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Abstract: The Internet-of-Things (IoT) has a security problem that has become increasingly significant.
New architecture of SM3 which can be implemented in loT devices is proposed in this paper.
The software/hardware co-design approach is put forward to implement the new architecture
to achieve high performance and low costs. To facilitate software/hardware co-design, an AHB-SM3
interface controller (AHB-SIC) is designed as an AHB slave interface IP to exchange data with the
embedded CPU. Task scheduling and hardware resource optimization techniques are adopted in
the design of expansion modules. The task scheduling and critical path optimization techniques
are utilized in the compression module design. The proposed architecture is implemented with
ASIC using SMIC 130 nm technology. For the purpose of comparison, the proposed architecture
is also implemented on Virtex 7 FPGA with a 36 MHz system clock. Compared with the standard
implementation of SM3, the proposed architecture saves the number of registers for approximately
3.11 times, and 263 Mbps throughput is achieved under the 36 MHz clock. This design signifies an
excellent trade-off between performance and the hardware area. Thus, the design accommodates the
resource-limited IoT security devices very well. The proposed architecture is applied to an intelligent
security gateway device.

Keywords: the cryptographic algorithm; SM3; AHB-SIC; optimization

1. Introduction

Information security plays a very important role [1,2]. Although IoT technology provides many
benefits, it also brings in various security threats such as the attack vulnerability of the hard-coded
security key and the user privacy information leaking problem [3,4]. A lot of previous work has been
done to mitigate and address potential security threats. For example, the static or dynamic analysis
of the firmware and the source code running on IoT devices is used to discover and cope with the
potential vulnerabilities for IoT devices [5]. An Interference Mitigation Risk Aware (IMRA) framework
is proposed to settle the problem of mitigating the interference imposed by the intruders so as to
protect the proper operation of passive RFID networks [6]. There are also studies focusing on designing
new lightweight algorithms or optimizing the original cryptography algorithms [7,8]. A novel tiny
symmetric encryption algorithm (NTSA) providing enhanced security for the transfer of text files
through the IoT network by introducing additional key confusions dynamically for each round of
encryption is proposed in [9]. In [10], a Function-based Access Control scheme in IoT (IoT-FBAC)
is presented, and it uses an Identity-based Encryption (IBE) scheme. The data masking and the
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encryption algorithm are utilized in many proposed solutions to protect sensitive information, but
these solutions reduce the availability of original data and increase the time delay [4].

In all the above-mentioned work, the hash function, which belongs to the one-way encryption
algorithms that compress the message with arbitrary length to the digest with fixed-length [11],
is usually applied. The typical hash algorithms include MD5, SHA-0, SHA-1, SHA-2, SHA-3 and
SM3 [12–16]. Since the SHA-0, SHA-1 and MD5 have not been secure enough, we will not discuss
them here. Table 1 shows a comparison between SHA-2, SHA-3, and SM3 [17]. In order to ensure the
security of the hash algorithm, the digest size should not be too short, as shown in Table 1.

Table 1. Comparison of Hash Algorithms (sizes and security are specified in bits).

Algorithms SHA-224 SHA-256 SHA-384 SHA-512 SHA3-224 SHA3-256 SHA3-384 SHA3-512 SM3

Message size <264 <264 <2128 <2128 − − − − <264

Block size 512 512 1024 1024 1152 1088 832 576 512
Digest size 224 256 384 512 224 256 384 512 256

Security 112 128 192 256 112 128 192 256 128

SM3 is a hash algorithm published by the Security Commercial Code Administration Office of
China in 2010 and recognized by the ISO/IEC international standard [11,18]. SM3 can be used for a
digital signature and identity authentication in different applications, and for the IoT application, SM3
should be designed to possess the characteristics of high performance, low power and low costs. The
structure of SM3 is similar to that of SHA256. Recently, low power and efficient implementation of
the hash algorithm have become an active topic. A software implementation of SHA-3 on the Intel
Core-i5 and Cavium Networks Octeon embedded platform is presented in the work of [19]. It has more
flexibility and uses less resources, but runs with a lower rate. instead of commonly used shift registers,
a compact hardware implementation of SM3 using SRAM to do message expansion is proposed in
article [12]. This method has higher security and speed, but uses more hardware resources and has
low flexibility. In article [16], four new different hardware architectures are proposed to improve
the performance of SHA-256, reducing the critical path by reordering some operations required at
each iteration of the algorithm and computing some values in advance. This work has a significant
improvement in performance, but it is not suitable for IoT devices because huge hardware resources
are required, and recently, the software/hardware co-design methods are adopted to implement the
hash function, which can achieve an excellent trade-off between performance and costs. For instance,
in article [13], authors adopt the software/hardware co-design method to implement SM3, which is
applied to the financial IC card. Moreover, the different optimized SM3 architecture and methods,
such as the 3-stage pipeline approach, the parallel implementation strategy, the optimized architecture
adopted the CSA adder, the implementation with the embedded ARM core, etc., are proposed [20–25].
Previous work promotes the development of SM3 VLSI architecture which has the characteristics of
small hardware area and low power consumption.

