2 − 1 − ĩ0 − 2k1) + ĩ2(i0 + 2k1)) + i1(ĩ2(2w+3 − 1 − ĩ0 − 2k1) +

i2(2w+2 + i0 + 2k1));
9: end if

3.1.2. Periodicity of the Row Address Mapping Scheme

The address mapping scheme can be implemented by multiplying a with a non-singular linear
transform matrix Ts, f [9,10]. [

m

r

]
= Tn×na =

[
Ub×n

V(n−b)×n

]
a. (10)

m is the mapped bank address generated by Ub×n and r is the row address generated by V(n−b)×n.
We use s and f to mark the stage index and the frame index, respectively. Specially, we consider s in the
I/O mode to equal 0. Therefore, s ∈ [0, n]. Ub×n is represented in Equations (4) and (9), corresponding
to the NAT and REV forms, respectively. Then, the initial row address mapping scheme is given in
Equation (3). Using the two initial conditions and the in-place property, all row address mapping
schemes can be calculated in the following recursion manner.

We bring in two assist matrices Z0 and Z1 based on the locations of each bit of c in ld in stage
1 and stage 2 : n − 2, respectively. Based on Equation (5), Z0 = In(b − 2 : n − 3, :). Similarly, Z1

(= [In(b − 1 : n − 3, :); In(n − 1, :)] by concatenating the (b − 1)th to the (n − 3)th rows and the
(n − 1)th row of In, where In is an n × n identity matrix. As shown in Figure 1, three elementary
permutation matrices Q0, Q1, and Q2 can be used to describe the signal flow graph. We use Q0 to
define the bit-reverse permutation, Q1 to define Equation (1), and Q2 to define Equation (2).

Q0 = [In(:, 0) In(:, n−1 :−1 :1)];

Q1 = [In(:, 1 : n−1) In(:, 0)];

Q2 = [In(:, 0 : 1) In(:, 3 : n− 2) In(:, 2) In(:, n−1)];

The three matrices summarize the bit permutations between the load and the store duration.
If the bit permutation is an identity transformation, then the address mapping transformation in
the previous stage can be reused in the next stage. As (∏4

f=1(Q0 × (∏n−2
t=2 Q2) × Q1) == In, we

obtain Ts, f == Ts, f+4. Therefore, the row address appears as a periodic variation. The address
mapping scheme is shown in Algorithm 3, where T0,0 is defined using Equations (3) and (4). During
implementation, the difference of the row address mapping scheme among stages and frames can



Electronics 2019, 8, 1042 7 of 10

be uniformed by an (n − b)-bit cycle shift register. Using this method, the row address mapping
implementation can be simplified.

Algorithm 3 Address mapping transform algorithm

1: T1, f = T0, f


T0, f (0 : b− 1, :)

Z0


−1 

T0, f (0 : b− 1, :)

Z0Q−1
1

;

2: for s = 1 to n− 3 do

3: Ts+1, f = Ts, f


Ts, f (0 : b− 1, :)

Z1


−1 

Ts, f (0 : b− 1, :)

Z1Q−1
2

;

4: end for

5: Tn−1, f = Tn−2, f ;

6: Tn, f = Tn−1, f ;

7: T0, f+1 = Tn, f Q0;

Table 1 is an instance of the address mapping scheme, in which one PE is used. Thus, the bank
address is of 3-bit width and the row address is of (n− 3)-bit width. The address mapping scheme is
periodic with the frame index and the period is 4. The bank address scheme only needs two formulae
(the NAT and REV representations), which is very common in continuous-flow operations. The
(n− 3)-bit row address mapping scheme can be realized with a (n− 3)-bit cycle shift register b and
some fixed bits of a. Compared with prior address mapping schemes [4,5,7], the address mapping
scheme is further controlled by a 2-bit frame index, which makes it a bit more complex. However, by
considering the periodicity among the frames, the address mismatch between the input and output of
the same frame is tolerated and the extra permutation is avoided.

Table 1. Address mapping scheme with 8 parallelism.

Frame Bank Row Address

Index Address Stage 0 Other Stages

0
{
n−1
⊕

i=2
ai,

n−2
⊕

i=1
ai, a0}

{an−1, b[n− 4 : −1 : 1]} {d , a1, b[n− 5 : −1 : 1]}
2 {a1, d, b[n− 5 : −1 : 1]} {bn−4, an−1, b[n− 5 : −1 : 1]}
1

{
n−2
⊕

i=1
ai,

n−1
⊕

i=2
ai, a0}

{d, an−1, b[0 : 1 : n− 6]} {an−1, d, b[0 : 1 : n− 6]}
3 {bn−4, a1, b[0 : 1 : n− 6]} {a1, bn−4, b[0 : 1 : n− 6]}

b = ror(a[n− 2 : 2], s?). ror means cycle right shifting a[n− 2 : 2] by s? bits and s∗ = min(s, n− 2).
d = a1 ⊕ an−1 ⊕ bn−4.

