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Abstract: Parallel robots present outstanding advantages compared with their serial counterparts;
they have both a higher force-to-weight ratio and better stiffness. However, the existence of
closed-chain mechanism yields difficulties in designing control system for practical applications,
due to its highly coupled dynamics. This paper focuses on the dynamic model identification of the
6-DOF parallel robots for advanced model-based visual servoing control design purposes. A visual
closed-loop output-error identification method based on an optical coordinate-measuring-machine
(CMM) sensor for parallel robots is proposed. The main advantage, compared with the conventional
identification method, is that the joint torque measurement and the exact knowledge of the built-in
robot controllers are not needed. The time-consuming forward kinematics calculation, which is
employed in the conventional identification method of the parallel robot, can be avoided due to
the adoption of optical CMM sensor for real time pose estimation. A case study on a 6-DOF RSS
parallel robot is carried out in this paper. The dynamic model of the parallel robot is derived based on
the virtual work principle, and the built dynamic model is verified through Matlab/SimMechanics.
By using an outer loop visual servoing controller to stabilize both the parallel robot and the simulated
model, a visual closed-loop output-error identification method is proposed and the model parameters
are identified by using a nonlinear optimization technique. The effectiveness of the proposed
identification algorithm is validated by experimental tests.

Keywords: parallel robot; dynamic model; visual servoing; closed-loop output-error identification;
optical CMM sensor

1. Introduction

Parallel robots are closed-chain mechanisms in which the end-effector is supported by a series of
independent computer-controlled serial chains linked to the base platform. Parallel robots present
some outstanding advantages in higher force-to-weight ratio and better stiffness compared with
serial manipulators. Specifically, 6-DOF parallel robots have been used in various applications
(e.g., flight simulators [1], manufacturing lines [2] and medical tools [3]). Due to the manufacturing
tolerances and deflection in the robot structure, the typical positioning discrepancy between a virtual
robot in simulation and a real robot can be 8–15 mm [4], which does not meet the precision requirement
of many potential applications. The low absolute accuracy of the robot is the main problem for the
off-line programming based applications where tens of thousand points or continuous trajectories are
to be reached or tracked.

The existence of closed-chain mechanism and multiple moving parts in the parallel robots,
for example, in a 6-DOF Gough-Stewart platform consisting of 13 moving bodies (12 legs and one
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end-effector), yields difficulties in dynamic analysis of parallel robots. Moreover, the dynamic model
plays an important role in the model-based controller designs, especially in applications where high
positioning and tracking accuracy is needed. In contrast to serial robots, where the joint angles are
used as the state variables for modeling, the parallel robots are preferably modeled and controlled
in the operational (workspace) coordinates where the pose of the end-effector and its derivatives are
used as the state variables [5]. The main reason is that there is almost no analytical expression for
the forward kinematic model of 6-DOF parallel robots. For example, there are 40 forward kinematics
solutions [6] mapping the joint coordinates to the pose of the end-effector platform in a Gough-Stewart
platform. In addition, to this day, there is no effective method to determine the pose of the platform
from multiple solutions. The dynamic models of 6-DOF Gough-Stewart parallel robot have been built
by several approaches such as Newton-Euler [7], Lagrangian formulation [8] and the principle of
virtual work [9]. Newton-Euler formulation can provide the internal forces for each individual body of
the parallel robot, which can benefit the mechanical design process of the parallel robot. However,
the computational load is high due to the large amount of equations. In contrast, the Lagrangian and
virtual work methods are more efficient and suitable for the control design purpose since the reaction
forces between the bodies of the parallel robot are not considered. The published research work on
6-DOF RSS parallel robots is considerably scarcer compared with that on Gough-Stewart parallel robot.
The dynamic models of one type of 6-DOF RSS parallel robot, in which the active rotation axes are
coplanar, are built based on Newton-Euler equations [10] or Lagrangian formulation [11] for dynamic
analysis and tracking control purpose respectively. In this paper, the dynamic model of a 6-DOF RSS
parallel robot, where the active rotation axes are parallel to each other, is built based on the virtual
work principle, and the explicit form of the dynamic model is derived for identification and dynamic
model-based visual servoing purposes.

The dynamic parameters are normally unknown or approximately derived from manufacturer
specifications, which are not accurate enough for the dynamic model-based controller design.
System identification is an effective method to perceive the uncertain parameters in the dynamic
model of the system, and has been applied to many engineering practices [12]. As a highly coupled
multi-input/multi-output (MIMO) nonlinear system, industrial robots aroused great interest and
challenge for the identification method. The literatures on the state-of-the-art identification methods
can be found in [13–15]. For the industrial robots, the dynamic identification is normally performed in
closed-loop, since the robotic system is open loop unstable. In [16], a MIMO closed-loop identification
based on weighted least square estimation has been applied to an industrial serial robot used in a
planar configuration. In addition, other closed-loop identification methods with maximum likelihood,
instrumental variable and related implementation issues on industrial serial robots are addressed
in [17,18]. A new closed-loop output-error identification scheme has been adopted for the serial
robots [19]. The output-error identification method aims at finding the dynamic model parameters by
minimizing the output deviation between the actual and simulated systems subjecting to the same
input [20]. In [19], the identification procedure is implemented in a closed-loop control structure and
the joint torque is the measured output, which avoids the estimation of the velocity and acceleration
from the measured joint position.

