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Abstract: Alzheimer’s is a chronic neurodegenerative disease that frequently occurs in many people
today. It has a major effect on the routine activities of affected people. Previous advancement in
smartphone sensors technology enables us to help people suffering from Alzheimer’s. For people in
the Muslim community, where it is mandatory to offer prayers five times a day, it may mean that they
are struggling in their daily life prayers due to Alzheimer’s or lack of concentration. To deal with
such a problem, automated mobile sensor-based activity recognition applications can be supportive
to design accurate and precise solutions with an objective to direct the Namazi (worshipper). In this
paper, a Salah activities recognition model (SARM) using a mobile sensor is proposed with the aim to
recognize specific activities, such as Al-Qayam (standing), Ruku (standing to bowing), and Sujud
(standing to prostration). This model entails the collection of data, selection and placement of
sensor, data preprocessing, segmentation, feature extraction, and classification. The proposed model
will provide a stepping edge to develop an application for observing prayer. For these activities’
recognition, data sets were collected from ten subjects, and six different features sets were used to
get improved results. Extensive experiments were performed to test and validate the model features
to train random forest (RF), K-nearest neighbor (KNN), naive Bayes (NB), and decision tree (DT).
The predicted average accuracy of RF, KNN, NB, and DT was 97%, 94%, 71.6%, and 95% respectively.

Keywords: Salah activities recognition; posture recognition; accelerometer sensor; human activity
recognition; classification

1. Introduction

Alzheimer’s disease (AD) is a disease associated with dementia, in which the patient suffers
from prolonged memory loss due to the death of brain cells. Today, an increasing proportion of
the population is suffering from AD. There are three stages of AD: early, middle, and late. In the
early stage of AD, patients are normally affected through forgetfulness, and losing or misplacing
things. For example, a patient may go downstairs for something and then forget why they went there.
Treatment costs can be huge to help these patients to carry out their daily activities. According to
a survey in the United States, the ratio of people with Alzheimer’s varies by age group. The disease
starts between the ages of 65 and 69 and affects 5% of the population. This ratio continues to increase
with age, reaching 37% for men and 35% for women aged 85 or over [1]. These patients require extra
care and help from relatives and caregivers to perform their routine activities. Their disability tends to
put extra costs on their care to monitor their condition. Moreover, given today’s hustle and bustle and
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having so many tasks to juggle in our everyday lives, it is very easy to forget tasks and things in a very
normal manner. Even healthy people can experience memory loss in normal routine life.

This is an era of cost-effective technological advancements. For instance, today, mobile phones
are commonly used for the recognition of human activities because they usually have incorporated
embedded sensors [2]. In particular, among all those sensors, the accelerometer is considered the most
feasible to recognize certain human activities [3]. Consequently, there has been a tremendous increase
in the use of smartphone sensors to develop healthcare applications, mainly because they are more
convenient and economical to be used for research purposes [4]. Many sensor-based applications
have been used as medical aids by practitioners and have been used to diagnose patients for various
medical reasons, including their heartbeat, motion capture, and blood pressure. These apps have also
been used economically to help to monitor the activities of AD patients [5]. They can store patterns of
movements and keep track of activities performed and missed, such as eating, opening cupboards,
going upstairs, and wandering aimlessly. Sensor-based healthcare applications can help mild AD
patients by prompting reminders as well as serving as an alarm for onlookers and relatives of extreme
AD patients in case of a sensitive situation, such as falling down the stairs, going to a prohibited area,
or skipping meals and/or medicine for a set time [6].

Rapid advances in sensor technology have helped physicians to raise the standard of healthcare
services to a great extent. They bring more cost-effective, robust, and accurate activity recognition
systems. The emergence of intelligent equipment will help in providing quality surveillance and
reminding facilities. Therefore, advanced machines with sensor support can provide extensive
healthcare and treatment services to improve life quality. Low-cost multisensors-based smartphones
are easily available in the market, through which we can easily recognize the activities. Moreover,
smartphone devices have become an important part of everyone’s life [7].

Offering prayers (Salah) is a mandatory task for Muslims around the world, and it is compulsory
to perform five times a day (Holy Book Quran): Fajar (dawn, before sunrise), Duhur (afternoon prayer),
Asr (late afternoon prayer), Maghrib (evening prayer (right after sunset)), and Isha (night prayer).
Around 1.6 billion Muslims throughout the world perform these prayers five times a day. A complete
prayer consists of many Rakat with prescribed movements, and each Rakat refers to a single unit of
Islamic prayers with the involvement of such activities (standing (ST), standing to bowing (STB),
and standing to prostration (STP)). In each prayer, every person must fulfill a mandatory count of
Rakats. For example in the Fajar prayer, four Rakats need to be performed: first two Sunnah Rakats
and then two Farad Rakats. If the person forgets to perform a Rakat between the two Rakats, the
Salah will not be complete. However, some people may forget the Rakats in their prayer. Why is this
forgetfulness happening? In today’s busy work environment, it is very hard to keep attention and
focus on something. Thus, forgetfulness is very common. Similarly, it is difficult to keep track of the
Rakat parts, in terms of which one was missed and done. This forgetfulness is also associated with
early-stage Alzheimer’s disease. Hence, these patients need special care to help them to complete
their prayer. From this perspective, an Alzheimer’s patient or a person with a lack of concentration in
prayer can get support with a Salah activities recognition model (SARM)-app based intervention for
correction while offering their prayers without any confusion. Thus, the current study is focused on
developing a model which would be used to develop an application for the assistance of AD patients
to perform the prayer.