3.2. Processing Element

The proposed PE comprises two sub-PEs in parallel. As no extra permutation circuit is needed in
our design, each sub-PE uses a normal architecture the same as that used in [5], which is shown in
Figure 4. The multiplexers in the proposed pe are controlled by S1 to bypass the complex multiplication
when the twiddle factor equal to 1. And the complex multiplication is trivial in the (n− 1)th to the
nth stage.



Electronics 2019, 8, 1042 8 of 10

in(4k)

in(4k+1)

in(4k+2)

in(4k+3)

+

-

+

-

out(4k)

out(4k+1)

out(4k+2)

out(4k+3)

s1

0

1

0

1

Figure 4. Architecture of the kth sub-PE.

4. Comparison

In this section, we compare the hardware complexity and computation cycles with prior
memory-based architectures. The author of [4] presents a signal flow graph that only contains real-data
path. Their PE handles four samples in parallel. Then [5] modifies the signal flow graph based on [4]
and achieves time and resource efficiency. However, bank conflict occurs using their address scheme
when considering concurrent I/O and normal-ordered I/O. Then [7] develops a continuous-flow
memory-based RFFT architecture. However, their address mapping scheme still does not solve the
bank conflicts. Instead, an extra permutation that needs a half stage computation time is brought in
and extra RAMs and multiplexers are consumed.

Table 2 compares the proposed architecture with prior works. It can be concluded that the
proposed architecture supports continuous-flow operation with the minimal computation cycles and
the minimal memory resources when considering the same parallelism.

Table 2. Comparison of the RFFT processors.

Proposed [7] [4] [5]

Parallelism B (= 2b) b ≥ 3 b ≥ 2 b ≥ 2 b ≥ 2Support

PE 2b−1 complex adders and 2b−2 complex multipliers

2−Port Multiplexers 22b+1 + 3× 2b−1 22b+1 + 9× 2b−1 22b+1 + 5× 2b−1 22b+1 + 3× 2b−1

Memory 2N ×W (2N+10× 2b−2)×W 2N ×W 2N ×W

Computation Cycles N(log2N− 1)/B+1 N(log2N− 0.5)/B+1 N(log2N)/B+1 N(log2N−1)/B+1

Continuous Flow Yes Yes No No

Normal-ordered I/O Yes Yes No No

When compared to [4,5], we meet the constraint of the minimal computation cycle and the
minimal multiplexer requirement. However, both [4,5] do not take continuous-flow and normal-order
I/O into consideration. Their output order is scrambled, which is different from the normal order
or the bit-reversal order, while each frame order in the our design is in normal-order. Using their
method, if they consider normal-ordered I/O while still maintaining the in-place strategy, they need
another N-word memories as the output buffer and an extra dedicated bit-reverse permutation circuit
to reorder their frame output according to [3]. Therefore, 3N single-port memories are needed in
their design when considering the same constraint, while 2N single-port memories are needed in
our design.

When compared with [7], N/2B computation cycles are saved. The time-reduced factor is
calculated as 1/(2log2N−1+16/N). The factor is 6.64%, 4.76%, and 4.35% when N is 256, 2048, and
4096, respectively, which will be useful in time-critical applications [2]. We consider that a B-port
multiplexer can be realized with (B − 1) 2-port multiplexers. When considering the hardware



Electronics 2019, 8, 1042 9 of 10

complexity, the (10 × 2b−2)-word memories and (6 × 2b−1) 2-port multiplexers are saved when
compared with [7].

Table 3 compares the synthesis results, which are obtained using ISE14.5 tool on a Xilinx Virtex-7
field-programmable gate array, i.e., XC7VX485T. As 8 datasets are handled in parallel, the 16 RAMs
are used and each has a depth of N/8. The adders, subtracter, and multipliers are designed to use
the same computation latency between our design and [7]. The synthesis results show our design
outperforms the design in [7]. Although our address module is a bit more complex than [7], the saving
of the extra permutation circuit gains resource and frequency efficiency.

Table 3. Comparison of the experimental results.

