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Abstract: The development of modern wireless communication systems not only requires the antenna
to be lightweight, low cost, easy to manufacture and easy to integrate but also imposes requirements
on the miniaturization, wideband, and multiband design of the antenna. Therefore, designing an
antenna that quickly and effectively meets multiple performance requirements is of great significance.
To solve the problem of the large computational cost of traditional multi-objective antenna design
methods, this paper proposes a backpropagation neural network surrogate model based on l1
optimization (l1-BPNN). The l1 optimization method tends to punish larger weight values and select
smaller weight values so as to preserve a small amount of important weights and reset relatively
unimportant weights to zero. By using l1 optimization method, the network mapping structure can
be automatically adjusted to achieve the most suitable and compact structure of the surrogate model.
Furthermore, for multi-parameter antenna design problems, a fast multi-objective optimization
framework is constructed using the proposed l1-BPNN as a surrogate model. The framework is
illustrated using a miniaturized multiband antenna design case, and a comparison with previously
published methods, as well as numerical validation, is also provided.

Keywords: multi-objective optimization; antenna design; surrogate model; backpropagation neural
network; l1 optimization

1. Introduction

With the rapid development of radio communication technologies, wireless communication
devices are becoming more diverse and intelligent, especially portable communication devices.
Antennas play a decisive role in the performance of wireless communication devices and are an integral
component of wireless communication devices. However, the multifunctional requirement of modern
antenna design is undoubtedly a challenge for antenna researchers. A classic case is the miniaturization
of the antenna, which not only requires the antenna to have a small size but also strict requirements on
the electrical performance of the antenna (such as reflection coefficient, gain, etc.) [1–3]. Therefore,
efficiently designing modern antennas that meet the structural and performance requirements has
always been a popular research topic in the field of antennas. Whether to promote the theoretical
development of antenna design or apply it to practical engineering design, the research topic has very
important value.

Through certain optimization strategies, the process of finding suitable antenna parameters in a
defined design space so that the antenna can achieve predefined performance requirements is called
antenna optimization design. Traditional antenna optimization design usually requires that the antenna
designer have a deep understanding of antenna design principles and a wealth of work experience
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in adjusting or correcting optimization parameters based on a certain antenna structure. However,
such design methods make antenna design time costly, and the design requirements for complex
antennas are difficult to satisfy. Initially, numerical calculation methods were used to analyze antenna
performance, including the moment method (MOM) and the finite element method (FEM). The analysis
results of these methods were basically consistent with the physical test results of the antenna [4].
Numerical calculation methods combined with optimization methods, such as the gradient method
and the quasi-Newton method [5], could solve structural parameters that met electrical performance
requirements. Then, more powerful antenna performance analysis tools emerged; that is, various
electromagnetic (EM) simulation tools, including the high-frequency structure simulator (HFSS) and
CST, could not only quickly analyze the various performances of the antenna but also optimize the
antenna parameters and reduce the time burden of the antenna design. EM tools often optimize only
the single antenna structure parameters, but the relationship between antenna structure parameters
and performance is very complex and interdependent and influences their constraints. Thus, when the
EM simulation tool performs multi-objective optimization of multiparameter antenna structures, the
design process redundancy, optimization ability and efficiency become poor.

When optimizing the antenna structure, the designer needs to translate the actual antenna
design problem into a mathematical description (i.e., the objective function). The choice of the
objective function has a great influence on the antenna optimization design process. Common
antenna optimization design objectives include gain, return loss and reflection coefficient. Because
there are many influencing factors in the actual antenna structure design problem, the design of
the objective function has many different forms and functional states. Different from simple linear,
unipolar, and differential mathematical problems, the objective functions of the actual antenna solving
problem are mostly highly nonlinear, have multiple extremums and are indivisible, and are difficult
to express explicitly by mathematical formulas. At the same time, antenna optimization design is
mostly a multi-objective optimization problem, for example, antenna optimization design with a
low reflection coefficient and small size. Therefore, traditional antenna design methods often have
difficulty finding global optimal solutions in the design space. However, the rapid development of
intelligent optimization algorithms and computer technology effectively solves the above problems.
The multi-objective intelligent optimization algorithm embodies its powerful local search and global
convergence ability when solving multiparameter, large solution space and complex objective function
optimization problems, which has gradually attracted the attention of antenna researchers.