Three main steps collectively allow one to complete Rakat: (i) standing, (ii) bowing, (iii) prostration
(Sujud), which in Arabic are called Al-Qayam, Ruku, and Sujud, respectively (as can be seen in Figure 1).
In the present study, we mainly focused on attempts to recognize three set of activities: standing
(ST), standing to bowing (STB), and standing to prostration (STP). Correctly performing these three
activities can give an indication of correctly completing the Rakats. Thus, after the completion of the
Rakats, the user is able to count their activities to ensure the Rakats are completed. If someone is in
doubt after performing prayer activities, they will be able to perform them again. In the first stage,
we recognized the activities offline. Here, we collected the data with an Android mobile phone and
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then performed further operations on the computer to monitor performance using an optimal window
length and features of minimum complexity and performed comparisons of three machine learning
algorithms in terms of their performance.

(a) (b) (c)
Figure 1. Three main activities in each Rakat: (a) Al-Qayam (Standing); (b) Ruku (Standing to Bowing);
(c) Sujud (Standing to Prostration).

Our presented model’s main contributions are:

• To recognize count the three important activities in a Rakat of Qayam (ST), Ruku (STB), and Sujood
(STP) in prayer of an Alzheimer’s patient using six features with low complexity on different
window sizes;

• A model that would be used to implement the mobile-based application, which directs the
Namazi (worshipper) to perform their prayer according to the code of Islam without any human
intervention needed;

• With correct counting and recognition of activities, an Alzheimer’s patient can be corrected during
prayer with the belief of no mistake or confusion in the prayer on completion.

2. Related Work

The human activity recognition concept was first introduced in the 1990s. In the first phase,
video-based recognition was studied [8,9]. Many applications for activity recognition have been
introduced over the years, such as for healthcare, care of the elderly, to monitor daily living activities,
and in security systems [10,11]. In vision-based activity recognition, users’ data are gathered from
a video and operations are performed to make decisions on video collection frames. Issues with
users’ privacy, heavy resource utilization, and limitations of monitoring have shifted the attention
of researchers away from vision-based recognition to sensor-based recognition. There are two kinds
of sensors used: external sensors and mobile-based sensors. A smartphone has a number of built-in
sensors, such as an accelerometer, gyroscope, magnetometer, and GPS. Having a low manufacturing
cost, along with multiple features, powerful communication capabilities, and fast processing speed
make a smartphone very beneficial and useful for activity recognition.

Previously, a lot of work has been done in human activity recognition using embedded sensor
technology [1,12,13]. However, limitations exist as researchers focused less on complex activities as
compared to simple activities. Therefore, it is still required to explore more human activities with
fewer resources utilization to make people’s daily lives easier. To support and interpret our idea
in detail, we studied the previous work in human activity recognition based on Android mobile
phones. Details of the sensors and classifiers used in the previous works are elaborated on in Table 1.
Many researchers worked on exercise activities recognition, i.e., walking, running, walking downstairs,
etc., [14] and used accelerometer sensors [15,16]. In [16], the author studied six different human
activities, namely, slow walking, fast walking, dancing, running, going up stairs, and going down
stairs, using six different classifiers and reported achieving an accuracy rate of 91.5%.
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Table 1. Studies on recognized activities using an Android mobile phone.

No Studied Activities Sensor Type Machine Learning Classifier Source

1 Ac1–Ac13 Acc SVM, ANN [17]
2 Ac0–Ac2, Ac4 Acc NB, DT, Decision Table [15]
3 Ac0–Ac3, Ac4–Ac6, Ac13, Ac15–Ac20 Acc, LA, Gyro NB, KNN, DT [18]
4 Ac0, Ac5, Ac6, Ac21, Ac22 Acc MP, SVM, RF, SL, LMT [16]
5 Ac1–Ac6 Acc SVM [14]
6 Ac0 –Ac2, Ac4, Ac14, Ac24 Acc KNN, QDA [19]
7 Ac1, Ac4–Ac6, Ac13 Acc, Gyro, light DT [20]
8 Ac0, Ac4, Ac5 Acc DT (C4.5) [21]
9 Ac0–Ac2, Ac4 Acc NB, KNN [22]
10 Ac0, Ac4, Ac23, Ac24 Acc NB [23]
11 Ac0, Ac4, Ac25–Ac27 Acc, GPS, Microphone Linear Regression, LR [24]
12 Ac0, Ac4, Ac13, Ac28 Acc SVM [25]
13 Ac0, Ac1, Ac4–Ac6, Ac29 Acc ANN [26]
14 Ac0–Ac2, Ac4–Ac6, Ac14, Ac37, Ac38, Ac29–Ac31, Ac24 Acc SVM, GMM [27]
15 Ac4–Ac6, Ac13, Ac14 Acc SVM, K-mediods, K-means [28]
16 Ac0–Ac3, Ac24, Ac32–Ac36 Acc, Gyro MP, NB, BN, Decision Table, BFT, K-star [29]
17 Ac4–Ac6, Ac13, Ac28 Acc, Gyro KNN, RF, SVM [30]
18 Ac0, Ac2, Ac4–Ac6 Acc ANN [31]
19 Ac0–Ac4, Ac6, Ac28 Acc, Gyro, Light, MM, sound level data NB, KNN, ANN, SVM, DT, RF [32]
20 Ac0, Ac1, Ac4–Ac6, Ac28 Acc ANN [33]
21 Ac0–Ac2, Ac4–Ac6 Acc, GPS, Gyro, MM NB, SVM, ANN, KNN, LR, RBC, DT [34]