To balance the performance and hardware resources of a cryptographic system for IoT devices,
we adopt the software/hardware co-design implementation method to accommodate both the high
complexity of computation and flexibility of the algorithm. The optimized algorithm implementation
and the AHB-SIC interface IP are also proposed to make the design more efficient and easier-to-use in
IoT applications.

In this paper, the followings are made:

• New overall implementation architecture is proposed, which includes the embedded CPU,
AHB-SIC, the SM3 circuit module and other modules. The AHB-SIC is designed to easily convert
SM3 modules with the non-standard interface into the standard AHB slave interface. The SM3
circuit module is implemented by the software/hardware co-design method to enhance flexibility
and reduce the hardware resource.
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• Task scheduling and hardware resource optimization methods are applied in the expansion
process to reduce the hardware area and power consumption so as to improve overall performance
of SM3 implementation. The task scheduling and critical path optimization techniques are also
applied in compression module design to reduce time delay and improve efficiency. The identical
controller is shared in both expansion and compression modules to simplify the control circuit
and reduce the hardware overheads.

• The proposed architecture is implemented on FPGA and ASIC, and also applied to an intelligent
gateway. Combined with the other cryptographic modules, our proposed SM3 module can
realize the digital signature and identity authentication to protect the security of user data. This
framework can also be integrated into other IoT devices.

The rest of this paper is organized as follows: The mathematical background of SM3 is described
in Section 2. The system architecture of the design is presented in Section 3. The theoretical analysis
and experiment results are shown in Section 4. An example of IoT application of proposed design is
given in Section 5. There is a conclusion about this paper in Section 6.

2. SM3 Background
Given the message with length of l (l < 264

) bits, the SM3 hash algorithm maps it to produce a
message digest of 256 bits. The procedure consists of message padding and parsing, expansion and
compression [11].

2.1. Padding and Parsing

Message padding and parsing extend the length of the original message to an integer multiple of
512, and then parse the message into 512-bit blocks.

Suppose the length of message m is l bits. First, add the bit ′1′ to the end of the message, and then
add k bits ′0′, where k is the smallest non-negative integer that satisfies l + 1+ k = 448 mod 512. Then,
add a 64-bit bit string which is binary representation of length l. If k = 0, we simply need to pad a bit
′1′ and the binary length l. The length of the padding message m′ is a multiple of 512. After that, the
padding message is then parsed into n 512-bit blocks which are denoted as B(0), B(1), ..., B(n−1). The
processes of padding and parsing on disparate lengths of message are shown in Figure 1.
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Figure 1. Padding and parsing on different lengths of messages.

2.2. Expansion

This operation expands each block message B(i) to generate 132 words W0, W1, ..., W67, W′
0, W′

1,
..., W′

63 for the compression function (CF) as follows:

• Divide the message B(i) into 16 words W0, W1, ..., W15. The size of each word is 32-bit.
• FOR i = 16 to 67

Wi = P1(Wi−16 ⊕Wi−9 ⊕ (Wi−3 ⋘ 15)) ⊕ (Wi−13 ⋘ 7) ⊕Wi−6 (1)
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ENDFOR
In the Equation (1), ⊕ and ⋘ represent the bitwise XOR and ROL operations, respectively;
P1(X) = X⊕ (X ⋘ 15) ⊕ (X ⋘ 23) is the permutation function.

• FOR i = 0 to 63

W′
i = Wi ⊕Wi+4 (2)

ENDFOR

2.3. Compression

The compression is the core operation of SM3. The grouped message m′
= B(0), B(1), ..., B(n−1),

where n = (l + k + 65)/512. Iterate m′ as follows.
FOR i = 0 to n − 1

V(i+1)
= CF(V(i), B(i)) (3)

ENDFOR
In the Equation (3), V(0) is the 256-bit initial value IV, and the result of iterative compression

is V(n). Eight registers denoted as A, B, C, D, E, F, G, and H are used in the compression function
CF. The size of each register is a word. Let SS1, SS2, TT1, and TT2 be the middle variables, and the
iteration of the CF process is described as follows.