In this paper, to improve optimization efficiency and reduce the computational cost, we propose a
fast multi-objective optimization method for multiparameter antenna structures based on a surrogate
model. This method uses a backpropagation neural network (BPNN) as a surrogate model to replace
the computationally expensive EM tools and proposes a BPNN of l1 optimization structure (l1-BPNN)
for overcoming the inherent defects of BPNN to construct a high-precision and streamlined neural
network (NN) surrogate model. This method allows us to obtain a set of Pareto-optimal designs at a
very low computational cost. Simultaneously, the surrogate model combined with the multi-objective
evolutionary algorithm allows us to obtain the Pareto-optimal design at a lower computational cost.

This paper is organized as follows. Section 2 investigates the related work based on multiparameter
antenna design. Section 3 introduces the motivation for improving the BPNN surrogate model. Section 4
describes the proposed fast multi-objective optimization method for multiparameter antenna structures
based on the l1-BPNN surrogate model. Section 5 uses a three-band planar monopole antenna to
illustrate our method and verify the effectiveness of the proposed method. Finally, Section 6 summarizes
the study and proposes future work.
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2. Related Work

2.1. Evolutionary Algorithms

Evolutionary algorithms (EAs) are derived from the process of biological evolution. The basic
principle is to simulate the evolution of biological populations through multigenerational genetic
variation processes to achieve environmental adaptation. Evolutionary algorithms are generally
divided into four steps: (1) initializing the population; (2) calculating the fitness of each individual in
the population; (3) generating the next generation of populations by means of selection, crossover,
and mutation; (4) judging the termination condition, and if it is satisfied, terminating the evolutionary
algorithm; otherwise, return to step (2) (as shown in Figure 1). Evolutionary algorithms include four
typical methods: the genetic algorithm (GA) [6,7], genetic programming (GP) [8], evolution strategy
(ES) [9] and evolutionary programming (EP) [10]. Swarm intelligence (SI) algorithms are also a special
type of EA and can be defined as the collective behavior of decentralized and self-organized swarms.
SI algorithms include particle swarm optimization (PSO) [11], ant colony optimization [12], and the
artificial bee colony (ABC) algorithm [13] (Figure 2). Other recently proposed evolutionary techniques
include wind driven optimization (WDO) [14]; invasive weed optimization (IWO) [15,16] and the
covariance matrix adaptive evolution strategy (CMA-ES) [17,18].
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Due to their intrinsic parallelism and powerful global search capability, EAs have emerged as
viable candidates for global optimization problems, and a large number of antenna design problems
have been addressed in the literature in recent years by using EAs. EAs can be real or binary-coded.
Real-coded EAs are commonly used in antenna structure optimization design problems based on size
or shape. This type of design can adjust the size or shape parameters of the antenna structure by
an optimization algorithm based on the specified initial configuration to achieve the given single or



Electronics 2019, 8, 839 4 of 18

multiple antenna performance indexes. In [19], the researchers used a combination of GA and full-wave
EM tools to design a Sierpinski gasket fractal microstrip antenna. A novel coplanar waveguide fed
planar monopole antenna for multiband operation was designed using a PSO algorithm in conjunction
with the MOM method in [20]. Moreover, many researchers have proposed improved optimization
algorithms for antenna design. For example, S. Baskar et al. [21] proposed a comprehensive learning
PSO (CLPSO) algorithm, combined with the SuperNEC EM analysis toolkit to optimize the array
element spacing and unit length of the Yagi–Uda antennas. Y. Sato et al. [22] proposed an adaptive
GA to realize the rapid design of the meander line antenna structure. D. Ding et al. [23] proposed
a modified multi-objective evolutionary algorithm based on decomposition to design a quad-band
double-sided bow-tie antenna. In addition, in binary-coded EAs, each individual is encoded as a binary
string, and the population is updated by crossover, mutation and a selection operator, which is well
suited for discrete antenna topology optimization problems. Compared with size optimization and
shape optimization, topology optimization can automatically generate “holes” in the design domain,
thereby evolving the topology configuration of the structure and weakening the dependence of the
entire design process on the initial configuration. In [24], the binary coded GA was applied to linear
and planar array synthesis with arbitrary radiation patterns. In [25], a multi-objective evolutionary
algorithm based on decomposition combined with enhanced genetic operators (MOEA/D-GO) was
used to design a fragment-type MIMO dual antenna with a high isolation structure. In [26], an
improved binary particle swarm optimization (BPSO) algorithm was used to design multiband or
multitrap ultrawideband fragment-type antennas.