Activities: Ac0 = Running, Ac1 = Standing, Ac2 = Sitting, Ac3 = Lying, Ac4 = Walking, Ac5 = Walking Upstairs, Ac6 = Walking Downstairs, Ac7 = Standing-to-Sitting,
Ac8 = Sitting-to-Standing, Ac9 = Sitting-to-Lying, Ac10 = Lying-to-Sitting, Ac11 = Standing-to-Lying, Ac12 = Lying-to-Standing, Ac13 = Jogging, Ac14 = Riding a Bike, Ac15 = Eating,
Ac16 = Drinking, Ac17 = Smoking, Ac18 = Biking, Ac19 = Typing, Ac20 = Writing, Ac21 = Slow Walk, Ac22 = Fast Walk, Ac23 = Still, Ac24 = Driving, Ac25 = Stationary, Ac26 = Sleep,
Ac27 = Voice, Ac28 = Jumping, Ac29 = Hopping, Ac30 = Watching TV, Ac31 = Vacuuming, Ac32 = Climbing, Ac33 = Cleaning kitchen, Ac34 = Cooking, Ac35 = Washing Hands,
Ac36 = Watering Plants, Ac37 = Elevator up, Ac38 = Elevator down; Classifiers: RF = Random Forests, KNN = K-Nearest Neighbors, LMT = Logistic Model Tree, MP = Multilayer
Perceptron, BN = Bayesian network, LR = Logistic Regression, BFT = Best-First Tree, RBC = Rule Based Classifier, DT = Decision Tree, SVM = Support Vector Machine, ANN = Artificial
Neural Network, GMM = Gaussian Mixture Model; Sensors: Acc = Accelerometer, Gyro = Gyroscope, GPS = Global Position System, MM = Magnetometer, LA = Linear Acceleration.
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Two studies were based on transition activities, i.e., going from standing to sitting, sitting to
lying [17,35]. In [17], the author recognized 12 different human activities using mobile sensors with
the help of Artificial Neural Network ANN and Support Vector Machine SVM. The accuracy of simple
activity recognition is high compared to complex human activities. In one study [35], the authors
examined many supervised and unsupervised classifiers using three wearable inertial sensors on
three body positions to recognize different daily living activities. In this work, 12 different activities
with some transition activities were introduced, and the results reported high accuracy for the simple
and transition activities. To the best of our knowledge, very few studies have been done on complex
activities’ recognition. In [18], the author recognized different simple and complex activities using an
accelerometer and gyroscope. They reported a 2 s window was enough to recognize simple activities
(repetitive activities), like walking and running, but to recognize complex activities (less repetitive),
i.e., eating, drinking, and talking, the 2 s window was not enough. Therefore, they used a fusion
of sensors data and performed experiments on different window sizes from 2 to 30 s and reported
achieving a high accuracy by increasing the window size. However, they performed analysis on
a specific and limited age of people, namely, 10 physically fit participants (age range: 23–35 years
old), which would make the results biased for unhealthy people and an older age group. According
to [27], the feature selection, feature extraction, and the classification algorithm play important roles
in achieving the optimum performance. They recognized many simple and complex activities (see
Table 1) using kernel discernment analysis with SVM and found an average accuracy of 94%. Similarly,
according to the authors of [29], the recognition accuracy of complex activities is poor compared to
simple activity recognition. In this work, the maximum accuracy of complex activities was achieved
(52% to 72%) by increasing the window size from a single instance to 40 instances. However, they did
not perform experiments using the combined data of an accelerometer and gyroscope sensor. In [36],
a smartphone-based application was introduced to assist AD patients. In this system, they made
applications using the cloud through web services. The authors perceived the environmental data
through sensors, then processed the data on the cloud, and an alarm was generated on a mobile in
case of an accidental situation. However, the system just monitored the patients with some limitations
and could not provide such a facility when the patient was out of range. For example, if a patient went
outside for shopping, walking, or to visit some friends, the system was not able to work. To assist and
help Alzheimer’s patients, Smart Mind [4] was introduced in 2015. The actual motive of this system
was to give support to people to perform certain activities and to inform caregivers if they got into a
bad situation. This work, however, is limited to specific places, like hospitals or home, and requires
heavy resources and high maintenance.

3. Salah Activities Recognition Model (SARM)

The proposed system framework is shown in Figure 2. This study entails the collection of data
using the sensor, data preprocessing, segmentation, feature extraction, and classification.
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Figure 2. Framework of the Salah activities recognition model (SARM).

3.1. Data Collection

We proposed the system to recognize the activities in prayer. At the beginning, we had no supply
of relevant data for our experimental purpose. Therefore, to achieve our goal, we collected the dataset
from multiple candidates. We used the Android MATLAB built-in sensors support package for getting
the sensors’ values. The laptop MATLAB script was connected with a mobile phone (MATLAB sensor
support package) through a local area network. Mainly, five sensors are available in the MATLAB
support package, measuring acceleration, orientation, angular velocity, magnetometer, and position.
We preferred the accelerometer over the other sensors because it has been widely used in human
activity recognition. In practice, our activities were somewhat close to standing and sitting activities,
yet the accelerometer sensor recognition accuracy was better to detect these compared to the other
sensors [18,37]. Four body positions were considered for data collection: right upper hand, left upper
hand, front right trouser pocket, and front left trouser pocket, as shown in Figure 3. Other body
positions can also be considered for data recording, like the waist, left lower leg, right lower leg,
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and head, but we considered just these positions because people can easily place their smartphone
on the upper hands and pockets during the Salah activity. Mobile phones were attached to the
abovementioned positions during the collection of data. We recorded three body positions of the test
subjects: standing (ST), standing erect to bowing (STB), and standing to prostration (STP) (see Figure 1).

Figure 3. Mobile placements (P1, P2, P3, and P4) on the human body during the data collection.

There are certain legitimate ways to offer prayer, which are as follows:

• First, Salah is dependent on recitation. The duration of each activity (ST, STB, and STP) depends
on the user (how much time they take to recite) recitation of Salah (prayer). Some recite at a low
pace, while others are a bit faster. The estimated duration of ST is from 12 to 20 s. However, for
STB and STP, the average spans are from 5 to 9 s.