ABCDEFGH = V(i)

FOR j = 0 to 63

SS1 = ((A ⋘ 12) + E + (Tj ⋘ j))⋘ 7, SS2 = SS1⊕ (A ⋘ 12)

TT1 = FFj(A, B, C) +D + SS2+W′
j, TT2 = GGj(E, F, G) + H + SS1+Wj

D = C, C = B ⋘ 9, B = A, A = TT1, H = G, G = F ⋘ 19, F = E, E = P0(TT2)

ENDFOR

V(i+1)
= ABCDEFGH ⊕V(i)

(4)

The registers A to H are initialized with IV for the first message block, where IV = 7380166 f ,
4914b2b9, 172442d7, da8a0600, a96 f 30bc, 163138aa, e38dee4d, b0 f b0e4e. ∨, ∧ and ¬ represent the
bitwise OR, AND and NOT operations, respectively. The permutation function is represented as
P0(X) = X⊕ (X ⋘ 9) ⊕ (X ⋘ 17). The constant Tj and the Boolean functions FFj and GGj are given
in Table 2.

Table 2. The value of the constant and functions.

Value Range Tj FFj GGj

0 ⩽ j ⩽ 15 79cc4519 X⊕Y⊕ Z X⊕Y⊕ Z
16 ⩽ j ⩽ 63 7a879d8a (X ∧Y) ∨ (X ∧ Z) ∨ (Y ∧ Z) (X ∧Y) ∨ (¬X ∧ Z)

After computing the result of the last group, we obtain ABCDEFGH = V(n), and the final 256-bit
hash value is y = ABCDEFGH.

3. Proposed Architecture

3.1. Overall Implementation Architecture

In this section, overall implementation architecture, which includes the embedded CPU, AHB-SIC,
the SM3 circuit module and other modules as shown in Figure 2, is proposed. The embedded CPU is
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the master of this IoT SoC in which the software design is implemented. The structure of AHB-SIC
is simple and easy to use. The non-standard interface of the cryptographic module can be quickly
converted to the AHB slave interface, so as to realize the SoC design effectively. As the slave module
of proposed architecture, the SM3 circuit module consists of the expansion module, the compression
module, as well as the controller and the result module. In our design, the controller and the data
path are separated. The former is chiefly used to control the execution process of the circuit and
provide control signals. Composed of several sub-circuit modules, the latter mainly implements SM3
encryption functions, and the result module reads and outputs the result in the form of 32-bit. Besides,
the other modules cover RAM, ROM, and other cryptographic modules or interface modules.

Figure 2. The overall architecture of IoT SoC.

3.2. The AHB-SM3 Interface Controller

The data interaction between software and hardware is controlled by the AHB-SIC we proposed.
The AHB-SIC is composed of AHB Bus Interface Control Logic (BICL) and four function registers. In
our design, the master is the embedded CPU, and the slave is the SM3 circuit modules. Data transfer
between the master and the slave is through the AHB-SIC. The BICL is made up of control logic, the
address decoder, the data distributor and multiplexer. According to the different types of signals,
we design four kinds of function registers (the input register, the output register, the control register
and the status register) to realize the data interaction with SM3. The input signals of SM3 consist of
write control signal W, read control signal R and 512-bit input data DIN. The output signals of SM3
incorporate status signal STATE, finish signal FINISH, and 256-bit hash value DOUT. The block
diagram of AHB-SIC structure is shown in Figure 3.

Figure 3. The block diagram of AHB-SIC structure.
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The signals of the AHB bus include HADDR, HWDATA, HRDATA, HSEL and so on [26]. The
AHB protocol sequence under the basic transmission mode is shown in Figure 4. In the read mode,
once the master drives the address and HWRITE signals after the first rising edge, the slave will send
data on the second rising edge, and the master will sample the data on the third rising edge. While
in the write mode, the master drives the address and HWRITE signals after the first rising edge and
outputs the corresponding data on the second rising edge; the slave will sample the address and data
on the second and third rising edge, respectively.

(a)Read (b)Write

Figure 4. The AHB protocol sequence under the basic transmission mode. (a) Read; (b) Write.

BICL is designed based on AHB bus timing, which mainly implements the data transfer between
the master and four sorts of function registers. As seen from the Figure 3, the control logic reads
disparate signals on the AHB bus and generates control signals through internal logic to control the
address decoder, the data distributor and multiplexer. The four function registers are primarily used for
calculation, control, data interaction and the status flag, which can flexibly control the cryptographic
hardware modules and obtain their current status for software debugging. Finally, combining a 32-bit
low-power embedded CPU, we adopt the AHB-SIC to integrate the SM3 module into an SoC.