2.2. Surrogate Models

To accurately compute the antenna performance, a high-fidelity EM simulation is often required.
However, it is computationally intensive to perform an EM simulation for a candidate solution, which
poses a great challenge on rapid antenna design [27]. Moreover, the actual antenna design problem
is mostly a multi-objective optimization problem (MOP). The use of multi-objective evolutionary
algorithms (MOEAs) has led to a sharp increase in the number of evaluations of the objective
function, which greatly increases the time cost of antenna optimization design, making it possible for a
multi-objective optimization design to take days or even weeks to complete. Therefore, it is worthwhile
improving the optimization speed at the cost of small degradation of the calculation accuracy.

Fortunately, surrogate model techniques [28–41] have been proven to effectively avoid the huge
computational cost of the EM-driven process. The use of surrogate models has been a recurrent
approach adopted by the evolutionary computational community to reduce the fitness function
evaluations required to produce acceptable results. The surrogate model does not address how
EM simulation evaluates antenna performance. It captures the relationship between the relevant
information of the input and output variables and simulates the behavior of complex systems based on
a set of collected examples. The surrogate model is designed to form a black box that can be mapped
between the antenna design parameters and its performance indicators (e.g., return loss, gain, and
efficiency). The antenna analysis model aims to construct a mapping relationship between design
parameters and performance indexes, while the antenna synthesis model is the mapping relationship
between performance indexes and design parameters. The antenna synthesis model and analysis
model are shown in Figure 3a,b, respectively.
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The principal surrogate model techniques applied to antenna optimization problems are the kriging
models [28], the support vector machines (SVMs) [29], the Gaussian processes [30] and the artificial
neural networks (ANNs) [31]. The techniques can be divided into direct fitness replacement (DFR)
methods and indirect fitness replacement (IFR) methods [32]. In the former group, the approximated
fitness replaces the original fitness during the entire course of the EA process, while in the latter group,
some, but not all processes (e.g., population initialization or EA operators) use the approximated
fitness. Kriging is a spatial prediction method that belongs to the group of geostatistical methods. It is
based on minimizing the mean squared error, and it describes the spatial and temporal correlation
among the values of an attribute. In [33,34], S. Koziel et al. used the low-fidelity sampling points of the
coarse network to construct the kriging surrogate model and then used the spatial mapping method to
correct the kriging model to realize the ultrawideband (UWB) single-cone antenna and fast multitarget
design of the plane quasi-Yagi antenna. On this basis, they proposed constructing a cooperative kriging
(co-kriging) model by adding a limited number of high-fidelity EM response data in the iterative
optimization process, thus effectively improving the prediction accuracy of the surrogate model. SVM
draws inspiration from statistical learning theory and is a set of related supervised learning methods
that analyzes data and recognizes patterns. SVM constructs a hyperplane or a set of hyperplanes in a
high-dimensional space that can be used for classification, regression, or other tasks. In [35], the SVM is
used as a surrogate model to design rectangular patch antennas and rectangular patch antenna arrays.
The GP method is derived from the kriging model [36], which is capable of building the surrogate
model while providing the approximation error (i.e., a value of uncertainty/confidentiality) of the
predictions over the whole input space without the need for testing samples. A GP is completely
specified by its estimation function and uncertainty function (as shown in Figure 4). The estimation
function gives the expectation of the process, and the uncertainty function defines the covariance
between the output random variables. Once the estimation and uncertainty functions are defined, GP
can be handled following rules of probability as applied to multivariate Gaussian distributions.
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In [37], the researchers constructed a gradient-enhanced GP-based surrogate model by exploiting
gradient information from adjoint simulations to reduce the number of training sample points, and the
method was used to design dielectric resonators and UWB antennas. ANNs are based on a nonlinear
parametric model that can provide a ‘universal’ approximation capability for emulating the functions
describing the behavior of complex systems. The definition of an ANN requires two steps: (i) the
selection of the ANN architecture and (ii) its training. As a substitute for the fine model with high
computational burden, ANN technology is rapidly developing in antenna design problems [38–41].
In [38], a radial basis function neural network (RBFNN) was used to estimate the directivity of a
uniform linear array of collinear short dipoles and parallel short dipoles. In [39], multilayer perceptron
NN (MLP-NN)-based model and differential evolution algorithm are used to optimize performance
index for reconfigurable antenna. In [40], the BP algorithm-based MLP-NN as antenna analysis model
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is combined with the particle swarm optimization (PSO) algorithm to form a design program for
making a custom fractal antenna, and a Sierpinski gasket and Koch monopole antennas were taken as
the candidate antennas to verify effectiveness of the developed approach. In [41], a sparsely connected
neural network optimized (SC-BPNN) by HPSO algorithm was proposed and used as a surrogate
model to participate in planar miniaturized multi-band antenna design. The proposed SC-BPNN has a
high prediction accuracy and a simplified network structure, but the comparison experiment results
show that the method has a larger time cost compared with other BPNN-based surrogate models as
the HPSO optimization process is time consuming.