• The variation is gender-biased; for men, the obligation is to put the hand on the waist and for
a female to put the hand on the chest.

In order to meet the requirements, we prepared a diverse dataset. For the collection of data,
we considered Muslim students enrolled in the university. Our data set comprised 10 people (age
24–35, weight 55–100 kg, height 150–185 cm). The detail descriptions about the data and subjects are
given in Table 2.

Table 2. Brief summary of the data collection and details about the subjects. C3, C4, and C5 are columns
three, four, and five. S1 to S8 are Males; S9 and S10 are Females

Subject Weight
(kg) Height (cm)

Average Time
(s) Spent on

Single ST (C3)

Average Time
(s) Spent on

Single STB (C4)

Average Time
(s) on Single

STP (C5)

Total Time (s) of
ST (20 × C3)

Total Time (s) of
STB (20 × C4)

Total Time (s) of STP
(20 × C5)

S1 90 177.8 16 6 6 320 120 120
S2 56 168 15 4 8 300 80 160
S3 65 173 12 5 7 240 100 140
S4 97 183 15 6 8 300 120 160
S5 75 175 18 5 6 360 100 120
S6 85 178 15 7 7 300 140 140
S7 80 178.3 17 5 5 340 100 100
S8 90 175.2 20 5 8 400 100 160
S9 70 170.6 14 5 5 280 100 100
S10 62 172.2 16 6 9 320 120 180

Total time of recorded data from body position 3160 1080 1380
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The basic procedure which we used to collect the data set was:

• Initially, we connected the mobile phone to the laptop MATLAB cloud.
• We developed a code script for data acquisition:

1. Initialize mobiledev object.
2. Enable sensors with sample rate 50 Hz.
3. Disable sensors.
4. Save the data into mat files from the log.

• We loaded the code script into the MATLAB cloud.
• All the candidates performed each activity (ST, STB, and STP) 20 times. Every instance of activity

was recorded separately. Here, the mobile phone served as a wearable sensor (for data collection)
and was deployed on our specimen set of two women and eight men. For all 20 activities,
the subjects were briefed first each time they started with the activity, but the order of performing
the activity was completely up to the subjects.

– ST is a standing activity; here, men place their hands on their navel and women place their
hands over their chest. As Salah is observed in a whispering mode, we were unable to track
the progress and accomplishment of ST. For this reason, we directed our volunteers to rest
their hands for a moment before indulging in the second phase. However, these indicative
samples were later removed from the experimental data and were not considered to be noted
in our findings. The longevity of the interval time for ST depended on the recitation speed of
the user (about 12 to 20 s). To record ST, we executed the MATLAB script. When the activity
was finished by the performer, we disabled the sensors through the hard code and saved the
data. The same procedure was followed to record the ST activity (20 times) of each candidate.

– In STB, a user moves from a standing position to a bowing position, and there they rest for
more or less 4 to 7 s (depending on the user recitation speed), and then move back to the
standing position, with this all deemed as one series of STB activity. We executed the script
when the user started the activity, and after we were done with recording the first series of
STB activity, we disabled the sensor and saved our initial data. In the same way, 20 STB
series were recorded for each candidate.

– In STP, the user moves from a standing position to a prostration position, where they stay for
5 to 9 s, and then after performing the prostration recitation, they continue from prostration
to a sitting position, with this total sequence depicting one complete cycle of STP activity.
For each user, we recorded the STP activity 20 times.

3.2. Data Preprocessing

For data preprocessing, several outcomes were met. Every single instance of activity was dealt
with separately. As mentioned earlier (in Section 3.1), we gathered some 200 series patterns from
each volunteer. We processed every single pattern manually. At certain times, we noticed that in
some cases, the pattern totally deviated from the normal activity pattern. The main reason for this
was disconnectivity of the mobile with the laptop. To solve this problem, we removed those patterns
from the data. The second challenge was to synchronize the sensor reading (acceleration values
(x, y, and z)) with the time range. For data acquisition, our sample rate was 50 Hz, but we received the
data with some minor fluctuations. For example, from the sensors, we observed the values for 10 s.
In accordance with 50 Hz, the data samples entered should have been 500; however, the values did not
come up exactly as 500. Therefore, to make this sensor read data exactly on 50 Hz, we resampled and
interpolated the data [38].

3.3. Segmentation

The second important step after data preprocessing was segmentation. Segmentation is a crucial
process in which the data are divided into chunks for further processing. The accurate chunk size plays
a vital role in the detection of activity; it affects the features, and whenever any features get affected,
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it directly hinders the performance of a classifier. Three kinds of segmentation could be used in the
activity recognition. These are sliding window, activity-defined window, and event-based window
segmentation. We used a sliding window technique (windowing) because its implementation is simple
and has been widely used in daily activity recognition [39]. In addition, the sliding window technique is
beneficial for both static activities and periodic activities (repetitive activities) recognition. For periodic
activities, like walking or running, a small size window is enough to get high performance [7,39],
but for complex human activities, a small window size cannot accumulate the data samples, and
it leads to false results [18,40]. The large window size is expansive in terms of resource utilization,
but it gives high performance, so the size of the window should be chosen in this manner, in which
each window gives enough readings to enable distinguishing among similar patterns [41]. In our
work, the ST activity was quite similar to the standing activity (see Figure 1a), but the usual standing
activity lasts for nearly 1 s or more. However, in the ST event, the average person’s time is at least
12 s, the maximum being 20 s. On the other hand, STB and STP activities are not regular activities
compared to the ST activities discussed earlier. Considering the selection of the optimal window size
is problem-dependent and our single activity for ST is from 12 to 20 s (as we discussed in Section 3.1),
we extracted features by setting up the window size to different seconds. Initially, we set the window
size to 12 s to test high performance, then 14, 16, 18, 20, and 22 s.