3.3. SM3 Implementation

3.3.1. Software/Hardware Co-Design

Before the design of the SM3 circuit, we firstly use C/C++ to implement SM3 on the platform of
CPU I7-8700k@3.2 GHz. Figure 5 shows the CPU time consuming of each part of SM3, and it is the
basic hotspot analysis result which is obtained via using the VTune Amplifier XE tool to list the most
active (most time-consuming) functions in our application [27]. As shown in Figure 5, the expansion
and compression operations occupy over 90% of the total run time. If we implement the expansion
and compression module in software, the encryption efficiency will be very low. Besides, considering
the variable length of message, we find it difficult to store whole message, and it will also consume
a lot of hardware resources if padding and parsing are designed in hardware. Thus, in our design,
the padding and parsing operations are implemented in software, and expansion and compression
operations are implemented in hardware. After the software/hardware partitioning, the resulting
architecture of the SM3 circuit can be determined.

Figure 5. The CPU time consuming of each part of SM3.
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3.3.2. Controller Design

A standard three-stage Finite State Machine (FSM) structure is adopted in the controller module
to generate and provide control signals (ctrl, f inish and countout signals) [28]. The three-stage FSM
structure can remove the glitch, which is more conducive to optimize the code and facilitate the user
to set appropriate timing constraints. The ctrl is the process state signal which contains four states:
idle, write, encryption and read.

In the idle state, if the input signal W is set to 1, SM3 enters the write state and writes data from
DIN to the data register. When the data encryption is completed or the last 32-bit data is read, f inish
will be set to 1. In this case, if R equals to 1, the module enters the read state and outputs the result
of the current operation in a 32-bit format. It should be noted that each time 512-bit data has been
encrypted or once the 256-bit result has been read, the state returns to be idle, and the initialization
operation is performed to ensure the precision of the data in the next encryption process. If R is equal
to 0, the module retains the current operation result and enters the idle state to wait for the next block
of data. Besides, countout is the output control signal of the counter which is used to control the
process of other modules, such as expansion, compression and the entire encryption iteration process.
The FSM state transition diagram is shown in Figure 6.

Figure 6. The FSM state transition diagram.

3.3.3. Expansion Module Design

For the part of expansion, the length of padding message m′ is assumed to be 512 bits. We analyze
the expansion module in the standard method first. Conventionally, the 32 bits divided message
W0, W1, ..., W15 are sequentially stored in 16 registers W0, W1, ..., W15 in 16 clock cycles. When the rising
edge of each cycle comes, a set of data is written into the corresponding register. Starting with the
17th clock, we calculated Equation (1) given in Section 2 when the rising edge of the clock comes, and
a new register W16 would be set to store the calculated value. That is, the new register W16 is set at
the 17th clock and its value is calculated. Until the 68th clock, the W67 is updated. After completing
the calculation of Equation (1) given in Section 2, we obtain the 68 words W0, W1, ..., W67 are obtained,
which takes 68 clock cycles. If we calculate W′

j after calculating all the Wi (i = 0, 1, ..., 67) in order, 64
new registers are used to store W ′

0, W ′
1, ..., W ′

63 and 64 clock cycles are consumed. At this point, a
total of 68 + 64 = 132 clock cycles and registers are adopted.

In order to reduce the hardware resources and enhance the performance of the SM3, task
scheduling and register optimization are adopted in this work. The proposed design of expansion is
shown in Figure 7. In line with the principle analysis of the SM3 algorithm, it can be known that we
can get the data required for the second 64-round iterations directly instead of waiting until the first
68-round iterations are completed. It only needs to start computing after the 4th round iteration of
the first 68-round iterations. That is to say, the second 64-round iterations can be nested into the first
68-round iterations and begin with its fifth iteration. In this way, merely 68 rounds of iterations or
68 cycles are required. Since the register will bring a lot of areas and power consumption overheads,
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in order to further reduce the power consumption, the register multiplexing method is adopted to
optimize and reduce the number of registers.

…

…

… …

<<<7

<<<15

P1

…

CF

Figure 7. The proposed design of expansion.

For updating Wi, we still use the registers W0, W1, ..., W15 to store the expanding message m′, and
then set a register W to store the current value Wi. The value of Wi is then assigned to Wi−1 after each
round of calculation. For example, after calculating W16, the result is directly assigned to W . Then, the
values of all the registers are assigned to the previous register when W17 is computed. The value of
W is assigned to W15; the value of W15 is assigned to W14; the value of W0 is discarded. This method
can reduce the original 68 registers to merely 17 registers (W0, W1, ..., W15, W) without affecting the
calculation results. Since not all the Wi is necessary to be retained, some intermediate variables are not
saved. Y and P1 are directly involved in the calculation as intermediate variables, and do not need to
be saved in the register. For updating W′

j, it can be seen from the Equation (2) given in Section 2 that
the calculation result of W′

j is only related to Wi. After the registers are simplified in the previous step,
Wi simply keeps the current calculated value and value of 16 adjacent words. Therefore, the calculation
of W′

j must be performed when the corresponding Wi is reserved. For example, when the value of
W′