One potential issue of the above-mentioned identification methods is that joint torque
measurement or a related control signal is needed for identification, which is not always available
for the industrial robots, since the built-in controllers of many industrial robots are unaccessible and
do not provide the torque actuation mode [21]. The input of built-in controllers is the position or
velocity command, and the output is the joint torque which is unaccessible to the users. Hence the
torque and current of the motors cannot be derived directly and it is not easy to install additional
torque sensors to get the direct measurement. The unknown controller can be identified along with
the dynamic parameters as introduced in [22]. However, joint torque measurement is still needed for
identification purposes.
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In [13,23–25], identification issues in parallel robots have been discussed. Most research works on
dynamic identification of parallel robots are based on a simplified dynamic model, such as in [26–28].
Nevertheless, the systematic derivation of the full inverse dynamic model is proposed based on
Jourdain’s principle in [24]. In addition, the identification procedure is carried out in two steps:
1. identifying inertial parameters and 2. estimating the friction coefficients. In [23], the full parameters
of robots’ dynamic model and the joint drive gains are identified based on the total least square
method, and the method is tested on a 3 DOF Orthoglide parallel robot. Many identification methods
for 6 DOF parallel robots in [23–25] come directly from those of serial robots. By rewriting the
inverse dynamic model and friction model into a linear form with respect to the dynamic and friction
parameters, the identification of the unknown parameters can be done through least squares technique.
However for 6 DOF parallel robots, to avoid solving forward kinematics, the regression matrix
of the dynamic model is constituted of the pose state variables in the operational space. In [25],
only joint space state variables are measured and estimated. Therefore the state variables in operational
space should be calculated through numerical computation of the forward kinematics, which is
quite time-consuming.

One way to avoid computing the forward kinematics in the identification process is to directly
measure the pose of the end-effector in the operational space based on vision sensors. In [28],
a camera-based dynamic identification procedure is given for a 4-DOF parallel robot with a heavily
simplified dynamic model by considering only the inertia of the end-effector. Also, a vision sensor
based dynamic identification has been carried out on serial robots [29] and cable robots [30], but seldom
on parallel robots. The optical CMM sensor is a dual camera based vision sensor, which can provide
the real-time pose information of the targets. The coordinates of target reflectors in the field of view
(FOV) can be directly measured by the sensor. By observing four non-collinear reflectors on the
platform, the pose of the end-effector can be measured. The optical CMM sensor has been applied to
the kinematics calibration [31] and the path tracking controller design [32] for the robots. To increase
the flexibility and tracking accuracy, vision can also be incorporated into the feedback control loop of
the parallel robot systems to form the so-called visual servoing control. The pose of the end-effector
can be acquired on-line by using the optical CMM sensor, i.e., C-track from Creaform Inc. (Levis, QC,
Canada). The visual servoing controller for parallel robot is superior to the joint space controller due to
the fact that the kinematic errors introduced from transforming the desired trajectory in the operational
space into the one in the joint space in the joint controller can be avoided. The measured pose together
with the visual servoing controller allows using the closed-loop output-error identification method [20]
to identify the dynamic model of the parallel robot.

Upon the above discussions, a closed-loop output-error identification method based on a CMM
sensor is proposed for parallel robots in this paper. The end-effector pose is measured by the optical
CMM and served as the output of the real plant. The same outer loop visual servoing controller and
reference trajectory are employed in both actual robot and simulation model for model identification.
The forward kinematics of parallel robots, which is usually solved by using time-consuming numerical
algorithm, can be avoided. The exact knowledge of the built-in controller and the joint torque are not
needed. The dynamic model parameters are identified by using nonlinear optimization technique.
The experimental tests validate the identification results.

This paper is organized as follows. Section 2 describes the dynamic model of a 6-RSS parallel robot.
The closed-loop output-error identification method is proposed and the procedure of the identification
is presented in Section 3. The dynamic model validation based on simulation and the experiment
results of the identification are given in Section 4. Finally, the conclusion is drawn in Section 5.

2. Dynamic Modeling

In this section, the kinematic analysis of a 6 RSS parallel robot is conducted and the dynamic
model is derived based on the virtual work principle.



Electronics 2019, 8, 836 4 of 23

2.1. Kinematic Analysis

The motivation of kinematic analysis is to determine geometry mapping from the motion of
end-effector frame w.r.t the base frame (operational space motion) to the rotation of the actuators, as
regarding the revolute joint frames (joint space motion). Based on the geometry mapping, the link
Jacobian matrix is derived for building the dynamic model. As shown in Figure 1a, the 6-RSS
parallel robot consists of six identical serial branch chains. Each serial branch, illustrated in Figure 1b,
consists of a wrench, a link, an active revolute joint (R) and two passive spherical joints (S). One
spherical joint is used to connect the wrench and the link. The revolute joint is driven by actuators
and connects the wrench and the base platform, while the spherical joint is employed between
the link and the end effector. The base frame ΣO is assigned at the symmetric center of the base
platform and the end-effector frame ΣE is also attached at the symmetric center, while E denotes the
coordinate vector of the frame origin regarding the base frame. The coordinate vectors of revolute
joint centers regarding the base frame are marked by Bi(i = 1, 2, . . . , 6) while the rotation centers of
spherical joints are represented as Ti and Ai respectively. In the subsequent kinematic and dynamic
analysis, the coordinates of the parts of parallel robot are defined regarding the base frame by default.
The moving wrench and link frames ΣWi and ΣLi are attached to the wrenches and links respectively
as depicted in Figure 1b. The coordinate vectors of the centers of mass of the wrenches and links are
denoted as cwi and cli respectively. The vector θ = [θ1, θ2, . . . , θ6]

T represents the rotation angles of the
actuators. The coordinate vector from E pointing to Ai regarding the end-effector frame is denoted as
ai. And the coordinate vectors wi and li represent the directions and length of the wrench and link.
The pose vector of the end-effector frame is expressed as χE = [h, φ]T , where h = [x, y, z]T represents
the position of the end-effector frame origin, while φ = [α, β, γ]T represents the Euler-angle rotation of
the frame. The rotation matrix, R, is given by

R = Rx(α)Ry(β)Rz(γ) =

 cβcγ −cβsγ sβ

cαsγ + cγsβsα −sβsαsγ + cαcγ −cβsα

sαsγ− cαcγsβ cαsβsγ + cγsα cβcα

 , (1)

where Rx, Ry, Rz are the orthonormal rotation matrices for the rotation about X, Y, Z axes respectively.

The vector χ̇E =
[

ḣT , φ̇T
]T

and χ̈E =
[

ḧT , φ̈T
]T

are the first and second order time derivatives of

χE. The vector vE =
[

ḣT , ωT
]T
∈ R6×1 denotes the linear and angular velocities of the end-effector

frame. Then v̇E is the acceleration vector. The relationship between the Euler angle rate φ̇ and angular
velocity ω is expressed as follows

ω = Je φ̇, (2)

where Je =

1 0 sβ

0 cα −cβ sα

0 sα cβ cα

 is the analytical Jacobian matrix, s and c stand for sin and

cos respectively.
The following assumptions are made for kinematic and dynamic analysis of a 6-RSS parallel robot:

• The end-effector platform, wrenches and links are symmetric with respect to their axes.
• The links do not rotate about its symmetric axes.