Two techniques were employed in the window segmentation: (1) window overlapping with
a fixed size window, and (2) non-overlapping with a fixed size window. The window overlapping
method greatly leads to high performance but with the disadvantage of high computation needs [33].
Given our motive to achieve high performance, therefore, we selected the window overlapping method,
and we overlapped each window with the half samples (50%) of the previous window. The value
for overlapping was considered on the basis of previous work [34,42]. The total number of samples
overlapped between two consecutive windows can be determined using Equation (1). For example,
we fixed our sample rate at 50 and initial window size at 12 seconds; hence, for 50% overlapping in
each window out of 600 data samples (shown in Figure 4), exactly 300 values were overlapped from
the previous window.

NOL = SR×WL× OLP
100

(1)

where NOL is the total number of samples overlapped, SR is the sample rate, WL is the window size,
and OLP is the overlapping percentage value.

Figure 4. A visual representation of a 12 s sliding window data plus 50% overlapping from a
previous window.

3.4. Feature Extraction

In each slot of sliding window, the data occur in raw form, and passing raw data directly to
the classifier may increase the computations. Therefore, after breaking down the data, we drew out
different features from each window. Since a specific set of features was not previously identified,
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we had to decide which features to use. Ideally, time–domain features will be used because they
consumes fewer resources and are widely used for activity recognition [27,35]. Time–domain has
many features, but we did not consider all of them. Initially, we manually analyzed the raw data
of our activities, especially STB and STP, and computed the maximum for every 12 s segment of
data; this greatly improved the performance. Then, we decided to further explore a different set of
features that could be used to recognize our activities in a more sophisticated manner. For that reason,
we prepared six sets of features (as described in Table 3) on the basis of low computational complexity
and storage complexity. The low complexities of these features make them appropriate for mobile
phone implementation, as elaborated in Table 4; for more information about the complexity of these
features, refer to [43]. The reason for evaluating six sets of features is to achieve different results and to
select the best set of features in terms of performance.

Table 3. Feature sets and their notations.

Feature set Features Short Notation

1 Max fs1
2 Max, Min fs2
3 Max, Min, Median fs3
4 Max, Min, Median, Mean fs4
5 Max, Min, Median, Mean, Percentile fs5
6 Max, Min, Median, Mean, Percentile, Standard Deviation fs6

Table 4. Features and their computational requirements.

Feature Computational Cost Storage Requirement Suitable for Mobile-Phone

Max very low very low Yes
Min very low very low Yes

Median medium very low Yes
Mean very low very low Yes

Percentile very low very low Yes
Standard deviation very low very low Yes

Moreover, these sets of features are very simple, and almost all researchers use them for activity
recognition [34]. Our set of activities was not so repetitive, and after some moments, a subject’s posture
changes abruptly, specifically in the STB and STP activity. As max. and min. are the best features
to pick up a sudden change from the data, we added them in our feature sets. Here, the point of
relevancy is differentiation of the human body postures among STB and STP activities; thus, we chose
the median as the best feature to distinguish the postures accurately [44]. Hence, we added median in
fs3. Moreover, sitting and standing were involved in our activities, and a number of researchers have
used the mean feature to identify these postures [45,46]. Therefore, we included the mean feature with
the other features in fs4. At this stage, we observed a decreasing trend in performance. Thus, we tried
percentile in fs5 to improve performance. In addition, the standard deviation is a more suitable feature
to work in combination with the maximum, mean, and minimum features [47]. Thus we added
a standard deviation with the fs5 features to upgrade it to fs6.

For a better and simple understanding of our model, we show the algorithm of the proposed
system in Algorithm 1 and block diagram below in Figure 5.
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Algorithm 1: SARM

a is acceleration samples, T is Time, RData is raw data
SR is sample rate, RSData is re-sample data
TSW is total samples in window, WL is window length
NOL is total number of samples overlapped, OLP is overlap value
EF is extracted feature, FS is Feature set

1 RData← a w.r.t T // Collection of dataset
2 Li ← Labeling data // (i = 1, 2, 3), label= ST, STB, STP
3 Remove missing values
4 T0 ← RData.T(start)
5 Tend ← RData.T(end)
6 Tnew ← T0: 1

SR :Tend
7 RSData← Interpolation (RData.T, RData.a, Tnew)
8 for s← RSData(1) to RSData(end) do
9 TSW ← SR×WL

10 if first window then
11 No overlapping
12 else
13 NOL← SR×WL× OLP

100
14 Overlap NOL sampled from previous window
15 end
16 end
17 for FS← 1 ≤ 6 do
18 EF ← F(TSW)

19 r f ← RF(EF, Li)

20 kn← KNN(EF, Li)

21 nb← NB(EF, Li)

22 dt← DT(EF, Li)

23 end
24 end

Figure 5. Block diagram of SARM.