0 is calculated, W0 and W4 are required. The value of W4 is assigned at the 4th cycle, and in the next
cycle, the value of W5 is read, and W′

1 can be calculated. At the 15th cycle, the values of W0, W1, ..., W15

are all read, and the value of W′
11 is calculated. Starting from the 16th cycle, we find that Wi begins to

store the result in the register of W . The calculation of W′
j only needs to use the value of Wj and Wj+4

calculated by the current clock cycle. In this case, the calculated value (Wj+4) of the current clock cycle
is always stored in the register W . Thus, we adopt the register reduction method to obtain Wj. Starting
from the 16th clock cycle, we find that the values of W0, W1, ..., W15 will shift to the left every cycle.
From the beginning of W′

12, each subsequent calculation of W′
j is W′

j = W12 ⊕W (j ⩾ 12).

3.3.4. Compression Module Design

The compression module is the core of SM3, and its main functions are the implementation of the
iteration and compression which produce most of the critical path delay. The iterative process of the
SM3 covers logical operations such as XOR, ROL, and addition operations (ADD). The delay of XOR
or ROL is almost negligible, while the addition operation has a great delay effect [29]. Hence, during
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each iteration, the maximum number of serial additions determines the size of delay. We define the
calculation path with the largest number of serial addition operations as the critical path. In order to
reduce the critical path delay and the number of registers, we adopt the task scheduling and critical
path optimization. The proposed design of compression is shown in Figure 8.

Aj-1 Bj-1 Cj-1 Dj-1 Ej-1 Nj-1Mj-1Hj-1Gj-1Fj-1

Aj Bj Cj Dj Ej NjMjHjGjFj

Tj

SS1

SS2

+
+

<<<7

<<<12
FFj

<<<j

+
+

+
Wj+1

’

TT1

GGj

Wj+1
++

P0 +

<<<9

<<<19

TT2

Figure 8. The proposed design of compression.

As seen from Figure 8, the calculation paths of A and E require five additions to complete.
Therefore, the calculation paths of A and E are the critical paths. The total delay of one iteration
is the sum of the delays of five additions. Obviously, the compression process requires a 64-round
loop iteration, which consumes another 64 cycles and the total delay will be large. In our design,
two novel registers M and N are added to reduce one addition operation of A and E, and we
let Mj = Dj +W′

j+1, Nj = Hj +Wj+1. Set the initial value of A, B, C, D, E, F, G, H, M, and N to be
A−1, B−1, C−1, D−1, E−1, F−1, G−1, H−1, M−1, and N−1, respectively. Since the intermediate variable M
and N are introduced, the initial addition operations of M−1 = D−1 +W′

0 and N−1 = H−1 +W0 need to
be implemented before the start of the iterative process. Thus, one clock cycle is consumed before the
compression iteration. It is noteworthy that the calculation of Mj and Nj is parallel with that of Aj and
Ej in the critical path. This parallel computing will expedite the compression in SM3. The compression
optimization algorithm is shown in Figure 9.

Through analyzing Equation (4) given in Section 2, we figure out that the calculation of TT1

only needs the value of W′
j in the current clock cycle. Thus, W′

j and TT1 can be simultaneously
calculated. In other words, compression can be nested within the expansion process in advance and it
can start with the sixth iteration of expansion, which finally adds just two more clock cycles. Besides,
by task scheduling optimization, the expansion and compression modules can share the control signals
generated by the same controller, which reduces the complexity and overheads of the control circuit.
The result module mainly realizes the parallel conversion output from the 256-bit to 32-bit format and
controls the conversion process by the counter, which needs 8 cycles; after completing the conversion,
we find that finish = 1, indicating that the reading is completed and the next message can be encrypted.
In the end, it takes only 70 cycles to complete an expansion and compression operation.
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Figure 9. The compression optimization algorithm.

4. Analysis and the Experiment Result

In this section, we conduct the experiments and analyze our proposed implementation including
time and resource consumption analysis, computation amount analysis, analysis of comparison
between pure software and other existing work.

4.1. The Setting and Implementation of the Experiment

In the experiment, the proposed architecture of SM3 described above is implemented with the
C and Verilog-HDL language. The environment of Vivado 2016 and the platform of Xilinx Virtex 7
xc7vh580 are adopted to implement the architecture of SM3. Besides, the hardware module of SM3 is
also synthesized by DC with the SMIC 130 nm technology process. The performance evaluation of
SM3 is based on the area, power and throughput.

Firstly, we verify the function of proposed architecture on FPGA. The input message vector is set
to be ’abc’ which is the published example test case in [11]. The performance, power and the area of
this design on FPGA are achieved in Section 4.2.