N Occupied Slices RAM Freq

PE Addr 1 Total (MHz)

[7]
256

623
152 1301 16 490

2048 315 1411 431
4096 350 1446 (dual) 415

Ours
256

450
287 995 16 493

2048 331 1274 483
4096 376 1334 (single) 483

1 The address control module.

Besides, as our PE can be designed to consume 0 cycle latency while at least 1 cycle latency is
needed in [7], single-port memory is used in our design while [7] uses dual-port memory. According
to [11], the area of single-port memory is about 56% less than the dual one. Therefore, our memory
requirement is less than [7].

5. Conclusions

This article presents a memory-based RFFT architecture based on constant geometry. The
proposed addressing mapping scheme meets the constraint of concurrent I/O, normal-ordered I/O,
in-place operation and parallel processing. When considering the continuous-flow operation, the
minimal computation cycle and the minimal memory requirements are achieved.

Author Contributions: conceptualization, M.Y., Z.M., F.Y., and Q.X.; methodology, M.Y., Z.M., F.Y., and Q.X.;
investigation, M.Y., Z.M., F.Y., and Q.X.; validation, M.Y., Z.M., F.Y., and Q.X.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cheng, M.H.; Chen, L.C.; Hung, Y.C.; Yang, C.M. A real-time maximum-likelihood heart-rate estimator
for wearable textile sensors. In Proceedings of the 2008 30th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 254–257.

2. Islam, M.; Biswas, T.; Saad, A.M.; Haque, C.A.; Yusuf, M.S.U. A Non-invasive Heart Rate Esitimation
Approach from Photoplethysmography. In Proceesings of the International Joint Conference on
Computational Intelligence, IJCCI 2018, Dhaka, Bangladesh, 14–15 December 2018; pp. 383–394.

3. Jo, B.G.; Sunwoo, M.H. New continuous-flow mixed-radix (CFMR) FFT Processor using novel in-place
strategy. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 911–919. [CrossRef]

4. Ayinala, M.; Lao, Y.; Parhi K.K. An In-Place FFT Architecture for Real-Valued Signals. IEEE Trans. Circuits
Syst. II Express Briefs 2013, 60, 652–656. [CrossRef]

5. Ma, Z.G.; Yin, X.B.; Yu, F. A Novel Memory-Based FFT Architecture for Real-Valued Signals Based on a
Radix-2 Decimation-In-Frequency Algorithm. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 876–880.
[CrossRef]

http://dx.doi.org/10.1109/TCSI.2005.846667
http://dx.doi.org/10.1109/TCSII.2013.2273841
http://dx.doi.org/10.1109/TCSII.2015.2435522


Electronics 2019, 8, 1042 10 of 10

6. Garrido, M.; Parhi, K.K.; Grajal, J. A Pipelined FFT Architecture for Real-Valued Signals. IEEE Trans. Circuits
Syst. I Regul. Pap. 2009, 56, 2634–2643. [CrossRef]

7. Mao, X.B.; Ma, Z.G.; Yu, F.; Xing, Q.J. A Continuous-Flow Memory-Based Architecture for Real-Valued FFT.
IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 1352–1356. [CrossRef]

8. Xing, Q.J.; Ma, Z.G.; Xu, Y.K.; A Novel Conflict-Free Parallel Memory Access Scheme for FFT Processors.
IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 1347–1351. [CrossRef]

9. Harper, D.T. Block, multistride vector, and FFT accesses in parallel memory systems. IEEE Trans. Parallel
Distrib. Syst. 1991, 2, 43–51. [CrossRef]

10. Sorokin, H.; Takala, J. Conflict-free parallel access scheme for mixed-radix FFT supporting I/O permutations.
In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 1709–1712.

11. Ayinala, M.; Brown, M.; Parhi, K.K. Pipelined Parallel FFT Architectures via Folding Transformation. IEEE
Trans. Very Large Scale Integr. VLSI Syst. 2012, 20, 1068–1081. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCSI.2009.2017125
http://dx.doi.org/10.1109/TCSII.2017.2683642
http://dx.doi.org/10.1109/TCSII.2017.2683643
http://dx.doi.org/10.1109/71.80188
http://dx.doi.org/10.1109/TVLSI.2011.2147338
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Signal Flow Graph
	Proposed Architecture
	Proposed Address Mapping Scheme
	Conflict-Free Property of the Bank Address Mapping Scheme
	Periodicity of the Row Address Mapping Scheme

	Processing Element

	Comparison
	Conclusions
	References