Electronics 2019, 8, 881 12 of 24

4. Evaluation

We assessed the accuracy of three activities at four human body positions. For each position of
the sensor, the results were analyzed in terms of the different feature sets corresponding to multiple
window sizes in increment form. For performance evaluation, we implemented our work in MATLAB
(2017a) with the help of the Machine Learning toolkit. We chose four classifiers i.e., the random forest
(RF), K-nearest neighbor (KNN), decision tree (DT), and naive Bayes (NB) supervised algorithms for
classification. These have been widely used in activity recognition and are popular for attaining good
results [18,34,39,41]. The RF, DT, NB, and KNN (5 nearest neighbor) classifiers were utilized in the
default mode. To train these three classifiers and for performance analysis, we used the K-fold (K = 10)
cross-validation technique. In this procedure, data are divided into K equal parts. One subset out of
K-subsets is utilized as a test set, while the remaining subsets are used for the purpose of training to
create a model. To determine the best performance, this process is run in K iterations. In each run,
whole data are reconstructed randomly in K equals parts. In the training phase, data are used as input
to the classifier with labels to memorize the activities with corresponding features. While in the testing
phase, the unseen data are given to the classifier to predict the best match class. Our observations
showed there was no major difference between the performance of the right pocket trouser and left
pocket trouser. Therefore, due to similar nature of results, we only considered the right pocket result for
discussion. In term of classifiers, RF produced the best results compared to the other three classifiers.
Therefore, earlier, we briefly discussed the results of RF classifier with respect to six features sets
separately to set the baseline trend. KNN and DT classifiers are observed as the second-best classifier
with high accuracy. In the scenario of NB, the results trend were observed to be low. Thereby, we did
not include this classifier performance in the main discussion. However, the graphs of NB results are
presented in Appendix A.

It ought to be noted that the pockets of the volunteers were not the same during recording of the
data, and also the mobile phone was not fixed inside the pockets of the volunteers. That is why the
ratio of noise was higher in the trouser pocket data than from the left-hand position and right-hand
position data. Thus, we deemed both the left-hand and right-hand positions as more favorable for
placement of the sensor. In our work, the recorded dataset was unbalanced because the data of STB
and STP were small from the ST activity. This way, the accuracy specifically favors the rich class data
over other classes. Thus, we examined the results in the form of precision, recalling, and F-Measure,
but mostly, the results analysis is presented in F-Measure because it works with both precision and
recall. The following formula was used to calculate the F-Measure:

Fm =
((1 + W2)× Re× Pr)

(W2Re + Pr)
, (2)

where Fm is F-Measure, Re is recall, Pr is precision, and W is a measure that depicts the ratio of
importance in both Re and Pr.

4.1. Performance Evaluation of Rf Classifier at Three Body Positions

In this section, we explain the study we conducted to analyze the effect of left-hand, right-hand,
and TP body positions on performance. We report the role of these position in the feature sets scenarios
on the RF classifier. This classifier was selected for discussion because it has always dominated other
classifiers in terms of performance. We used some short notations as right-hand (RH), left-hand (LH),
and right pant pocket position (TP). Figure 6 shows the different positions results for each activity
in the different feature sets. We have summarized the results of each feature set for all activities
considering the subject position. In order to analyze the performance of classifier over the multiple
feature sets, we used a 3D graph and confusion matrix to present the results more concisely and clearly.

• The analysis of ST activity in the first feature set resulted in satisfactory performance of 98%–99%
on all positions. For the other two activities, the best performance was achieved at the TP position



Electronics 2019, 8, 881 13 of 24

(96% STB, 98.6% STP). This position leads than the other two positions, with nearly 3% for STB
activity and about 2% for STP activity.

• In fs2, the average precision decreases relative to FS1. Mainly a drop is observed for STB activity.
The corresponding confusion metrics of LH (Table 5), RH (Table 6) and TP (Table 7) indicate that
STB activity is mainly confused with ST activity. ST activity has no performance increment or
decrement. The performance behavior of ST and STP activities is similar or will vary slightly
(See Figure 6c). However, on the fs2, the LH position leads (around 92.2%) STB activity over the
other two with a margin of 2%.

• By using fs3, the overall performance degrades even more, especially for STB and STP activities.
This decline can be seen in confusion metrics and in Figure 6c. Mainly, we can see that STB
activity is mainly confused with ST activity. However, STP activity is primarily confused with
STB activity. In terms of body position, TP is in the leading over STP (93.7%). LH takes the lead
over STB (87.7%), and RH leads over ST (98.2%) activity recognition.

• In the case of fs4, performance remains the same in most cases. For example, ST activity is
recognized high at the RH position, STB at LH, and STP at TP position. However, overall,
performance decreased by about 1% to 2% from fs3.

• For fs5, our experiment has shown improvement due to the addition of percentile feature
information with all four features. The trend of the performance went up after continuous
decrements, explicitly in favor of STP activity. This improvement can be observed at RH (as shown
in the confusion matrix Table 6) and TP position(as shown in the confusion matrix Table 7). Similar,
trends are observed for fs6.

Table 5. The confusion metrics of the random forest (RF) classifier over the 12 s window size on six
feature sets at the left-hand (LH) position.

Predicted Class

G
iv

en
C

la
ss

Feature Set 1 Feature Set 2 Feature Set 3

ST STB STP ST STB STP ST STB STP

ST 826 8 2 809 5 2 811 0 5

STB 3 115 2 12 142 1 14 132 9

STP 7 2 172 9 6 151 12 14 140

Feature Set 4 Feature Set 5 Feature Set 6

ST 822 10 9 832 8 2 811 8 0

STB 9 122 10 12 112 10 10 104 7

STP 12 14 129 1 7 153 8 19 170
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(a) (b)

(c) (d)

(e) (f)
Figure 6. Performance of the RF classifier at different positions over the 12 s window size by using:
(a) feature set 1; (b) feature set 2; (c) feature set 3; (d) feature set 4; (e) feature set 5; (f) feature set 6.
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Table 6. The confusion metrics of the random forest classifier over the 12-second window size on six
feature sets at the right-hand (RH) position.

Predicted Class

G
iv

en
C

la
ss

Feature Set 1 Feature Set 2 Feature Set 3

ST STB STP ST STB STP ST STB STP

ST 849 5 2 880 6 2 883 5 0

STB 7 141 3 15 122 1 16 117 5

STP 8 5 162 12 3 141 9 12 135

Feature Set 4 Feature Set 5 Feature Set 6

ST 850 8 4 852 6 0 843 10 4

STB 12 115 14 19 119 10 16 119 14

STP 7 9 163 4 12 160 3 9 164

Table 7. The confusion metrics of Random Forest classifier over the 12-second window size on six
feature sets at the right pant pocket (TP) position.

