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Abstract: Dynamic Adaptive Streaming over HTTP (DASH) is a widely used standard for video
content delivery. Video traffic, most of which is generated from mobile devices, is shortly to become
the most significant part of Internet traffic. Current DASH solutions only consider either client- or
server-side optimization, leaving other components in DASH (e.g., at the transport layer) to default
solutions that cause a performance bottleneck. In that regard, although it is assumed that HTTP
must be necessarily transported on top of TCP, with the latest introduction of HTTP/3, it is time
to re-evaluate its effects on DASH. The most substantial change in HTTP/3 is having Quick UDP
Internet Connections (QUIC) as its primary underlying transport protocol. However, little is still know
about the effects on standard DASH client-based adaption algorithms when exposed to the future
HTTP/3. In this paper, we present SAND/3, an SDN (Software Defined Networking)-based Quality
of Experience (QoE) control method for DASH over HTTP/3. Since the official deployment of HTTP/3
has not been released yet, we used the current implementation of Google QUIC. Preliminary results
show that, by applying SAND/3, which combines information from different layers orchestrated by
SDN to select the best QoE, we can obtain steadier media throughput, reduce the number of quality
shifts in at least 40%, increase the amount downloaded content at least 20%, and minimize video
interruptions compared to the current implementations regardless of the client adaption algorithm.

Keywords: SDN; DASH; QoE; HTTP/3; QUIC

1. Introduction

Hypertext Transport Protocol (HTTP) version 3 or HTTP/3 is the name given by IETF to HTTP
over Quick UDP Internet Connections (QUIC) [1]. HTTP/3 subsumes the benefits of HTTP/2 with TLS,
reduced connection delay (0-RTT) on top of UDP, and at the same time offers TCP features (e.g., packet
retransmission and congestion control). Being HTTP a fundamental component in Dynamic Adaptive
Streaming over HTTP (DASH) [2], it is essential to analyze the effects on its overall performance for
future internet traffic, which, according to the Visual Networking Index [3], is supposed to be mostly
comprised by video streams from mobile devices.

It is worth noting that, although it is widely assumed that DASH must be transported on top
of TCP, there are no specific restrictions on using other protocols. For example, Google reported a
significant improvement in YouTube and Search services when deployed on top of QUIC [1]. However,
little is still known about the impact of this protocol over other DASH schemes. While the authors
of [4–7] showed a positive influence, others, such as Bhat et al. [8], conversely showed a detriment in
the user perceived quality, also known as Quality of Experience (QoE).

The broad idea of DASH is that servers store different versions of video content, all of which
are listed in an XML file called Media Presentation Description (MPD). Based on the network status
and other parameters, clients can request a representation (version) of the video file. However,
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the DASH standard does not mandate a specific way to perform the adaption. Consequently, there are
several approaches on how to adapt the video quality request, from hybrid quality adaption [9] to
comprehensive optimization models [10]. Nonetheless, a single-parameter-based adaption (i.e., client
or server) offers poor QoE. While a purely client-based adaption might not reach optimal performance
due to its restricted knowledge, a purely server-side adaption would disregard users’ features.
Moreover, due to the ever-changing network conditions, frequent adaption requests based on
inaccurate information lead to instability.

In that regard, using a centralized control plane would improve the video delivery [11,12].
Therefore, a Software Defined Networking (SDN)-based solution will adequately help to improve the
adaption by providing a means of communication that includes an overview of the entire infrastructure.
SDN allows the segregation of the control plane from the forwarding plane; therefore, due to its
centralized nature and its global knowledge of the network, it can act as an intermediary between the
DASH clients and servers, improving the adaption schemes. Therefore, the main goal of this paper
is to evaluate the effects of SDN combined with HTTP/3 in DASH adaption schemes. To this aim,
we implemented a holistic solution that considers all components involved in a DASH system to
improve the overall QoE. The primary hypothesis to test was that, by applying the proposed approach
of using HTTP/3 assisted by SDN and taking into account cross-layer collaboration, the overall QoE
in DASH would significantly improve compared to current solutions that use single-component
optimization on top of TCP.