3. Research Motivation

BPNN are based on a non-linear parametric model which is able to provide an ’universal’
approximation capability for emulating the functions describing the behavior of complex systems.
In theory, a multi-layer BPNN can approximate any complex nonlinear function [42]. However, in
order to avoid excessive computational complexity, a three-layer BPNN as shown in Figure 5 is usually
chosen. The neurons between adjacent layers are connected in a fully connected manner, and each
connection corresponds to a weight value. The output layer obtains the error between the actual output
and the expected result, and then updates the weight in direction of the largest gradient according to
the gradient descent algorithm. Finally, the error is forwarded to the input layer once to complete the
update of the weight. The quadratic cost function C0 of conventional BPNN and the weight and bias
update formula are as follows

C0(w, b) =
1

2n

∑
xi
‖yk(xi) −Yk(xi)‖

2
(1)

w→ w′ = w− η∂C0
∂w

b→ b′ = b− η∂C0
∂b

(2)

where xi is the input of ith neuron and represents an antenna structure design variable; n is the number
of input neurons; yk and Yk is the output of kth neuron and expected result respectively; no is the
number of output neurons; w denotes the mapping relationship between adjacent nodes; w′ denote
the updated link weight; b and b′ denote the biases between adjacent nodes and the updated biases,
respectively; η is a learning factor. The BPNN surrogate model is designed to construct a black box
that can be mapped between the antenna design parameters and its performance indicators.
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Since BPNN has the ability to approximate nonlinear maps well and can simulate nonlinear
functions with an arbitrary precision, it is very suitable to replace the EM tools in traditional antenna
designs. However, the traditional BPNN has some shortcomings, which makes the construction of the
surrogate model too expensive and the prediction accuracy not high. First, the network structure of the
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traditional BPNN can only adjust the number of neurons in the input layer, the hidden layer, and the
output layer, and cannot fine-tune the links between the layers, resulting in a network structure that is
not compact enough and wastes computing resources. Second, the BPNN generally has over-fitting
phenomenon, mainly due to too few training sample points or too complex network structures,
resulting in network learning noise data in training sets. Therefore, a simple, compact BPNN is
designed to reflect the performance of a multi-parameter antenna structure in real time.

The major innovation contributions as summarized as follows: (1) A new l1-BPNN surrogate
model is proposed, and l1 optimization [43] is used to automatically determine all mapping parameters
and states in the BPNN model to achieve the most appropriate and compact structure of the surrogate
model; (2) Based on the proposed l1-BPNN model, a computationally efficient analysis strategy is
established for predicting the performance indexes of the particular antenna structure, and then a fast
multi-objective optimization framework for multiparameter structures is formed.