Predicted Class

G
iv

en
C

la
ss

Feature Set 1 Feature Set 2 Feature Set 3

ST STB STP ST STB STP ST STB STP

ST 629 3 0 628 3 1 621 5 0

STB 4 98 0 12 91 3 17 85 4

STP 3 1 142 4 2 136 6 2 134

Feature Set 4 Feature Set 5 Feature Set 6

ST 643 7 2 649 5 0 630 10 0

STB 13 85 2 13 82 4 12 89 7

STP 7 9 112 4 2 121 0 2 130

4.2. Recognition of Activities by Using Knn and DT at Three Body Positions

In Figure 7, we highlighted the results with respect to the different body positions. At each body
position, we performed experiments on six features sets, and each feature set was extracted on six
different window sizes. Meanwhile, we only discuss the performance of fs1 and fs5 on the 12 s window,
because compared to other feature sets, fs1 and fs5 produced the best results in the form of F-Measure,
precision, and recall. Overall, we found that:

• To recognize ST activity using DT on fs1, the performance at the RH body position was relatively
better than at the other two positions, i.e., 99%. However, the results were satisfactory for the
other two positions as well, i.e., 98.3% and 98% at LH and TP, respectively. Using fs5, the average
performance of overall activities recognition was 1% shifted down with the same classifier.
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Figure 7b shows the performance reduction on fs5 compared to fs1 at the RH and TP body
positions. However, using the feature set fs5, we can see that the performance has been improved
at the position of LH relative to the other two positions, i.e., 98.28%. Therefore, the performance
difference between the RH and LH positions was measured as about 1.08% and at (LH–TP),
the difference was about 0.84%.

In the case of the KNN classifier, the performance was not so changed compared to the DT results
for ST activity. However, slightly more differences were observed in performance among the body
positions on fs1. For example, the leading performance was acquired at the RH position, around
98.60%; whereas on the positions of LF and TP, the F-Measure values were about 96% and 97%.
In the case of fs5 using the KNN classifier, the performance was improved at the LH and TP body
positions comparatively when we applied fs1 (on fs1, the F-Measure was about 96.87% but on fs5,
it was about 98%; further, the same trend was observed on TP. For more detail, the performance is
shown in the graphs in Figure 7).

• To recognize STB activity in the perspective of the classifiers, the overall performance of DT was
better than the KNN classifier. Moreover, in terms of fs1, the recognition performance was better at
the RH position than the other two body positions using DT. However, using fs5, the performance
accuracy trend was surprisingly changed at RH towards lower, at about 73.22%, as can be seen
in Figure 7b. Therefore, we can say that fs1 can be a better option to recognize the STB activity
instead of fs5. However, when we did the comparisons of body positions using fs5 followed by
DT, the performances at TP and LH were observed to be significantly improved compared to
the RH position (TP = 82.68%, LH = 83.33%). In the case of the KNN classifier, the STB activity
recognition was seen as high at the RH position using fs1. while for the performance of KNN on
fs5, the TP position played the lead role position, i.e., 83.89%, and this time, the result at LH can
be seen to be the lowest, about 8.16%, as seen in Figure 7d.

• For STP activity, the trend in performance was changed as compared to the other activities at
different body positions, whereby a high recognition performance was achieved for ST and STB
at the RH position, but this time, the trend of increment was in the favor of the TP position in
all cases. In terms of the role of the classifiers, KNN produced more reasonable results than DT
using fs5, while DT performed better on fs1. The performance differences between DT and KNN
on fs1 were about 0.99% RH, 2% LH, and 1% at the TP positions, respectively.

In conclusion, the ST activity’s finest recognition performance was obtained at the RH position in
most of the cases (of feature sets and classifiers). Similarly, the RH position was observed to be the most
suitable place for STB activity recognition using fs1. However, we observed the worst performance for
STB activity at the RH position on fs5. Moreover, we observed a performance improvement for STP
activity at the TP position through KNN classifier on fs5. To show the performance of each activity
in a simple form, confusion metrics are presented for both classifiers using fs1 and fs5 for each body
position. Tables 8–10 describe the confusion metrics of DT classifier for the body positions of LH,
RH, and TP, respectively, while Tables 11–13 present the confusion metrics of the KNN classifier for
the LH, RH, and TP body positions.

Table 8. Confusion metrics for fs1 and fs5 at the RH position achieved through decision tree (DT).

Predicted Class

Feature Set 1 Feature Set 5

ST STB STP Precision (%) ST STB STP Precision (%)

G
iv

en
C

la
ss ST 846 7 0 99.17 835 18 0 97.88

STB 6 133 1 95 23 108 9 77.14
STP 6 11 172 91 7 29 153 80.95

Recall(%) 98.60 88.07 99.42 95.06 95.53 69.67 94.33 85.32
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(a) (b)

(c) (d)
Figure 7. Recognition of activities at three body positions using DT and K-nearest neighbor (KNN) at
the 12 s window.

Table 9. Confusion metrics for fs1 and fs5 at the LH position achieved through DT.

Predicted Class

Feature Set 1 Feature Set 5

ST STB STP Precision (%) ST STB STP Precision (%)

G
iv

en
C

la
ss ST 810 4 1 96.38 801 10 7 97.92

STB 14 118 5 86.13 9 117 20 80.13
STP 9 6 170 91.89 2 10 161 93.06

Recall (%) 97.23 92.18 96.59 92.46 98.64 85.40 85.63 90.37
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Table 10. Confusion metrics for fs1 and fs5 at the TP position achieved through DT.