Secondly, through using the Verilog Compiled Simulator, we can obtain the result data and the
waveform to check the validity of this design. The simulation results are shown in Figure 10 and
Figure 11, showing the correctness of this design.

Figure 10. The simulation result of this design.
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Figure 11. The waveform result of this design.

Thirdly, we process the synthesis on DC with SMIC 130 nm technology. The slack, performance,
power and the area of this design are acquired and shown in Section 4.2.

In order to further indicate the efficiency of our proposed design, we implement this design by
pure software and the software/hardware co-design method on FPGA. Besides, the system clock is
normalized to be 36 MHz, and the time consuming is shown in Figure 12.

After conducting the experiment and obtaining the result, we analyze the time and resource
consumption, computation amount, comparison with pure software and other existing work to support
our design.

4.2. Time and Resource Consumption Analysis

We analyze the time consumption and hardware resource consumption of our proposed design
in theory first. Before task scheduling and register optimization, the expansion module requires 132
clock cycles to complete two iterations. The compression module requires a 64-round loop iteration
and consumes another 64 cycles so that 132+ 64 = 196 cycles are consumed. If the strategy of register
multiplexing has not be adopted, the expansion module requires 132 32-bit registers to store the 132
intermediate variables, and the compression module requires a total of 16 32-bit registers. Eight
registers are applied to store the initial value of IV or the result of the previous 512-bit data block B(i),
and the other 8 registers are used to store the currently obtained 256-bit data. Thus, 148 32-bit registers
in total are required. After task scheduling and register optimization, only 70 cycles are needed to
accomplish the expansion and compression. Besides, the expansion module needs 18 32-bit registers
to store 16 32-bit intermediate data and the current two 32-bit data Wj, W′

j. The number of registers of
the compression module is 18. The 16 32-bit registers are still needed, and the other 2 registers M, N
are added to reduce the critical path delay. Therefore, 36 32-bit registers in total are required.

Hence, if the time overhead of other circuits is not considered, the theoretical performance will be
improved by nearly 2.8 times, and the number of registers will fall by around 3.11 times. The theoretical
area overhead will decrease and eventually the power consumption will also be significantly reduced.
In addition, after critical path optimization, from the DC simulation, we set the clock period to 7 ns
and the input/output delay to 2 ns. The data required time is 6.90 ns, and the data arrival time is
5.59 ns. The slack is improved by 1.31 ns. The consumption comparison between the optimized and
non-optimized (standard) method is shown in Table 3.

Table 3. The consumption comparison between the optimized and non-optimized method.

Operation Clock Cycles Register Additions of the Critical Path Slack

Non-optimized 196 148 5 0.0
Optimized 70 36 4 1.31

4.3. Computation Amount Analysis

Since the main operations of SM3 are concentrated on the compression function, we provide
some theoretical analysis of the computational complexity. In this work, we set LOAD and STORE to
represent the operations of the data load and the store, respectively. Before optimization, we need to
load and store W0 to W15 one time severally. From W16 to W67, each Wi consumes 5 LOAD, 1 STORE,
6 XOR and 4 ROL; then, we calculate each W′

i(i = 0, 1, ..., 63), and find that 2 LOAD, 1 STORE and
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1 XOR are needed. Eventually, each iteration of compression needs 3 LOAD, 12 STORE, 8 ADD, 3
XOR, 8 ROL, 1 FFi and 1 GGi function. Here the FFi function executes 2 XOR (i = 0, 1, ..., 15) or 3 AND
and 2 OR (i = 16, 17, ..., 63), and the GGi function executes 2 XOR (i = 0, 1, ..., 15) or 2 AND, 1 OR and 1
NOT (i = 16, 17, ..., 63). Based on the above theoretical analysis, the computation amount of a complete
compression function is listed in Table 4.

After optimization, since the calculation of W′
j and Wj+4 is simultaneous, only 12 LOAD and 12

STORE are consumed in the iteration of W0 to W15. From W16 to W67, each Wi consumes 5 LOAD, 1
STORE, 6 XOR and 4 ROL; W′

j is also simultaneously calculated with TT1, and there is no extra LOAD
and STORE consumption of W′

j. Tj is a constant so that (Tj ⋘ j))⋘ 7 can be calculated and stored in
advance. Thus, an optimized compression of each iteration needs 2 LOAD, 2 STORE, 8 ADD, 3 XOR, 5
ROL, 1 FFj and 1 GGj. Table 4 shows that the optimized compression function reduces the times of
LOAD, STORE and ROL. In theory, the optimized algorithm can improve the run time by 28.9%.

Table 4. The computation amount of the compression function.