4. Our Approach

4.1. l1-BPNN Model

Since BPNN uses the gradient descent algorithm, the stability of the network requires little
learning efficiency, resulting in a slower network convergence speed. At the same time, the multi-layer
network is often interfered by the local optimal solution, and whether the learning process falls into
the local optimal solution is closely related to the initial parameters (weights w and thresholds b)
of the network [44]. In addition, the network structure will have an impact on the overall learning
ability. Too complex network structure can cause the learning process to be too slow and easily lead to
overfitting phenomenon [41]. On the contrary, too simple network structure may lead to insufficient
learning ability.

Therefore, we propose a new formulation using l1 optimization to automatically determine
network structure and connection parameter. The l1 optimization has the distinctive property for
feature selection within the training process. In the l1 optimization process, the optimization goal
is to maximize g, and at the end of l1 optimization, some weights in the neural networks are zeros
while others remain nonzero. Zero weights mean that the corresponding parts of the mapping can be
ignored and deleted. The cost function of l1-BPNN model is expressed as follows

C = C0 +
λ
N

∑
w
|w| (3)

g =
1

1 + C
(4)

where C0 is used to determine the updated direction and updated size of the connection parameters; C
is the updated cost function and connection parameter is updated as shown in formula (5); N is the
size of the training set, and λ > 0 is the normalized parameter; sgn() is used to return the sign of the
parameter.

w→ w′ = w− η∂C0
∂w −

ηλ
N sgn(w)

b→ b′ = b− η∂C0
∂b

(5)

l1 optimization increases the punishment for large weights, tending to small network weights, so
that a small number of important connection parameters in the network are preserved, while relatively
less important connections will be close to 0, which is inactive, eventually making the network structure
sparse. An l1-BPNN model is given in Figure 6, where logsig(·) is the most commonly used S-type
transfer function for hidden layers, and defined as

log sig(xi) =
1

1 + e−xi
, xi ∈ <. (6)
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Compared with the traditional BPNN model with fixed mapping structure, the l1-BPNN model
can adjust the mapping structure automatically in addition to the number of neurons to achieve the
most suitable and compact structure of the surrogate model.
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4.2. Fast Multi-Objective Antenna Optimization Framework Combining MOEAs and l1-BPNN Surrogate
Model

In this section, we use the l1-BPNN surrogate model discussed in the previous section, rather than
conventionally time-consuming EM simulations, to evaluate the antenna performance. The first step
in building a surrogate model is to use Latin hypercube sampling (LHS) [45,46] to obtain a uniformly
distributed and representative sample set S = [s1,s2, . . . ,sq]T, and to import those sample sets S into
the EM tool to achieve high-accuracy response set Y. The quality of S and Y is directly related to the
generalization ability of the surrogate model, but the process is the most time consuming in the overall
surrogate model construction. Then S and Y will be used as input layer data and output layer data
to construct antenna surrogate model Rs(x), respectively. The l1 optimization method automatically
adjusts the network mapping structure in this process. Thus, the whole multi-objective optimization
framework is summarized as follows:

1. Predefine the design space;
2. Determine the number of neurons in each layer of NN and the antenna geometry vector x;
3. Sample design space using LHS and acquire the response set Y;
4. Adjust the network mapping structure by l1 optimization;
5. Construct an l1-BPNN surrogate model Rs(x);
6. Optimize the population by MOEA with an l1-BPNN surrogate model;
7. If termination condition is not satisfied then go to 6; else end optimization.

The flowchart of MOEA with an l1-BPNN surrogate model is shown in Figure 7. It is expected
that our approach will greatly reduce the computational cost of the antenna optimization process and
meanwhile speed up the convergence.
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5. Verification Case Study and Discussions

This section will give an application example of a miniaturized planar triple-band antenna
design to further illustrate the advantages of the fast multi-objective antenna optimization framework
constructed by l1-BPNN model.