As shown in Figure 1a,b, the closure loop position relationship between the end-effector frame
and the base frame can be expressed as the following:

E + ai − Ai = 0 and (3)

Bi + wi + li − Ai = 0, i = 1, 2, . . . , 6. (4)
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Then the linear velocity can be derived by combining Equations (3) and (4) and taking the
time derivative:

ḣ + ω× ai = ω1 ×wi + ω2 × li, i = 1, 2, . . . , 6, (5)

where ω1 and ω2 are the angular velocity of frame ΣWi and ΣLi regarding ΣO respectively.
Then, dot multiplying li on both sides of Equation (5) yields:

liḣ + (ai × li)ω = (wi × li) ·ω1, i = 1, 2, . . . , 6. (6)

Since the wrench rotates around a fixed axis which is denoted as ŝ = [0, 0, 1]T , the Jacobian matrix
mapping from the end-effector Cartesian velocity to joint velocity can be derived by the following:

Ja1θ̇ = Ja2vE, (7)

where Ja1 = diag((w1 × l1) · ŝ, (w2 × l2) · ŝ, . . . , (w6 × l6) · ŝ), Ja2 =

 lT
1 (a1 × l1)

T

...
...

lT
6 (a6 × l6)T

.

When the robot works in the singularity-free operational space, the Jacobian matrix Jad can be
derived as follows:

θ̇ = J−1
a1 Ja2vE = JadvE. (8)

Then the translational velocity of the center of mass of the wrench ˙cwi can be obtained from Equation (9).

˙cwi = θ̇i ŝ× cwi = JauvE, (9)

where Jau = (ŝ× cwi )Jadi ∈ R3×6, and Jadi is the ith row of Jad. Then the link Jacobian Ja mapping vE

to the velocity of the center of mass of the ith wrench v1 = [ ˙cwi
T , ωT

1i]
T can be derived as

v1 =

[
˙cwi

ω1i

]
=

[
Jau

ŝJadi

]
vE = JavE. (10)

Equation (11) can be deduced by right cross multiplying li on the both sides of Equation (5) and
using Lagrange’s rule.

(ω2 · li) · li − (li · li) ·ω2 = ḣ× li + (ω× ai)× li − (ω1 ×wi)× li. (11)

Since the link does not rotate about its longitudinal axis, ω2 · li = 0 holds.
Rearranging Equation (11), the following equation can be derived:

‖ li ‖2 ω2 = [li]X ḣ− [li]X [ai]X ω + [li]X [wi]X ω1, (12)

where the operator [·]X and ‖ · ‖ represents the cross product operation and Euclidean
norm respectively.

By combining Equations (8) and (12), the following Jacobian matrix Jbd mapping from the
end-effector Cartesian velocity to the angular velocity of the link frame can be deduced:

ω2 = JbdvE,

Jbd =
1

‖ li ‖2 {
[
[li]X − [li]X [ai]X

]
+ [li]X [wi]X ŝJadi}.

(13)

The translational velocity of the center of mass of the link ˙cli can be obtained as follows:

˙cli = −[wi]Xω1 − [cli ]Xω2 (14)
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By substituting Equations (10) and (13) into Equation (14), the following velocity relationship can
be derived:

˙cli = (−[wi]X ŝJadi − [cli ]X Jbd)vE = JbuvE (15)

Hence the link Jacobian Jb mapping vE to the velocity of the center of mass of the ith link v2 can
be derived.

v2 =

[
˙cli

ω2i

]
=

[
Jbu
Jbd

]
vE = JbvE (16)
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Figure 1. (a) The sketch of 6-RSS parallel robot, (b) Single serial branch.

2.2. Dynamic Modeling

In contrast to serial robots, the dynamic modeling of parallel robots is more complicated due to
its closure geometrical structure and difficulties in deriving the forward kinematics. The principle of
virtual work is employed to derive the explicit form of the dynamic model in terms of the operational
coordinates and their time derivatives as shown in Equation (17) for 6-DOF RSS robot, which is useful
for dynamic model-based controller design.

τg = M(χE)v̇E + C(χE, vE)vE + G(χE) + τf , (17)

where τg denotes the general force acting on the end-effector frame, τf is the friction, M(χE) is the
mass matrix, C(χE, vE) is Coriolis and centrifugal matrix, and G(χE) denotes the gravity. In order to
avoid solving the forward kinematics of the parallel robot which may not have analytical solutions,
the pose in the coordinates of the end-effector and its time derivatives are employed in Equation (17).

The balance equation of virtual work principle for a moving rigid body, ∗, can be expressed
as follows:

F̄∗ · δχ∗ = (Fext∗ + F̃∗) · δχ∗ = 0, (18)

in which F̄∗ contains the static balance force and torque, Fext∗ = [ f T
ext∗ , τT

ext∗ ]
T is the external force

( fext∗ ) and torque (τext∗ ) exerted on the center of mass of the body respectively, δχ∗ denotes the virtual
displacement, and the fictitious force and torque are:

F̃∗ =

[
m∗g −m∗ḧ∗

−(I∗ω̇∗ + ω∗ × I∗ω∗)

]
, (19)
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where m∗ is the mass of the body, g is the gravity vector, ḧ∗ is the linear acceleration of center of mass
of the body, I∗ is the moment of inertia, ω∗ and ω̇∗ denote the angular velocity and acceleration of the
moving body frame. Further, F̄∗ can be represented in the form similar to Equation (17):

F̄∗ = Fext∗ + M∗v̇∗ + C∗v∗ + G∗, where

M∗ =

[
−m∗E3×3 03×3

03×3 −I∗

]
, C∗ =

[
03×3 03×3

03×3 −ω∗ × I∗

]
,

G∗ =

[
m∗g
03×1

]
, v̇∗ =

[
ḧ∗
ω̇∗

]
, v∗ =

[
ḣ∗
ω∗

] (20)

in which E3×3 ∈ R3×3 denotes the identity matrix. For a 6-DOF RSS parallel robot, there are 13 moving
bodies including the end-effector, 6 wrenches and 6 links. Therefore the balance equation of the 6-DOF
parallel robot can be rewritten as Equation (21):

F̄p · δχe +
6

∑
i=1

F̄li · δχli +
6

∑
i=1

F̄wi · δχwi = 0, (21)

where F̄p, F̄li and F̄wi contain the static balance force and torque exerted on the centers of mass of the
platform, links and wrenches respectively and can be represented in the same form as Equation (20),
δχe, δχli , and δχwi are the virtual displacements accordingly.