The specific contribution of this paper is two-folded:

• In Section 3, we describe the overall design and interaction of the proposed QoE Control method
for DASH over HTTP/3, whose main strength is its simplicity, and how SDN can orchestrate
network-, transport-, and user-level components.

• In Section 5, we present a comprehensive evaluation of some of the most common adaption
algorithms and the effects on QoE when they use HTTP/3 compared to the current deployment.

Based on preliminary results in Section 6, the proposed approach presents various advantages
for DASH, i.e., higher and steadier average bitrate, minimizing the number of video stalls (freezes),
and reducing the number of video quality shifts compared to traditional methods.

2. Related Work

2.1. TCP-Based SDN Solutions for DASH

Although there is a large body of knowledge about DASH and how to perform the adaption [11,13].
in this section, we briefly present the related work focused on SDN-based solutions to improve video
delivery in DASH over traditional TCP. Some of the early work [14–16] proposed improving video quality
by dynamically routing prioritized video stream flows over OpenFlow (OF) networks. Although using
a dynamic priority route segregates the traffic, relying on network-only variables will be significantly
constrained. In that regard, the authors of [17–19] improved the overall QoE by integrating client feedback,
which constitutes an additional layer of information to perform the adaption. Therefore, by adding
information from higher-layers into the adaption process will provide more flexible support to improve
the user’s QoE. The authors of [20,21] went even further and proposed an SDN-based architecture
for DASH; both solutions presented innovative advantages for quality management. However, their
deployment increased the network overhead. SDNHAS [22], an improved version of the method in [21],
presents an elegant solution that combines multi-layer optimization based on user categories. However,
they all are still constrained by simply relying on HTTP over TCP at the transport layer.

2.2. Non-TCP-Based SDN Solutions for DASH

Relying HTTP upon single TCP connections brings along known problems (e.g., increased delay
and head-of-line blocking). Therefore, methods that use variations at the transport level show an
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improvement in the overall QoE in DASH. For instance, the authors of [23,24] used Multipath TCP
(MPTCP) [25], an extension of TCP, to transmit subflows of DASH streams over multiple paths.
The results were significantly better than using single TCP connections. However, despite the
benefits of using MPTCP, both end-points need kernel modification. Furthermore, there are other
conditions to fulfill, which will over-complicate the deployment in DASH or even have no effect,
as reported by James et al. [26]. Few other authors experimented with QUIC and DASH assisted by
SDN. Hussein et al. [7] proposed a QUIC-aware SDN architecture to handle congestion control, load
balancing, and security limitations of QUIC. Although it was one of the first to test the integration of
these technologies, it is not clear how the proposed architecture help DASH systems, apart from the
initial connection. Hayes et al. [5] also marginally used SDN with MPTCP and QUIC to reduce the
initial connection and an adaptive protocol selection based on performance feedback. Although it is an
interesting scheme, the constant exchangeability between protocols would create a service disruption
in highly active services, which will lead to detrimental QoE. As observed, related work present
innovative and practical solutions to improve video QoE in DASH using SDN; however, there are still
some open issues summarized as follows:

• (P1) Single-component optimization: Most solutions focus on a single component optimization
(network, client, or server).

• (P2) Transport ossification: Most solutions assume TCP as the only protocol for end-to-end
communication for HTTP, which creates a performance bottleneck.

Our work complements and extends the existing work by holistically tackling these issues.
Specifically, as opposed to the methods in Section 2.1, by using HTTP/3 as the transport
protocol, the proposed method does not suffer from the inherent problems of using HTTP over
TCP, i.e., the head-of-line (HOL) blocking issue. Moreover, complementing the efforts of the
methods in Section 2.2, our proposed method includes user-level information to perform a more
fine-tuned adaption.