5.1. l1-BPNN Antenna Surrogate Model

The initial structure of the planar monopole antenna is shown in Figure 8. This antenna is formed
by a fork-shaped radiator and a rectangle ground plane, which produces different resonant frequency
bands to satisfy multiband applications. The antenna is printed on a Rogers RO4003(tm) substrate
with a thickness of 0.5 mm, permittivity of 3.55, and loss tangent of 0.0027. Design variables are
x = [ l l1 l2 l3l4 l5 w w1w2 g ]T and initial ranges are given in Table 1 (Units: mm).
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Table 1. Initial Ranges of Design Parameters.

Parameter l l1 l2 l3 l4

Range [36, 40] [16, 19] [10, 12.5] [8.5, 10.5] [2.8, 3.9]

Parameter l5 w w1 w2 g

Range [9.5, 11.5] [19, 24] [6.5, 8.3] [8.7, 11.2] [1.8, 2.1]

A high-precision surrogate model means that a large number of training sets and response sets
need to be acquired, which makes the computational cost increase dramatically. The surrogate model
we want to construct is low-cost and can respond to trends in performance indexes. Therefore, the LHS
is introduced to sample design space and obtain a representative sample set S including 200 sample
points. Next, we acquire the high fidelity response set Y of sampling points by using EM simulation
software HFSS, S and Y are used as input layer data and output layer data to construct l1-BPNN
surrogate model, respectively. As for the determination of the number of hidden layer nodes, although
there are some empirical formulas for reference, there is no mature theory as a guide. In order to
ensure the stability of the network, experimental tests are used to determine the number of hidden
layer nodes. The node test interval is taken as [10, 20]. Then S and Y will be used as input layer data
and output layer data to construct antenna surrogate model Rs(x), respectively. The l1 optimization
method automatically adjusts the network mapping structure in this process.

Table 2 shows the fitness values and the number of network mapping of the three models (the
proposed l1-BPNN over the traditional BPNN [40], the BPNN optimized by PSO (PSO-BPNN) [47]).
From Table 2, we have the observation that the l1-BPNN generally has better fitness values and a
simpler network mapping structure than other models. Through this experiment, we choose the
network mapping structure when the number of hidden nodes is 19, and its connection parameters
only account for 72% of other models.

Table 2. Comparison of Fitness Values for Predicting the S11 Values.

nh

l1-BPNN Conventional BPNN PSO-BPNN

Fitness
Values

Number of
Links

Fitness
Values

Number of
Links

Fitness
Values

Number of
Links

10 0.9318 154 0.8892 275 0.9190 275
11 0.9435 186 0.8781 301 0.8879 301
12 0.9419 235 0.8971 327 0.9074 327
13 0.9457 254 0.9056 353 0.9313 353
14 0.9478 210 0.9022 379 0.9147 379
15 0.9324 248 0.9130 405 0.9203 405
16 0.9299 259 0.8975 431 0.9138 431
17 0.9365 282 0.9087 457 0.9312 457
18 0.9528 311 0.8909 483 0.9383 483
19 0.9531 367 0.8925 509 0.9205 509
20 0.9501 389 0.9053 535 0.9226 535

Figure 9 shows the error value curves of the three models during training process. It can be
observed that the number of iterations and the training error of the proposed model are smaller than the
other two models, indicating that l1-BPNN has better convergence performance and training accuracy.
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Figure 9. Training error curves of BPNN, PSO-BPNN and l1-BPNN.

In addition, Figure 10 shows a comparison of the predictions of Kriging [33], traditional BPNN [40],
PSO-BPNN [47], and l1-BPNN with the HFSS response results. Compared to Figure 10b–d, Figure 10a
is more concentrated, indicating that the predicted structure of l1-BPNN is closer to the HSFF response.
Table 3 clearly lists the time costs of different surrogate models and EM simulations. It is observed that
the surrogate model is generally less time consuming.