In addition, the following relations hold for the velocity analysis:

δθ = Jadδχe, δχwi = Jaδχe, δχli = Jbδχe. (22)

Substituting Equation (22) into Equation (21), the terms in Equation (17) can be derived as
the following:

M(χE) =Mp +
6

∑
i=1

(JT
ai

Mwi Jai + JT
bi

Mli Jbi
),

C(χE, vE) =Cp +
6

∑
i=1

(JT
ai

Cwi Jai + JT
ai

Mwi
˙Jai + JT

bi
Cli Jbi

+ JT
bi

Mli
˙Jbi
),

G(χE) =Gp +
6

∑
i=1

(JT
ai

Gwi + JT
bi

Gli ),

τg =JT
adτa,

(23)

where τa = [τa1 , τa2 ...τa6 ]
T is the actuator torque vector applying on the revolute joints, and the details

of Equation (23) are given in Appendix A. The joint friction is described by Coulomb model [33] that
has been used in the modelings of both parallel robots [24] and serial robots. Based on this friction
model, the friction τf in Equation (17) can be represented as:

τf = JT
ad


fc1 sign(Jad1 vE) + fv1 Jad1 vE

fc2 sign(Jad2 vE) + fv2 Jad2 vE

...
fc6 sign(Jad6 vE) + fv6 Jad6 vE

 , (24)

where fci and fvi are the Coulomb and viscous friction parameters of the ith revolute joint.
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2.3. Dynamic Model Simplification

Since the kinematic parameters of parallel robots can be obtained from the manufacturer
specifications or by calibration [31], only inertia and friction parameters are considered for the
model identification of parallel robots. Considering the heavy computation load of solving inverse
dynamic model for the dynamic identification and visual servoing purpose, a reduction of the dynamic
parameters with the trade-off between the computation load and accuracy should be implemented.
The geometry feature of the parallel robot can be considered for simplification. For the 6-RSS parallel
robot, it is assumed that the wrenches, links and end-effector are symmetric. Furthermore, the center of
mass is assumed to be located in the symmetric center. Therefore, the dynamic parameters for each body
of the wrenches, links and end-effector can be reduced to ξ∗ = [m∗, Ix∗ , Iy∗ , Iz∗ ]. Then Equation (17)
can be rewritten as the linear form w.r.t. the dynamic parameters and the friction coefficients:

τg = Γ(χE, vE, v̇E)Ξ, (25)

where Ξ = [ξT
p, ξT

w1, ξT
w2, . . . , ξT

w6, ξT
l1, ξT

l2, . . . , ξT
l6, fc1 , fc2 , . . . , fc6 , fv1 , fv2 , . . . , fv6 ]

T is a R64×1 vector
of dynamic parameters and the friction coefficients, and Γ(χE, vE, v̇E) is the regressor matrix,
which consists of the kinematic parameters, state variables and their derivatives. Γ(χE, vE, v̇E) can be
derived using the Symbolic Math Toolbox of Matlab. Given an exciting trajectory as a reference input
to the robot, which will be introduced in Section 3.3, Equation (26) can be obtained by reorganizing
Equation (25). 

τg1

τg2
...

τgn

 =


Γ(χE1 , vE1 , v̇E1)

Γ(χE2 , vE2 , v̇E2)
...

Γ(χEn , vEn , v̇En)

Ξ = HΞ, (26)

where n is the number of the sampled poses from the given trajectory. By feeding various testing
trajectories to the robot, the regression matrix H is of full rank which means all elements of Ξ can
be identified.

3. Closed-Loop Output-Error Identification Based on Vision Feedback

3.1. Pose Estimation Using Optical CMM

As shown in Figure 2, a dual-camera optical CMM C-track 780 is employed to measure the pose
of end-effector for the identification of the dynamic model in this research. The pose measurement
principle of the optical CMM sensor is presented in this subsection. The target reflectors are taken as the
point features. The homogeneous coordinates of the reflectors w.r.t. the sensor frame can be obtained by
using triangulation principle [34]. Given a group of non-collinear reflectors pi(i = 1, 2, . . . , n) attached
on the end-effector platform, the homogeneous coordinates in the sensor frame can be measured
and denoted as CPi = [xpi, ypi, zpi, 1]T . In addition, the homogeneous coordinates of the reflectors
w.r.t. the end-effector frame ΣE denoted as EPi = (Exi, Eyi, Ezi, 1) are known from the definition of
the end-effector frame ΣE. Correspondingly, the transformation equation of ith feature point can be
written as:

CPi =
CTE

EPi, (27)

where CTE is the homogeneous transformation matrix mapping from ΣE to ΣC. In order to derive
CTE, at least three non-collinear feature points are required [35]. However, as indicated in [36], at least
four coplanar feature points are needed for obtaining a unique solution while additional non-coplanar
feature points can be used to improve the estimation accuracy with measurement noise. Similarly,
the homogeneous transformation matrix mapping from ΣO to ΣC, CTO, can be derived. Then the
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pose of the end-effector frame w.r.t. the base frame, χE, can be obtained from the homogeneous
transformation matrix OTE given by Equation (28).

OTE = CT−1
O

CTE. (28)

By using the proprietary software VXelements provided by Creaform Inc., the target frames can be
defined based on the selected reflectors on the surface of the end-effector and base frame respectively.
The real-time position and rotation information of the end-effector frame w.r.t. the base frame can be
acquired, recorded or displayed simultaneously. In addition, the computation associated with the pose
estimation of the target frame is carried out by VXelements.
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Figure 2. The pose measurement system of a 6-RSS parallel robot.