3. SDN-Assisted Novel DASH QoE Control Method over HTTP/3 (SAND/3)

To solve the problems stated above and offer users a better QoE, in this section, we describe our
SDN-Assisted Novel QoE control method for DASH over HTTP/3 (SAND/3). The overall architecture
of the proposed scheme is depicted in Figure 1. As observed, SAND/3 combines user-, device-, service-
and network-level information, handled by three modules whose function is as follows:

• User module: This module collects the end-user identity and the associated devices from a
third-party service in which the user is subscribed (e.g., Netflix) and stores them in a repository
called user profile. We assume that this information will be available and provided by the
third-party service. The profile consists of a registry of tuples comprised of a user identification
number, associated devices, and preferences. Thus, when a device requests a video segment
throughout an HTTP message, the device manager fetches the associated profile and collects
the basic specifications (e.g., display size, available memory, buffer size, type of device, and
subscription plan) and assigns a user priority for the current video playback. For instance, a user
with a premium subscription to Netflix streaming a video on a SmartTV would have a higher
priority than a user with a free account on a mobile device since their quality requirements
are different.

• Network module: This module performs traffic engineering, by routing the packets via the most
suitable paths that offer the best Quality of Service (QoS). To do so, first, the network status is
continuously monitored by the Network Monitor sub-module, which collects the statistics of all
the elements in the network, allowing a better estimation of the available resources. As part of
this module, the Topology Manager updates the network device status, and it is triggered every
time there is a change in the topology. Finally, the Routing Handler calculates the end-to-end paths
to handle the traffic according to the priority assigned to each user. For simplicity, we create k
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different paths using a modified version of the well-known k-maximum disjoint paths Suurballe’s
algorithm [27], where k is the number of categories in the application policy, e.g., if the quality
categories are high, normal, and low, then k = 3. The cost of the path (weight) is calculated using
Dijkstra’s shortest path algorithm, having each link a cost based on network parameters or a
combination of them, i.e., available bandwidth, delay, packet loss and so forth. In the current
implementation, we use the delay as the only factor to calculate the path cost, but these can be
easily extended to more elaborate weights.

• Application module: Based on the user profile, the current state of the network, and the specific
service policies, the QoE Manager sub-module recommends the most suitable settings for the
transmission, which is handled by the Transport Handler sub-module. Note that the Transport
Handler sub-module is in charge of performing the transport connection using QUIC protocol.

User Module Network Module Application Module

SDN-enabled Infrastructure

DASH Server

NW Stats

Profile

Device 

Manager Topology 

Manager

Routing 

Handler

DASH ClientsUser

QoE

Manager

SDN Controller

Network 

Monitor

App Policy

Transport

Handler

Third-party 

service

Figure 1. SAND/3 architecture.

4. An Overview of SAND/3

The network model is as follows, we consider a directed graph G = (V, E), where V and E are
the set of network devices and links connecting them, respectively. Each element in vi ∈ V is linked
by an edge ei,j ∈ E between vi and vj. Moreover, bi,j, di,j, and ci,j represent the bandwidth, delay,
and cost, respectively of ei,j. For simplicity, ci,j is calculated as the bi,j × di,j. If s and t are the source and
destination devices, respectively, a path ps,t ∈ P is the shortest path from a source vs to the destination
vt such that the cost Cs,t, the sum of link costs, is minimum. Finally, given a number of categories
k ∈ 1, 2, 3, ..., the set Pk is comprised by the first k paths ps,t.

The flowchart depicted in Figure 2 shows the overall process, which broadly works as follows:
Firstly, when an HTTP request is received from the DASH client, it is captured at the edge switch and
sent to the controller. Then, the system fetches the associated User Profile from the local repository
(Profile) based on the information of HTTP headers—host, destination, user-agent, alt-svc, etc. In the
current implementation, we assume single homogeneous devices for all users, and, therefore, we use
the source and destination host as the identifier. However, more fine-grained information can be
extracted from headers to match the request to a specific user properly. It is also important to note
that, at this step, based on the information in the headers, the Transport Handler can determine whether
both the client and server support HTTP/3 or use regular TCP connections. Then, the systems read
the service policies from the local repository called App Policy, among those policies it is necessary to
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obtain the available user categories, which is then used for calculating paths with different priorities
according to the user type. The mapping process from a user HTTP request to a path is shown
in the dotted region in Figure 2. One of the most essential processes is the calculation of the user
category, which can be done using various approaches, from advanced Machine Learning (ML) or
other Artificial Intelligence (AI) as done by Bentaleb et al. [22], to other optimization heuristics as done
by Herguner et al. [23]. However, for simplicity, in the current implementation, we attach this value
as a parameter on the User Profile, leaving a more elaborate selection process as future work. Then,
to create the paths, we calculate k (number of categories) paths so that the request is matched to the ith
path, where i is the number of the category to which the user belongs. In case there is no available
path, the traffic will be sent via the default shortest path. Finally, once the path has been selected and
written in the adequate switches, the DASH client can start the transmission, and request/send them
over the same connection until the playback is finished (see right-hand side of Figure 2). Note that the
mapping is done once per transmission. However, it will be updated in the case there is a significant
change in the topology (e.g., network device failure and link disconnection).
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DASH client