Operation LOAD STORE XOR LOAD ADD AND OR NOT Total

Non-optimized 596 900 632 720 512 240 144 48 3792
Optimized 400 192 632 528 512 240 144 48 2696

4.4. Comparison with Pure Software

In order to test the performance of the SM3 and AHB-SIP, we compare the time consumption
between the pure software design of SM3 and our software/hardware co-design of SM3. Let input
messages have different lengths, and we conduct six comparative experiments. The time consumption
on FPGA under the 36 MHz clock is shown in Figure 12, where the blue line indicates the time required
by the pure software method, and the red line indicates the time required by the software/hardware
co-design method.

Figure 12. Time consumption on FPGA.

We can see from Figure 12 that when the message is less than 512 bits, the speed of our method
is 6.8 times faster than that of the pure software method. Since padding and parsing operations are
implemented by the CPU, and these two steps only need to be done once, the computing efficiency
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will be further increased with the length of message increasing. In theory, the computing speed can be
18.7 times faster than that of pure software.

In our experiment, the system clock frequency F = 36 MHz, which meets the requirement of low
power applications. The throughput of SM3 is calculated by Equation (5):

VSM3 =
F × L

T
(5)

where L is the length of each block of the message and T is the clock period for one round of SM3
encryption. The ASIC implementation results are shown in Table 5. The DC synthesis results reflect
that the area of SM3 hardware is 6036 gates and its throughput can be up to 263 Mbps.

4.5. Comparison with Other Related Work

We then compare our proposed architecture with other state-of-the-art hash architecture. We firstly
discuss some state-of-the-art techniques. In [20], a SM3 IP design method with the high throughput
rate is proposed. The 3-stage pipeline which shortens the critical path is adopted in this method,
and the 64 round calculation is expanded to improve the performance. For the implementations
reported in [21], the authors propose a parallel implementation strategy to reduce the delay. This
method is easy to control, but throughput and efficiency are not very high. In [22], the Keyed-Hash
Message Authentication Code and Secure Hash Algorithm 256 (HMAC-SHA256) is implemented, and
a Trust-Based system that identifies the malicious nodes and differentiates them from trusted nodes is
proposed to detect untrusted nodes. This solution is implemented in software and its throughput is
not reported. In the work of [23], two different attacks on SM3 are introduced. The authors mainly
studied the improvement of the resistance to attacks, but the internal details of the architecture were
not reported, and thus we only discuss and compare the related implementation approaches. In [24],
a Carry Save Adder (CSA) was adopted to optimize the critical path, and a dual-channel parallel
adder was proposed to achieve higher throughput. In [25], authors combine the implementation with
the ARM processor to enhance the throughput. Because of lack of detailed data in [21–23], no direct
comparison can be made with the work.

As seen from Table 5, several different implement approaches of the hash algorithm are provided,
and the results indicate that the SHA-3 design in [30] only requires 886 gates while the power and
throughput are worse than ours. In [20], the proposed implementation has extremely high throughput
while the area is also very large. The result shows that the throughput of our design is 1.14 times
than that of design in [24] under the normalized frequency. Compared with the compact architecture
implementation in [12], the saved areas with our proposed architecture are approximately 37%. In [31],
the shift registers instead of the SRL are used for message expansion since the SRL is not suitable to
ASIC. The compact 8-bit SHA-256 architecture in [32] has a smaller area, but the power is higher and
throughput is lower compared with our architecture. It is worth noting that, the area of AHB-SIC is
only 0.072 mm2. The results indicate that our proposed implementation achieves an excellent trade-off
between performance, the area and power under the normalized frequency.
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Table 5. SM3 hardware performance comparison on the ASIC platform.

Design Platforms Frequency (MHz) Clock Cycles Areas (Gates) Power (mW) Throughput (Mbps)

This work 0.13-µm 36 70 6036 1.24 263

SHA-3 [30] 0.04-µm 28.8 3329 886 4.87 14

SM3 [20] 0.18-µm 200 1 8800k - 105k

SM3 [24] 0.065-µm 526.3 80 5370 - 3368

SM3 [12] 0.13-µm 250 464 8277 - 276
0.13-µm 200 68 12,956 - 1506

SM3 [31] 0.13-µm 216 68 9458 - 1619

SHA-256 [32] 0.13-µm 102 1120 9036 3.06 47

The proposed SM3 circuit structure is also implemented on the Vertex 7 FPGA platform, which
shows a low power and efficient cryptographic processing performance. As shown in Table 6, there
are seven different baselines compared with our proposed architecture. The SHA-256 architecture
in [33] uses a three-stage pipeline implementation. The design without masking and with masking
consumed 7219 and 10,918 logic cells respectively. The throughput is close to our method under the
normalized frequency, but the area is larger than that of our method. In [25], the throughput of this
design is only 1.09 times than that of our design while the area is 2.16 times than that of our proposed
implementation. The architectures proposed in [31] are divided into the forms of compact and high
throughput including the architecture of C-SM3, T-SM3 and Standard-SM3. The result shows that
three architectures have a high performance, but 7.53 additional cycles are consumed. There are only 2
additional cycles consumed in our proposed method. In [34], a new SHA-3 architecture is proposed,
and it simply consumes 56 slices of the area, but two extra BRAM are adopted, and the throughput
of SHA-3 is not very efficient. Thus, compared with the above baseline architectures on FPGA, our
proposed architecture also shows an excellent trade-off between performance and the area.