3.2. Closed-Loop Output-Error Identification Method

The basic idea of output error identification is to use nonlinear optimization technique to minimize
the squared error between the output of the real plant and the simulated model. Since the motor torque
is unaccessible, the pose of the end-effector, χE, measured by optical CMM is used as the output of the
system. Hence the closed-loop output-error identification method is adopted [19]. In conventional
closed-loop output-error identification method, the controllers should be exactly known and applied to
both the real plant and the simulated model. However for an industrial robot, the built-in controllers
are usually unknown and need to be identified.

The closed-loop output-error identification approach for vision based robotic system, as depicted
in Figure 3, is proposed in this paper. For the built-in controller of the 6-RSS parallel robot, a PID
controller is used to control the joint angle of each revolute joint. However the three gains of PID
controller are unknown and needed to be identified. During the process of identification, the gains
and dynamic parameters are updated in each iteration of nonlinear optimization, which may make the
simulated model unstable. Hence, an outer loop visual servoing controller is added to stabilize both
real robot and simulated model. The visual servoing controller and the built-in controller construct a
cascade PID controller. As stated in [37,38], the cascade controller yields better dynamic performance in
terms of stability and working frequency compared with single loop controller. With a well-tuned outer
loop visual servoing controller, both the real and simulation systems can have a better performance
and stability.
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Figure 3. The block diagram of closed-loop control system for model identification of 6-RSS parallel robot.

In Figure 3, for both the real plant and simulated model, the same exciting trajectory is given as the
input χd(t). Then the outer loop visual servoing controller is designed as Equation (30). The inverse
kinematic Jacobian Jθ is used to transform the velocity in operational space to that in joint space.
By combining Equations (2) and (8), Jacobian matrix Jθ is derived as shown in Equation (29) and the
joint position control signal Uθ(t) is generated as shown in Equation (30).

θ̇ = Jad

[
E3×3 03×3

03×3 Je

]
χ̇E = Jθ χ̇E. (29)

Uθ(t) =Jθ [kp(χd(t)− χm(t)) + kd(χ̇d(t)− χ̇m(t)) + ki

∫
(χd(t)− χm(t))dt], (30)

where ki, kp, kd are constants, and χm(t) is the visual feedback obtained from VXelements software,
while in the simulation χm(t) is replaced by χs(t) which is the pose calculated by using the forward
dynamic model.

In addition, then the PID controller, given in Equation (31), is used to describe the built-in joint
controller in each joint and is employed in the simulated model.

τa(t) = lp(Uθ(t)− θs(t)) + ld(U̇θ(t)− θ̇s(t)) + li
∫
(Uθ(t)− θs(t))dt, (31)

where li, lp, ld are the PID parameters to be identified, and θs(t) is the joint positions, which can be
obtained by analytically solving the inverse kinematics.

The real plant output Ym = [χm(1), χm(2), · · · , χm(k), ]T and the simulation output
Ys = [χs(1), χs(2), · · · , χs(k)]T are fed to the optimization process. The parameters to be identified,
Λ, can be denoted as Λ = [ΞT , lp, li, ld]T . Accordingly the identification of Λ can be converted to
solving the following nonlinear optimization problem:

Minimize Φ(Λ) = ‖ Ym − Ys ‖ 2. (32)

Then the updating formula for Λ is given as follows:

Λr+1 = (JT
Φ JΦ)

−1 JT
ΦΦ(Λr) + Λr (33)

where Λr is the value of Λ in the rth iteration and JΦ is the Jacobian matrix of Φ(Λ) w.r.t. Λ given as:

JΦ =
[

∂Φ(Λ)
∂Λ1

∂Φ(Λ)
∂Λ2

· · · ∂Φ(Λ)
∂Λ67

]
, (34)
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where Λi denotes the ith column of Λ. The terminate criteria is given as:

‖ Φ(Λr+1)−Φ(Λr) ‖
‖ Φ(Λr) ‖ ≤ tol1

max
i=1,··· ,n

∣∣∣∣∣Λr+1
i −Λr

i
Λr

i

∣∣∣∣∣ ≤ tol2,
(35)

where | · | denotes the absolute-value norm operation, tol1 and tol2 are the thresholds to be chosen for
tuning the accuracy. A compromise should be made between the convergence speed and accuracy
when choosing thresholds. To achieve good results in solving the nonlinear optimization problem,
a proper initial guess of Λ is needed. For the dynamic parameters of the parallel robots, the initial
guess can be calculated from manufacturer specifications. Then a priori PID parameters are obtained
based on the simulation model.

3.3. Modified Exciting Trajectory

The exciting trajectories for the dynamic model identification of the serial robots based on the
inverse dynamic model have been well studied in [39]. The Finite Fourier series-based exciting
trajectory has been tested in a large amount of research works for identification purpose [40]. For serial
robots, it can be represented by the following:

θi(t) =
n

∑
l=1

[
sin(2π f0lt)

2π f0l
sl

i −
cos(2π f0lt)

2π f0l
cl

i ] + θ0i

θ̇i(t) =
n

∑
l=1

[cos(2π f0lt)sl
i + sin(2π f0lt)cl

i ]

θ̈i(t) =
n

∑
l=1

[−2π f0lsin(2π f0lt)sl
i + 2π f0ltcos(2π f0lt)cl

i ],

(36)

where θi(t) is the ith joint angle trajectory of serial robots, n is the harmonics number, f0 is the
fundamental frequency, and sl

i , cl
i , θ0i are the trajectory parameters to be optimized. Instead of choosing

the joint space states (θ, θ̇, θ̈) for serial robots, the pose in the operational space is used for the dynamic
identification of parallel robots. A modified Finite Fourier series-based exciting trajectory for parallel
robots is proposed as:

χi(t) =
n

∑
l=1

[
sin(2πω0lt)

2πω0l
sl

i −
cos(2πω0lt)

2πω0l
cl

i ] + χ0i (37)

where χi(t) is the ith column of the pose trajectory. Therefore 2n + 1 parameters
δi = [s1

i , c1
i , · · · , sn

i , cn
i , χ0i ]

T can be estimated by solving a nonlinear optimization problem.
The singularity check should be implemented for each sampled pose. According to previous research
work [31,41], the maximum wrench rotation range inside the singularity-free domain of the 6-RSS
parallel robot is (−0.9948 rad, 0.9948 rad). The inverse kinematic model is used to map the poses into
the joint space and to check if the joint angles stay inside the singularity-free domain. To obtain the
operational space states in the regression matrix H, the time derivatives of the Euler-angle should be
converted to the angular velocity and acceleration, as shown in Equations (2) and (38).