Get Preferences from User Profile

(Device, type of user, etc.)

Calculate k (number of categories) 

paths to get Path[1..k]

End
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Figure 2. Overall flowchart process for QoE mapping to network segment from a source DASH client.

5. Evaluation

5.1. Test Environment

We used an emulated environment for both DASH and network, hosted on a single virtual
machine running Ubuntu 16.04 LTS with 16 Gb of memory and six cores Intel Xeon(R) E5-2650 v4
of 2.20 GHz. The network was emulated using Mininet [28] v.2.2.2 which runs OpenFlow v.1.3 (OF)
with the values described in Table 1. For simplicity, we used a 3 × 3 grid topology, as shown in
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Figure 3. In the case of HTTP/3, since the official deployment was not available yet at the moment of
the writing of this paper [29], we used the test QUIC client/server provided by Google [30]. The QUIC
server runs the latest version (43 at the moment of the implementation), which, although it differs in
some aspects to the IETF implementation, can serve as a preview on how the overall interaction of
HTTP over QUIC would work on DASH. In the case of the DASH clients, we used a modified version
of AStream [31], which is a Python-based emulated video player, with the QUIC client integrated
as a sub-module as done by Arisu et al. [6]. Moreover, we modified the official QUIC server by
automatically adding the required header tags (i.e., alternative protocol, port number, URL) per file
in the server directory, which is mandatory in the test QUIC server. To compare with the current
approach (using HTTP over TCP only), we used the built-in HTTP Server module from Python at the
server side, and libcurl TCP client integrated into AStream. In addition, note that we kept the same
connection for the entire transmission—as QUIC would do within the same connection—rather than
opening a new connection per request. Finally, as the SDN controller, we used OpenDaylight (ODL)
Beryllium SR2 and implemented the functions of each module as an internal application.

Table 1. Experimental parameters.

Parameter Value

Topology 3 × 3 Grid
Bandwidth (bi,j) 10 Mbps for all links

Delay (di,j) Randomly assigned (1, 3, and 5 ms)
# of DASH Clients 3 (Xterm) emulating PCs

DASH Server Simple HTTP Server
Controller ODL Beryllium SR1

DASH

Server

DASH 

Clients

User 1

SDN Controller

Mininet Environment

P1 (Path 1)

ei,j (di,j, bi,j)

vi

vj

User 3

User 2

Open Virtual Switch

P2 (Path 2)

Pk (Path k)

Figure 3. Testbed setup.

5.2. Use Case

Since streaming solutions over HTTP were originally developed for Video-on-Demand (VoD) [13],
we used VoD as the use-case; however, we believe that the proposed solution can also be applicable for
live streaming. To conduct the experiments, we used Big Buck Bunny (BBB) from a publicly available
DASH dataset [32] by Lederer et al. [33]. In this dataset, the full-length BBB video (of approximately
600 s) is encoded in twenty different representations and segment (video chunks) sizes from 1 to
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15 s ranging from bitrates of 420 × 360 pixels at 45 Kbps to 1920 × 1080 pixels at 3.9 Mbps. For the
experiments, we used only a 4-s segment size, as it is an intermediate value between encoding and
flexibility in the bitrate adaptation. To test the approach, we compared the performance of SAND/3 by
using the following adaption bitrate (ABR) algorithms in the DASH clients:

• Throughput-based adaption (TBA) [34]: TBA starts the transmission by requesting the lowest
available bitrate and, based on the average network throughput, the following segments will be
selected in an additive increasing, multiplicative decreasing (AIMD) manner.