Table 6. SM3 hardware performance comparison on the FPGA platform.

Design Platforms Frequency (MHz) Clock Cycles Areas Throughput (Mbps)

This work Virtex-7 36 70 808 Slices 263
Virtex-7 50 70 808 Slices 366
Virtex-7 100 70 808 Slices 731

SHA-256 [33] Cyclone II 116.24 68 7219 Logic Cells 875.22
Cyclone II 87.08 68 10,918 Logic Cells 655.66

SM3 [25] ZYNQ-7020 167.8 64 1743 Slices 1342

Standard-SM3 Virtex-5 214 7.53 384 Slices 1611
C-SM3 Virtex-5 215 7.53 234 Slices 1619

T-SM3 [31] Virtex-5 362 7.53 328 Slices 2726

SHA-3 [34] Virtex-5 372 846 56 Slices + 2 BRAM 225

5. An Example of IoT Application of SM3

Recently, with the rapid growth of IoT devices, the related applications of IoT have been widely
researched [35–37]. For the SM3 algorithm, few IoT applications have been proposed. In [13], the
design of SM3 reportedly can be applied to the IC card, but it did not provide the implementation in
given application. In this section, we give an example of our proposed architecture implementation
in the intelligent gateway. Since the costs of different IoT devices and applications are disparate, it
is difficult to set a cost evaluation criterion for various scenarios. The cost considered here is that of
proposed design of SM3 only. Using the integrated SM3 module, we implemented the digital signature
and identity authentication to avoid the attacks and to protect the user data from being tampered with.
The IP network topology of the given intelligent security gateway is shown in Figure 13.
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Figure 13. The IP network topology of the intelligent security gateway.

In Figure 13, the intelligent security gateway is a KNXnet/IP router. Generally, the security of
IoT communication is guaranteed by a special physical medium and the modulation mode, while the
IP is the conventional communication medium. When IoT devices use the IP to conduct large-scale
networking, security issues are particularly important. The data transferring between gateways and
devices is often the plaintext. It is easy to obtain the control commands of IoT devices through network
capture, so as to conduct intrusion control. The function of the intelligent security gateway is to
connect all IoT devices through the IP and provide secure communication between gateways. A crucial
measure to ensure the security in this gateway is embeding the SM3 module. The AHB-SIC is a very
convenient data transfer medium of master and slave devices.

In this application, the security chip embedded in the gateway also integrated with the asymmetric
cryptographic module, which can be combined with our proposed module to realize the digital
signature and verification. Our proposed design mainly achieves the message digest during the
process of the signature. As shown in Figure 14, if the device connected with the gateway needs
to authenticate the identity, we can launch the SM3 module to generate the message digest as the
ciphertext and input the signature module. If there is no need for authentication, we only use the SM3
module to encrypt the plaintext and transfer the data to ensure the communication channel security.

Figure 14. The preprocess flow of the digital signature in the security chip.

Figure 15 shows the application scenario of this intelligent security gateway. All devices need
to be authenticated when we access or communicate with the gateway, and all data is encrypted to
guarantee non-repudiation and integrity.
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Figure 15. The application scenario of the intelligent security gateway.

6. Conclusions

The SM3 with efficient hardware and low-power architecture is proposed in this paper. The
AHB-SIC is designed to quickly convert the non-standard interface of the cryptographic module into
the AHB slave interface. The software/hardware co-design implementation approach is adopted
to improve the overall performance and to reduce the hardware consumption. Specifically, the
padding and parsing operations are implemented in software, while the expansion and compression
operations are implemented in hardware. In the expansion module, task scheduling hardware resource
optimization techniques are applied to cut down hardware consumption and to increase overall
performance of SM3. In the compression module, the task scheduling and critical path optimization
techniques are adopted to reduce delay time and enhance overall performance. Compared with the
standard implementation of SM3, the proposed architecture reduces approximately 3.11 times of the
total registers with 263 Mbps throughput achieved. This design shows an excellent trade-off between
performance and the area when compared with previous work. The proposed architecture can be
readily applied to the IoT devices.
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