In summary, our proposed l1-BPNN model can be used for performance prediction efficiently
instead of EM simulation software and achieve a fast multi-objective optimization with the help of
MOEAs for a predefined antenna geometry.
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where fi is the ith sampling frequency point within the given bands of operation; 
11( )iS f  is the 

reflection coefficient of sampling point fi; N is the number of sampling frequency points. The objective 
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Figure 10. Comparison of actual versus predicted |S11| values when using (a) l1-BPNN, (b) PSO-BPNN,
(c) BPNN, (d) kriging surrogate models.

Table 3. Computational Time of Various Surrogate Models and HFSS Simulations.

Model HFSS Kriging BPNN PSO-BPNN l1-BPNN

Total time (s) 587.82 1.92 0.36 0.28 0.26
Average time(s) 58.78 0.192 0.036 0.028 0.026

5.2. Pareto-Optimal Designs of a Planar Miniaturized Multiband Antenna

In this section, the MOEA/D [48] and l1-BPNN model are combined to achieve fast multi-objective
optimization of the planar antenna geometry presented in Figure 9. Two design goals are (i) the
values of S11 are lower than −10dB within the frequency bands of 2.40–2.60 GHz, 3.30–3.80 GHz,
5.00–5.85 GHz, covering the entire WLAN2.4/5.2/5.8 GHz and WiMAX3.5 GHz applications (objective
F1); (ii) the size of the antenna structure is reduced to satisfy the need for antenna miniaturization in
portable electric devices (objective F2). The objective function of F1 is specified as

F1 =
1
N

n∑
i=1

Q( fi) (7)

Q( fi) =
{ ∣∣∣S11( fi)

∣∣∣ ∣∣∣S11( fi)
∣∣∣ > −10

−10
∣∣∣S11( fi)

∣∣∣ ≤ −10
(8)

where fi is the ith sampling frequency point within the given bands of operation; S11( fi) is the reflection
coefficient of sampling point fi; N is the number of sampling frequency points. The objective function
of F2 can be defined as

F2 = w× l (9)

The parameters of MOEA/D [48] are set as follows: the number of population is 100, and the
maximum number of iterations is 150. Figure 11 displays the representation of the Pareto set of
the optimized antenna at different iterations. It can be observed that as the number of iterations
increases, the objective function becomes closer to a smaller size and a lower S11 value. The detailed
antenna designs are given in Table 4. Furthermore, Figure 12 demonstrates the good fitting ability
of the l1-BPNN model. The HFSS simulation curve of the Pareto-optimal designs well matches the
l1-BPNN prediction values. In addition, S11 curves of all designs cover the target frequency band (red
shadow) to meet the preset application requirements. Figure 12 shows how close the predicted value
of the surrogate model we constructed is to the EM curve. Additionally, it is observed that the S11
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curve is lower than −10 dB within the three frequency bands of 2.33–2.66 GHz, 3.05–3.80 GHz, and
5.06–5.96 GHz, simultaneously satisfying the WLAN and WiMAX applications.
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Figure 12. Simulated (—) and predicted (#) reflection responses for the designs of the PF in Figure 11
(from top left to bottom right): (a) x(1), (b) x(2) , (c) x(3) , (d) x(4) , (e) x(5) , (f) x(6).

Table 4. Planar Multiband Antenna: Selected Pareto-Optimal Designs.

Design x(1) x(2) x(3) x(4) x(5) x(6)

F1[dB] −13.52 −13.27 −12.78 −12.49 −12.20 −11.74
F2[mm2] 889.35 862.14 838.10 801.27 781.19 754.46

l 38.4 38.7 39.0 38.0 39.1 37.9
l1 17.5 18.3 17.1 17.8 16.6 17.5
l2 12.4 11.2 12.2 11.4 11.9 11.7
l3 10.2 9.9 9.6 10.3 9.4 10.2
l4 3.3 3.2 3.3 3.1 3.3 3.0
l5 9.7 9.6 9.9 10.1 10.4 9.8
w 23.2 22.3 21.5 21.1 19.9 19.7

w1 6.5 7.1 7.3 7.2 7.4 7.5
w2 10.4 9.4 10.2 9.6 9.5 9.0
g 2.0 1.9 1.9 2.0 1.9 1.9