• Buffer-Based adaption (BBA) [35]: While other bitrate adaption approaches focus on throughput
capacity prediction, BBA uses only the buffer occupancy to request the initial segment and then,
if needed, estimates the capacity. BBA decreases the re-buffering events while the playback bitrate
increases. The second version of this algorithm (BBA-2) was part of a large-scale experiment on
Netflix, which achieved about 10–20% decreased re-buffering. Specifically for the experiments,
after some preliminary results, instead of using a buffer size equal to the video segment size,
as would usually be done, we used three times that value to make a fair comparison with the
other compared algorithms. In Table 2, we describe a complete list of the BBA parameters used in
the experiment.

• Segment Aware Rate Adaptation (SARA) [36]: Contrary to other ABR algorithms, which assume
equal segment sizes, SARA takes into account the variation in segment and buffer sizes, so that it
allows a more accurate prediction of the next segment. The configuration parameters used in the
experiment are described in Table 3.

Table 2. List of BBA parameters used in the experiment.

Parameter Value

Buffer size (Bmax) 12
Initial buffer 2
Initial factor 0.75
Reservoir (r) 0.2
Cushion (cu) 0.75

Table 3. List of SARA parameters used in the experiment.

Parameter Value

Sample count 5
Initial buffering occupancy (Bcurr) 5

Re-buffering bound I 1
Buffer lower threshold (Bα) 5
Buffer upper threshold (Bβ) 10

Each client was assigned a profile and a single device with the same specifications regarding
the memory and CPU, emulated by Xterm terminals in Mininet. The priority level was different
for each user; for simplicity, we numbered the priorities in ascending order so that high-, medium-,
and low-priority would map to 0, 1, and 2, respectively. Note that, in the current implementation,
these values were set statically in the user profile; a more comprehensive solution would require,
for instance, a classification based on all the parameters, as done by Bentaleb et al. [22]. The experiment
was conducted as follows. For each client ABR algorithm (namely TBA, SARA, and BBA), we played
BBB on all the devices randomly starting within an approximate 30 s interval. In each run, all clients
used the same adaption algorithm using the three variants:

• TCP-only approach: In this approach, the transmission of HTTP is over a TCP stream, as the
current default solution would behave.

• QUIC-only approach: HTTP is sent on top of QUIC, emulating the way HTTP/3 would work but
only changing the transport protocol without further improvements.
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• SAND/3: The proposed scheme was used on top of QUIC and applying the process explained in
previous sections.

In the first two cases, we left the default connectivity settings, which includes the end-to-end
routing using simply the shortest path route. Note that, due to some performance limitations in the
QUIC test server, not suitable for a large number of users [30], we only used three clients; nevertheless,
since the primary objective of the experiment was to analyze the behavior and the feasibility of the
proposal rather than a large-scale test, the current setup would suffice as a proof-of-concept.

5.3. QoE Metrics

To objectively measure the user QoE, there are five factors that influence the most in a DASH
system: the number times the video freezes (stalls), the number of video quality shifts, media
throughput (bitrate), start-up delay, and the fairness at shared bottlenecks [13,37]. However, since the
start-up delay and fairness are mostly related to live-streaming, they are perceived less critical than the
other variables [38]. Therefore, in this paper, we focus on the number of stalls, media throughput and
the number of video quality shifts to measure the QoE.

6. Results

6.1. Number of Stalls

Concerning the number of stalls, which occurs when the video stops due to a buffer underrun,
Table 4 shows the results obtained per adaption algorithm and their combined duration. As observed,
there were stalls only in the TCP-only (current default) approach—the other approaches (QUIC and our
approach) did not present any stalls during the playback whatsoever—which is a favorable result since
a stall is the most detrimental factor for QoE [11]. In addition, note that most of the stalls occurred
on users from the lower priority category. However, in the case of SARA, even users from the first
categories suffered from stalls, and although there were few occurrences the combined time was
considerable (16–26 s), which shows how unfair bandwidth competition can affect all users as the
number of parallel requests increases.