Predicted Class

Feature Set 1 Feature Set 5

ST STB STP Precision (%) ST STB STP Precision (%)
G

iv
en

C
la

ss ST 626 5 1 99.05 630 14 2 97.52
STB 4 97 1 95.09 14 90 3 84.11
STP 3 8 135 92.46 3 5 119 93.70

Recall (%) 98.89 88.18 98.54 95.53 97.37 82.56 95.96 91.77

Table 11. Confusion metrics for fs1 and fs5 at the RH position achieved through KNN.

Predicted Class

Feature Set 1 Feature Set 5

ST STB STP Precision (%) ST STB STP Precision (%)

G
iv

en
C

la
ss ST 847 6 0 99.29 842 7 2 98.94

STB 11 128 1 91.42 22 108 10 77.14
STP 7 11 171 90.47 1 12 178 93.19

Recall (%) 97.91 88.27 99.41 93.73 97.34 85.03 93.68 89.75

Table 12. Confusion metrics for fs1 and fs5 at the LH position achieved through KNN.

Predicted Class

Feature Set 1 Feature Set 5

ST STB STP Precision (%) ST STB STP Precision (%)

G
iv

en
C

la
ss ST 805 7 3 98.77 809 7 2 98.89

STB 23 106 8 77.37 19 103 24 70.54
STP 19 11 155 83.78 4 16 153 88.43

Recall (%) 95.04 85.48 93.37 86.64 97.23 81.74 85.47 85.96

Table 13. Confusion metrics for fs1 and fs5 at the TP position achieved through KNN.

Predicted Class

Feature Set 1 Feature Set 5

ST STB STP Precision (%) ST STB STP Precision (%)

G
iv

en
C

la
ss ST 623 2 1 99.52 637 9 0 98.60

STB 24 104 0 81.25 21 85 1 79.43
STP 6 4 116 92.06 0 3 124 97.63

Recall (%) 95.40 95.54 99.14 90.94 96.80 87.62 89.2 81.89

4.3. Influence of Window Size on the Recognition of Activities

In this part, we discuss the role of different window sizes on the performance of our set of activities.
Since, RF performed well comparatively KNN and DT classifiers. Therefore, window sizes were only
examined in the context of KNN and DT. Moreover, the performance of the classifiers were satisfied on fs1
as compared to fs5 for all activities. Thus, we performed experiments on fs5 using different window sizes.
Furthermore, in all the feature sets except feature set fs5, the result performance was observed in three
ways (increase, decrease, same) when we applied different window sizes. However, when we evaluated
the role of different window sizes in the scenario of fs5, most of the time, the trend of performance was
improved. In [29,39], the authors briefly discussed the impact of a large window size and confirmed the
overall improvement in the large size window, especially in the case of those complex activities that have
shown less accuracy. In our situation, we obtained good results for ST and STP activity, but in the case
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of STB, the results were not so impressive. Two reasons may lie behind this low performance: One is the
data for STB activity are small compared to those of other activities, and second, this activity has minor
complexity. Therefore, we decided to check the effect of a large-size window on performance. The impact
of the window size on the three body positions using the KNN and DT classifier are presented in Figure 8.
As can be seen, most of the time (14, 16, 18, 20, and 22 s windows), the results were improved at all
body positions with both classifiers, specifically for STB activity. The important improvement for STB
activity was about more than 30% at the RH and 22% at the LH body positions using KNN, while less
improvement was observed at the TP position, at about 7%, because it already had a high accuracy at the
minimum window size. A similar improvement can be observed with the DT classifier at all positions.
On the other hand, important improvements were observed for STP activity with a high window size
at the LH (6%) and RH (10%) body positions using KNN. However, at the TP position, the performance
was a little decreased, around about 2% to 3%, under the effect of the large window size. In the case of
the DT classifier on STP activity, important improvements were observed for all positions, around 10%,
7%, and 9% at the RH, LH, and TP positions, respectively. The performance at the TP position showed
minor fluctuations, indicating sometime it was in increment and sometimes a decrement. According to
our observation at that body position, the mobile phone was not fixed at one place, and it was possible
for it to shake inside the pocket during the recording of the data, so that could be the cause for the drop
in performance.
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Figure 8. Cont.
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Figure 8. The impact of the long-size window on activities at: (a) the RH position using KNN; (b) the
LH position using KNN; (c) the TP position using KNN; (d) RH using DT; (e) the LH position using
DT; (f) TP using DT.

5. Conclusions

In this paper, SARM is presented to recognize the activties of prayer (Salah). This study defines
the complete approach to implement SARM; in particular, it involved a data collection procedure,
preprocessing of data, feature extraction, and training of classifiers. Moreover, six feature sets were
applied on the raw data and on each feature set, six windows were applied. Further, we showed the
results in terms of evenly incrementing the window size, whereby generally, the trend of performance
was seen toward an increment at each body position, while performance loss were observed on
some window sizes. Considering the results of classifiers, RF classifier produced the best results
in all scenarios than other classifiers. Moreover, the KNN and DT classifiers outperformed on the
selected features compared to NB. All the methodology was employed on four body positions, i.e,
left-hand, right-hand, trouser right pocket, and trouser left pocket. It is observed that the pockets of
the volunteers were not the same during recording of the data, and also the mobile phone was not
fixed inside the pockets of the volunteers. That is why the ratio of noise was higher in the trouser
pocket data than from the LH and RH data. Thus, we deemed both the LH and RH positions as more
favorable for placement of the sensor. Moreover, we observed the different performance ratios for the
feature sets, sometime increments and sometime decrements. Probably, the reason is we could not
try more and different combinations of features. Therefore, there is a gap in our work, and further
optimization in feature selection may further improve the performance.
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Appendix A. Recognition of Activities by Using Naive Bayes at Three Body Positions

(a) (b)
Figure A1. Recognition of activities at three body positions using NB.
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