ω̇ =

 α̈ + γ̈sβ + β̇γ̇cβ

cα(β̈− α̇γ̇cβ) + sα(β̇γ̇sβ− β̇α̇− γ̈cβ)

sα(β̈− α̇γ̇cβ) + cα(β̇α̇ + γ̈cβ− β̇γ̇sβ)

 . (38)

As shown in Equation (26), the observability index of H should be maximized to achieve a good
identification result for given the exciting trajectories. The observability index Oin used in [31] is chosen
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as the criteria. Therefore the optimal exciting trajectory can be obtained by solving the following
nonlinear optimization problem:

Maximize Oin(δ) =
ς√σ1σ2 · · · σς√

m
=

ς
√

det(
√

HT H)
√

m
(39)

where the singular values of H are denoted by σ1 ≥ σ2 ≥ · · · ≥ σς, m is the number of sampled poses
of the trajectory, ς is the number of dynamic parameters to be identified.

3.4. The Procedure of Identification

The whole procedure of the proposed closed-loop output-error identification method is given
in Figure 4. Firstly, the dynamic model of the parallel robot is derived as Equations (17) and (25).
Then the optimized exciting trajectory, χd(t), can be generated by using the method mentioned in
previous subsection. By using χ(t) as reference input signal to the outer loop visual servoing control
systems of both the real plant and the simulated model, the measured output pose χm(t) of the parallel
robot by the optical CMM sensor is compared with that of the simulated model. The identification of
the parameters Λ is carried out by solving the nonlinear optimization problem. Lastly, the identified
model can be validated by feeding several testing trajectories to the systems.

Model Derivation

Begin

Model derivation

Optimize the 
Exciting 

Trajectory

Experiment

Identification 
Process

Identified Result 
Validation

`

Over

𝜒𝑑(𝑡) 

𝜒𝑑(𝑡) 

𝚲 

𝜒𝑚 (𝑡) 

Figure 4. Sketch of the identification procedure.

4. Simulation and Experiment Results

In this section, the dynamic model is verified by the simulation using Matlab/SimMechanics.
In addition, the closed-loop output-error identification is carried out on a 6-RSS parallel robot. An outer
loop visual servoing controller is implemented on the real plant and the simulated model individually.
The C-track 780 from Creaform Inc. is adopted to measure the pose of the end-effector of parallel robot.

4.1. Model Validation

The analytical dynamic model is rather complex and it is a non-trival task to ensure that the
code of dynamic model is mistake free. A simulation verification method is used to verify the built
mathematical dynamic model. A mechanical model of the 6-RSS parallel robot is built by using the
Multibody SimMechanics Toolbox of Matlab/Simulink. The SimMechanics model is constructed by
choosing the parts from SimMechanics library as shown in Figure 5. The coordinates frames and
physical parameters of rigid body blocks can be specified in the setting option. The revolute and
spherical joints are used to connect the rigid bodies. The body sensor part can provide the position
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and orientation of the coordinate frames. The entire model is directly actuated by the torque of the
motors, and 3D animation shown in Figure 6 can be provided by SimMechanics. It should be noted
that SimMechanics model can only simulate the forward dynamics and cannot be used for controller
design. However, it is relatively easy and intuitive to build SimMechanics model with high fidelity [42].
To validate the mathematical dynamic model Equation (17), the explicit form of the forward dynamic
model obtained by Equation (40) is employed to compare with the SimMechanics model.

v̇E = M(χE)
−1(τg − C(χE, vE)vE − G(χE)− τf ), (40)

The mathematical dynamic model is built by using S-function of Simulink. The initial dynamic
model parameters of both SimMechanics and mathematical models are derived from manufacturer
specifications and are given in Table 1.

End-effector

Base Platform

6 Serial Links

Figure 5. Mechanical model of 6-RSS parallel robot built by SimMechanics.

Figure 6. 3D animation of 6-RSS parallel robot. https://youtu.be/HXtCvgkn2jw.

https://youtu.be/HXtCvgkn2jw
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Table 1. Initial dynamic model parameters of 6-RSS parallel robot.

Dynamic Model Parameters Initial Value

mp (kg) 24.0

Ixp 10−2 (kg ·m2) 17.8

Iyp 10−2 (kg ·m2) 17.8

Izp 10−2 (kg ·m2) 35.0

mwi 10−2 (kg) 68.5

Ixwi
10−5 (kg ·m2) 22.9

Iywi
10−5 (kg ·m2) 22.9

Izwi
10−5 (kg ·m2) 60.5

mli (kg) 1.31

Ixli
10−5 (kg ·m2) 52.3

Iyli
10−5 (kg ·m2) 52.3

Izli
10−4 (kg ·m2) 21.3

As shown in Figure 7, a simple PID controller is used to stabilize both mathematical and
SimMechanic models with the same PID gains. The exciting trajectory χd(t) derived from Equation (36)
is used as the reference input signal. The outputs of the SimMechanics and mathematical dynamic
model (Equation (40)) are χ_s(t) and χ_m(t) respectively. The difference between χ_s(t) and χ_m(t)
is shown in Figure 8. The maximum position and angle errors are around 1.25 mm and 3.25× 10−3 rad,
which occur at the beginning of the simulation, and are often caused by the kinematic error. The largest
steady-state errors are about 0.1 mm in the position and 0.25× 10−3 rad in the angle, which can prove
the correctness of the mathematical model. The validated mathematical model can be used in the
simulation part for the subsequent identification.