Table 4. Number of stalls per user category using the TCP-only approach.

User Category

Adaption Algorithm

TBA SARA BBA

# of Stalls Time [s] # of Stalls Time [s] # of Stalls Time [s]

1 0 0 2 21.1 0 0
2 0 0 1 16 0 0
3 1 20 4 26 1 2.46

6.2. Media Throughput

Concerning the media throughput (received video bitrate), depending on the adaption algorithm
and the approach used, the results were relatively different. Figures 4–6 we show the media throughput
obtained for each type of user using TBA, BBA, and SARA respectively.

Initially, in Figure 4a, we can see that, although TBA increased the requested bitrate progressively
when using TCP-only approach, once higher quality segments were achieved and as new users started
to request better quality representations, the video quality decreased significantly. This considerable
quality decrease was due to the shared bandwidth bottleneck at the edge of the topology, and the
unfair bandwidth competition. On the other hand, users that used QUIC-only, as shown in Figure 4b,
received relatively low-quality segments for most of the transmission; however, at no time did the
clients suffer from buffer underruns. Moreover, the bandwidth distribution was somehow evenly
distributed among clients. Finally, in Figure 4c, for the case of our approach, the bitrate changes were
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quickly improved due to the characteristics of TBA. Moreover, once the clients converged to the best
available video quality, the playback was steady and stayed, for the most part, in the highest video
quality even for users with lower priority, which shows the benefits of the proposed approach for all
user levels.
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Figure 4. Media throughput obtained for three users at 10 Mpbs links using TBA adaption algorithm.

When SARA was used as the DASH adaption algorithm, as shown in Figure 5, since the algorithm
considers the variable sizes of the different video representations, the convergence time was faster than
the case of TBA. However, due to the congestion in the shared lines used in the TCP-, and QUIC-only
approaches, the estimation was done using non-accurate information, and therefore the requested
bitrate could not be handled by either of the approaches, leading to a highly unstable playback, as can
be observed in Figure 5a,b. Due to the conservative nature of SARA, especially in terms of the Delayed
Download mechanism, the video quality is gradually increased and maintained in the same one for a
certain amount of time to avoid unnecessary downloads. However, by the time the segment is to be
transmitted, the network conditions might have already changed so that the link will be overloaded
downloading a bigger file until the threshold reaches the lower bound. On the other hand, by using
our approach, once the optimal bitrate is selected, the feedback can estimate the available resources
more accurately since the network status is continuously monitored on all network devices, which led
to a steady and smooth playback with the highest video quality for all users, as shown in Figure 5c.
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Figure 5. Media throughput obtained for three users at 10 Mpbs links using SARA adaption algorithm.

Finally, in Figure 6, we show the received bitrate when using BBA as the DASH adaption algorithm.
Note that the bitrate variability is higher than the other algorithms. BBA has a different approach,
which focuses on the current buffer occupancy rather than throughput estimation. Thus, it tends
to request segments with higher bitrates for a longer time. However, when the streams compete
with other requests, the congestion level increases considerably, leading to overloaded links and
consequently higher loss-rate. As observed in Figure 6a, which depicts the received bitrate using TCP,
there was a point in the playback (approximately at Second 250) where the congestion level was so high
that the bitrate suffers from a phenomenon called ON–OFF period. In this state, the requested video
quality oscillates between the highest and lowest, creating instability among the other DASH clients
due to an inaccurate buffer estimation. In the case of QUIC, although there was some interference
between Users 2 and 3, BBA was capable of recovering relatively quickly, as observed in Figure 6b.
Lastly, in the case of our approach, as shown in Figure 6c, the bitrate was between the upper level of
cushion (cu) and the maximum buffer capacity (Bmax) for the most of the transmission, which allowed
a smooth video playback without any buffer underruns.
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Figure 6. Media throughput obtained for three users at 10 Mpbs links using BBA adaption algorithm.