In order to verify the feasibility and validity of l1-BPNN model, the results of fitness F1 and
percentage error for those selected Pareto-optimal designs, which are calculated by different approaches,
are listed in Table 5, and Figure 13 shows an error comparison histogram between simulation results and
prediction results in Table 5. The predictive results 1 and predictive results 2 are given by traditional
BPNN and l1-BPNN surrogate model strategy, respectively. The minimum error percentages are 3.58%
and 1.33% for prediction results 1 (with an average error of 7.69%) and prediction results 2 (with an
average error of 2.65%), respectively. Therefore, our proposed l1-BPNN is meaningfully better than the
conventional BPNN with an acceptable error rate.

Table 5. Comparison of Fitness Values F1 of Selected Pareto-Optimal Designs Obtained by Surrogate
Model and HFSS.

Design x(1) x(2) x(3) x(4) x(5) x(6)

Simulation results −13.52 −13.27 −12.78 −12.49 −12.20 −11.74
Predictive results I −14.41 −11.71 −13.75 −11.39 −13.15 −11.32
Predictive results II −13.70 −13.82 −13.10 −12.77 −11.92 −12.19

Error rate I (%) 6.59 11.76 7.59 8.81 7.79 3.58
Error rate II (%) 1.33 4.14 2.50 2.24 2.29 3.38
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Furthermore, Table 6 lists the computational cost comparisons for the four antenna optimization
methods. Scheme I is direct MOEA/D-based optimization without a surrogate model. Scheme II,
Scheme III and Scheme IV are based on the traditional BPNN [40], SC-BPNN [41], and l1-BPNN
surrogate model, respectively. As listed in Table 6, the time cost of Scheme IV represents only 1.26% of
scheme I, scheme II is approximately 1.37% of the time cost of scheme I, and scheme III is approximately
1.51% of the time cost of scheme I. Figure 14 shows the time-consuming ratio of each part of the
multi-objective optimization method using the different surrogate models. As shown in Figure 14b,
since SC-BPNN requires a time-consuming HPSO optimization process, its model construction time
cost is the largest among these three surrogate-assisted methods. On the contrary, as shown in
Figure 14c, since our proposed model has a simplified network structure and requires fewer training
times, its model construction time cost is the smallest among these three surrogate-assisted methods.

Table 6. Comparison of Computational Cost among Different Antenna Optimization Schemes.

Optimization Approach Number of EM Simulations
CPU Time/h

Total Relative (%)

Scheme I 15,000 245.96 100
Scheme II 200 3.38 1.37
Scheme III 200 3.71 1.51
Scheme IV 200 3.11 1.26
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surrogate models: (a) Scheme II, (b) Scheme III, and (c) Scheme IV.
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6. Conclusions

An improved BPNN surrogate model is developed in this paper to applied low-cost multi-objective
multiparameter antenna optimization. To overcome the shortcomings of the traditional BPNN, an
l1-BPNN model is proposed. Some modifications are given for better network performance, including
automatically adjusting the network mapping structure by l1 optimization. Compared with other
existing BPNN-based surrogate models, the proposed l1-BPNN model has smaller construction cost,
better convergence performance, and prediction accuracy. Then, by integrating the l1-BPNN surrogate
model with MOEAs, a low-cost antenna design method is established, which can quickly realize the
optimal design of multi-objective and multi-parameter antenna structures. This technique has been
illustrated using a planar antenna structure. Comparison with the previously published surrogate
model scheme indicates significant savings of the overall optimization cost that can be achieved with
our l1 optimization method.

Although the results from this study are very encouraging, further research will be conducted to
address several issues. First, the connection parameters are decremented to zero at a constant speed
during l1 optimization. When the absolute value of a weight is large, the speed of optimization is too
slow. So, we intend to improve the l1 algorithm so that the weight reduction speed is related to the
absolute value of the weight to improve the optimization efficiency. Second, the proposed method is a
direct fitness surrogate method, which cannot be updated in the EA process. Therefore, we want to
study the dynamically updated BPNN surrogate model, which aims to improve the utilization of EM
data and further reduce its construction cost.
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