PID 
controller

SimMechanics
+

-

PID 
controller

S-function
+

-

𝜒_𝑠(𝑡) 

Forward dynamics model 

Forward dynamics model

𝐽𝜃  

𝐽𝜃  

𝜒_𝑚 (𝑡) 

𝜒𝑑(𝑡) 𝜏𝑎  

𝜏𝑎  

Figure 7. Dynamic model verification block diagram of 6-RSS parallel robot.
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Figure 8. Simulation results of SimMechanics model. (a) Position error; (b) Angle error.
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4.2. Identification Experiment

The experiment setup is shown in Figure 9. The 6-RSS parallel robot with 6 built-in joint controllers
is provided by Servo & Simulation Inc. (Sanford, FL, USA). The built-in controllers communicate with
the robot control computer through two Quanser MultiQ-PCI (Sensoray Model 626) data acquisition
cards provided by Quanser Inc. (Markham, ON, Canada). Quanser’s QUARCTM software is running
on the robot control computer with Windows 7.0 32-bit operating system and Intel Core Processor
i7-3770 3.4 GHz. QUARCTM software is capable of generating real-time application though Simulink
based controllers and implementing the application in real time on the Windows target. The C-track
780 provided by Creaform Inc. (Levis, QC, Canada) is used to obtain the image data of the reflectors
attached on the robot. The reflectors provided by Creaform Inc. are magnetic stickers which are
easily fixed on the robots and are used as the feature points. In another Windows 7.0 64-bit computer
with Intel Xeon Processor E5-1650 v3 3.5 GHz and NVIDIA Quadro K2200 (Santa Clara, CA, USA)
professional graphics board, Vxelements software is used to process the image data and transmit the
pose of the end-effector to the robot control computer.

Figure 9. Architecture of the Experiment System.

As shown in Figure 10, the reflectors are stuck on the surface of the moving platform. At least
three non-collinear points on each plane of Plane A, Plane B and Plane C are employed to build up the
equations of planes based on Cramer’s rule. Then the intersection lines and points of three planes can
be used to define the x direction of ΣE, and z direction is aligned with the norm of Plane A. The origin
point of ΣE is derived from the intersection point of l1 and l2. Then, the obtained ΣE in the optical
CMM sensor frame is directly used as the target frame. The base frame of the parallel robot is defined
by following the similar procedure.

To eliminate the high frequency noise of the pose measurement from the optical CMM,
measurement data is filtered by the zero-phase forward and reverse 8th order Butterworth filter
with the cut-off frequency 60 Hz. The filtering process is carried out by the Zero-phase digital filtering
function of Maltab, f ilt f ilt.
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Figure 10. Measurement of ΣE.

The optimization of the exciting trajectory is carried out by using the GA function of the
Optimization Toolbox of Matlab. The GA algorithm uses binary code to represent the harmonic
parameters. The fundamental frequency f0 is selected as 0.1 Hz and the harmonics number n is chosen
as 5. By taking the observation index as the fitness function, the binary code is updated to maximize the
fitness value in each step. The starting value of the observation index Oin is 0.38 and the stop criteria
is set as 10−10. The algorithm stops after 324 iterations with the maximum Oin 1.345. The derived
optimal exciting trajectory is given in Figure 11.

0 1 2 3 4 5 6 7 8 9 10

Time/s

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
os

iti
on

/m

x-direction
y-direction
z-direction

(a)

0 1 2 3 4 5 6 7 8 9 10

Time/s

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

A
ng

le
/r

ad

α-direction
β-direction
γ-direction

(b)

Figure 11. Optimal exciting trajectory. (a) Positional trajectory; (b) Angular trajectory.

The identification procedure is implemented off-line through simulation illustrated in Section 3.2.
The optimization procedure is carried out by using optimization functions in Matlab R2016a.
The minimal performance requirements of the computation platform are given as: 4 cores Inter
or AMD Processor; 6 GB disk space; 4 GB RAM. The same outer loop visual servoing controller,
Equation (30), is employed in the simulation. The gains of the visual servoing controller are obtained
through trial and error in the extensive experimental tests. The well-tuned gains are given as
kp = 0.3, kd = 0.001, ki = 2.4. and the built-in joint PID controllers, Equation (31), are also implemented
in the simulation. The dynamic parameters derived from manufacturer specifications are used as
initial values, and the initial values of the PID gains in Equation (31) are obtained through trial and
error based on the simulation model. During the tuning, in the simulation system, the inertial and
friction parameters are set as the values based on the manufacturer specifications, and the visual
servoing controller gains are set as the same values of the controller of the real system. The identified
parameters, given in Table 2, are derived by using lsqnonlin function of the Optimization Toolbox
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of Matlab after 8 iterations. A total of 50 out of 67 parameters are identified, and are used in the
simulation model, Equation (40), to capture the dynamic characteristic of the parallel robot. The other
parameters either do not contribute to or have slight impact on the dynamics of the parallel robot.
Those parameters can be eliminated by using QR decomposition on the regression matrix H [23,43].
If any diagonal elements of R are smaller than the pre-defined small number, i.e., Rii < ε, where ε

is chosen as 10−3 in the paper, the corresponding columns of the regression matrix H are deleted.
By doing so, the matrix H is better conditioned and the identification procedure is sped up.

Then, the pose trajectories are generated by using the identified parameters in the simulation,
and are compared with the pose measurement, as shown in Figure 12. Table 3 shows the
root-mean-square (RMS) levels of the pose trajectory errors.

Table 2. Identified parameters of 6-RSS parallel robot.

Parameters Initial Value Identified Value Parameters Initial Value Identified Value

mp (kg) 24.0 23.5 ml4 (kg) 1.31 1.24
Ixp 10−2 (kg ·m2) 17.8 16.1 Ixl4

10−5 (kg ·m2) 52.3 12.9
Iyp 10−2 (kg ·m2) 17.8 14.4 Iyl4

10−5 (kg ·m2) 52.3 39.2
Izp 10−2 (kg ·m2) 35.0 33.7 ml5 (kg) 1.31 1.33

mw1 10−2 (kg) 68.5 67.1 Ixl5
10−5 (kg ·m2) 52.3 30.7

Izw1
10−5 (kg ·m2) 60.5 69.4 Iyl5

10−5 (kg ·m2) 52.3 49.7
mw2 10−2 (kg) 68.5 68.7 ml6 (kg) 1.31 1.34

Izw2
10−5 (kg ·m2) 60.5 10.0 Ixl6

10−5 (kg ·m2) 52.3 47.0
mw3 (kg) 10−2 (kg) 68.5 68.0 Iyl6

10−5 (kg ·m2) 52.3 50.9
Izw3

10−5 (kg ·m2) 60.5 22.6 fc1 0 0.104
mw4 10−2 (kg) 68.5 67.7 fv1 0 0.148

Izw4
10−5 (kg ·m2) 60.5 76.0 fc2 0 0.111

mw5 (kg) 10−2 (kg) 68.5 68.3 fv2 0 0.187
Izw5

10−5 (kg ·m2) 60.5 44.1 fc3 0 0.0336
mw6 (kg) 10−2 (kg) 68.5 68.4 fv3 0 0.0993
Izw6