6.3. Video Quality Shifts

Concerning the number of video quality shifts, which refers to the change of video representation,
users perceive dissatisfaction when the video abruptly changes to a considerably lower bitrate;
therefore, a progressive increase of quality and minimizing the downshifts is desirable to have a good
QoE. Figure 7 show the number of both up- and down-shifts events in every approach. As observed
in Figure 7a–c, regardless on the adaption algorithm used (i.e., TBA, SARA, or BBA respectively),
our approach was able to considerably minimize the downshift events at least for the user with the
highest priority (User 1). However, note that, in the case of the number of the downshifts using
BBA (Figure 7c), for Users 2 and 3, the number is higher using our approach than when using TCP.
Nonetheless, as previously shown in Figure 6, the difference in the decrease of video quality was much
bigger when using TCP than in our approach.

Regarding the number of upshifts, even though this variable is tightly coupled with the downshift
events, the strategy used in each algorithm will significantly influence on how fast the bitrate will
converge again to the best possible quality before a downshift event. Most of the adaption algorithms
will opt for an aggressive decrease and progressive increase, having, therefore, more upshift events
than downshifts, as shown in Figure 7d–f, which depict the number of upshift events using TBA,
SARA, and BBA respectively. The average improvement achieved was around 45%, and 60% for
the downshifts, and 40% and 50% for the upshift events compared to the TCP-only, and QUIC-only
approaches, respectively, which is a significant improvement to the overall QoE.



Electronics 2019, 8, 864 12 of 17

0

20

40

60

TCP QUIC Our

Approach

N
u
m

b
er

 o
f 

D
o

w
n
sh

if
ts

(a) TBA

0

20

40

60

TCP QUIC Our

Approach

N
u
m

b
er

 o
f 

D
o

w
n
sh

if
ts

User 1 User 2 User 3

(b) SARA

0

20

40

60

TCP QUIC Our

Approach

N
u
m

b
er

 o
f 

D
o

w
n
sh

if
ts

(c) BBA

0

30

60

90

TCP QUIC Our

Approach

N
u
m

b
er

 o
f 

U
p

sh
if

ts

(d) TBA

0

30

60

90

TCP QUIC Our

Approach

N
u
m

b
er

 o
f 

U
p

sh
if

ts

(e) SARA

0

30

60

90

TCP QUIC Our

Approach
N

u
m

b
er

 o
f 

U
p

sh
if

ts

(f) BBA

Figure 7. Number of up- and down-shifts per approach using different adaption algorithms.

6.4. Average Downloaded Video Files

Figure 8 depicts the heat-map of the average bitrate distribution of each of the approaches
using the different adaption algorithms throughout the entire video. As observed, regardless of the
algorithm, the bitrate distribution is considerably wider towards the highest video quality segments
(light blue) when using the proposed approach. In fact, when using TBA and SARA, about 85% of the
downloaded segments belonged to that category (Figure 8a,b), while, in the case of BBA (Figure 8c),
it was about 45%, which was marginally better than the other approaches but still the second best
video representation covered a larger part of the downloaded segments. This shows that it is possible
to guarantee the best quality regardless of the user category or the adaption algorithm used. Since a
better representation is stored in a bigger file, the amount of downloaded content was also significantly
higher than when using TCP- or QUIC-only approaches, as shown in Figure 9a,b, respectively. For the
most part, the distribution among the clients was rather even; however, note that there is a slight
progressive decrease in the case of BBA (Figure 9c) as each user was affected by the number of clients
and the increased congestion. Nevertheless, the approach achieved an average of 20% improvement
compared to the TCP-only approach, and 25% compared to the QUIC-only approach.

These results confirm that the proposed approach provides a better overall QoE for all users in
the different categories, while effectively using the available resources.
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Figure 8. Heat map of average downloaded video representation per approach.
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Figure 9. Downloaded content per approach.

7. Discussion

Based on the obtained results, we could observe that using our approach, or even only
implementing HTTP/3, will greatly benefit DASH performance. Even though in the current paper
we used a test server from Google’s QUIC implementation, the benefits can be extrapolated when
the official IETF implementation becomes available. As observed, the main advantage would be the
avoidance of stalling events regardless of the adaption algorithm used by the DASH client, even if they
share a bottleneck at the edge of the topology or the network resources are scarce. This is, of course,
an inherent benefit of using QUIC protocol at the transport level, which was precisely designed to
improve the performance on users with constraint performance in terms of congestion, and loss
percentage [1]. Changing just the transport protocol by itself will not be enough, as some other factors
will also have a detrimental effect on the QoE, e.g., taking into account user categories or sudden
changes in the network. However, although the inclusion of additional control levels will overload the
network devices, there have been some recent proposals—e.g., Segment Routing (SR) [39]—that can
help alleviate the flow-table exponential increase. The overall idea of SR is to divide the end-to-end
path into multiple parts called “segments”, which will be updated based on pre-established policies,
and it is a useful technique to relief the flow-table overload in SDN implementations, as shown in [24].

An additional inherent advantage, especially for mobile users, would be solving the mobility issue.
The control and identification of the transmission in QUIC is done by using a Connection ID, making
therefore possible to migrate a transmission from an end-point that had a change in lower-layers (UDP,
IP) and continue their process, even the in case of a vertical (i.e., interface) or horizontal (i.e., network)
handover [29], as can be observed in [6] where the authors explored this phenomenon.
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It is also important to mention that, although we did not modify the default values of TCP or
UDP for the experiments (e.g., congestion window), we believe that, by adjusting this parameter,
as suggested by Kakhki et al. [40], the results can be further improved for the approaches that use QUIC.

It is worth noting that using HTTP over QUIC has some drawbacks in the current implementations.
For instance, Google and Facebook stated that a wide-scale deployment would require about twice
the amount of CPU to cope with the traffic load compared to current HTTP/2 [29]. Of course, this
performance issue might be reduced by further optimizing the hardware and software (i.e., when the
changes are applied in the kernel) to the UDP stack in a rather short time, since this area is not as
explored as in the case of TCP.

Another point to consider is that, since a centralized-control approach—which combines
information otherwise segregated (i.e., user, network, service, and application)—might be seen
challenging to implement, there are already authors who presented feasible solutions. For instance,
Liotou et al. [41] proposed a solution that allows effective communication between Video Service
Providers (VSPs) and mobile network operators’ (MNOs), which enables feedback towards a better
network-aware video segment selection.

Finally, note that we only focused on a fully SDN-based infrastructure; the current Internet is
made of different intertwined technologies, and therefore the interaction between those non-SDN
domains needs further study.

8. Conclusions and Future Work

In this paper, we present SAND/3, an SDN-Assisted QoE control method for DASH over
HTTP3, which comprises a multi-layer collaborative optimization at the user, application, transport,
and networking levels. The proposed approach combines the best state-of-the-art technologies to
support quality adaption and improve DASH performance on top of HTTP/3. We implemented
the proposed architecture over an SDN-based infrastructure using ODL as the controller in a Linux
environment. Moreover, we evaluated its feasibility using an emulated DASH client using different
adaption bitrate algorithms. Preliminary results show that, by considering end-user categories to
manage the video segment’s traffic over QUIC, the overall QoE improves not only regarding the media
throughput but also reducing the number of stalls, and the number of abrupt downshifts of video
quality compared to current TCP-only and QUIC-only approaches. However, although the QUIC-only
approach showed no significant improvements for DASH by itself, we can conclude that QUIC (and
HTTP/3) features might help to improve DASH performance but it needs further support.

Future directions this work might go are as follows: First, we still need to test the impact
of the approach in different scenarios, e.g., using other adaption algorithms or heterogeneous
clients. Then, we plan to deploy the system using larger network environments, and test using
real implementations of DASH systems and HTTP/3. Finally, it might also be interesting to look at the
impact of recent approaches, such as Multipath QUIC [42], as it could combine the benefits of QUIC
streams multiplexing over multiple paths and their impact on future Internet applications, in particular
video streaming.
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