10−5 (kg ·m2) 60.5 69.6 fc4 0 0.147
ml1 (kg) 1.31 1.33 fv4 0 0.854

Ixl1
10−5 (kg ·m2) 52.3 63.0 fc5 0 0.104

Iyl1
10−5 (kg ·m2) 52.3 68.4 fv5 0 0.0803
ml2 (kg) 1.31 1.32 fc6 0 0.0828

Ixl2
10−5 (kg ·m2) 52.3 60.7 fv6 0 0.0349

Iyl2
10−5 (kg ·m2) 52.3 71.8 lp 10 10.5
ml3 (kg) 1.31 1.25 li 12 11.4

Ixl3
10−5 (kg ·m2) 52.3 22.4 ld 0.1 0.164

Iyl3
10−5 (kg ·m2) 52.3 35.5
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Figure 12. Cont.
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Figure 12. The pose trajectories of the parallel robot: the measurement of the real plant (black dot),
the output of the simulation with initial parameters (green line), the output of the simulation with
identified parameters (blue line), (a) Along X Direction; (b) Along Y Direction; (c) Along Z Direction;
(d) Around α Axis; (e) Around β Axis; (f) Around γ Axis.

Table 3. The RMS levels of the pose trajectory errors.

Before Identification After Identification

x direction (mm) 1.26 0.408
y direction (mm) 1.16 0.235
z direction (mm) 1.55 0.494

α direction 10−3 (rad) 2.52 0.956
β direction 10−3 (rad) 3.58 0.797
γ direction 10−3 (rad) 2.80 0.725

4.3. Identified Results Validation

To verify the identified parameters, ten more trajectories are generated according to Equation (36)
with random harmonic parameters under the singularity constraint. The generated trajectories are
used as desired trajectories, and are fed to the parallel robot and the identified model in the simulation
respectively. The RMS levels of the pose trajectory errors are given in Table 4, and the measurement and
the simulated pose trajectories are given in Figure 13 according to the 1st desired trajectory. The RMS
of the position and orientation errors for all ten trajectories are below 0.8 mm and 1.4× 10−3 rad
respectively, which validate the identified results of previous subsection. In addition, the proposed
identification procedure is implemented based on the ten trajectories to analyze the statistic property
of the identification results. After deriving ten more groups of identified parameters, the variation
measure of the identification results are given in Table 5. The highest relative variation of the parameter
is below 25%, which is acceptable. It has been stated that less than 30 percent in the variation measure
of the parameters gives a good match to the real system [44].
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Table 4. The RMS levels of the ten validation trajectory errors.

x (mm) y (mm) z (mm) α 10−3 (rad) β 10−3 (rad) γ 10−3 (rad)

1st 0.517 0.384 0.709 1.091 0.963 0.966
2nd 0.273 0.410 0.522 1.157 1.071 0.932
3rd 0.381 0.403 0.600 1.242 0.830 1.143
4th 0.341 0.511 0.617 1.136 0.814 1.161
5th 0.322 0.394 0.464 1.219 0.877 0.835
6th 0.310 0.301 0.441 1.195 1.111 1.040
7th 0.360 0.402 0.455 1.263 1.176 1.024
8th 0.418 0.483 0.460 1.251 1.211 1.015
9th 0.342 0.510 0.557 1.411 1.156 0.711

10th 0.318 0.379 0.473 1.219 1.023 0.905

0 1 2 3 4 5 6 7 8 9

Time/s

-0.01

-0.005

0

0.005

0.01

0.015

X
 d

ire
ct

io
n/

m

Measurement data
Identified parameters result

(a)

0 1 2 3 4 5 6 7 8 9

Time/s

-6

-4

-2

0

2

4

6

8

10

Y
 d

ire
ct

io
n/

m

×10-3

Measurement data
Identified parameters result

(b)

0 1 2 3 4 5 6 7 8 9

Time/s

0.1

0.105

0.11

0.115

0.12

0.125

0.13

Z
 d

ire
ct

io
n/

m

Measurement data
Identified parameters result

(c)

0 1 2 3 4 5 6 7 8 9

Time/s

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

α
 d

ire
ct

io
n/

ra
d

Measurement data
Identified parameters result

(d)

0 1 2 3 4 5 6 7 8 9

Time/s

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

β
 d

ire
ct

io
n/

ra
d

Measurement data
Identified parameters result

(e)

0 1 2 3 4 5 6 7 8 9

Time/s

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

γ
 d

ire
ct

io
n/

ra
d

Measurement data
Identified parameters result

(f)

Figure 13. The pose trajectories of the parallel robot: the measurement of the real plant (black dot),
the output of the simulation with identified parameters (blue line), (a) Along X Direction; (b) Along Y
Direction; (c) Along Z Direction;(d) Around α Axis; (e) Around β Axis; (f) Around γ Axis.
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Table 5. Variation measure of the identification result.

Parameters Variation Measure Parameters Variation Measure

mp (kg) 0.48% ml4 (kg) 19.1%
Ixp (kg ·m2) 5.0% Ixl4

(kg ·m2) 0.16%
Iyp (kg ·m2) 24.9% Iyl4

(kg ·m2) 0.06%
Izp (kg ·m2) 8.6% ml5 (kg) 10.1%

mw1 (kg) 0.56% Ixl5
(kg ·m2) 0.15%

Izw1
(kg ·m2) 6.6% Iyl5

(kg ·m2) 0.01%
mw2 (kg) 1.5% ml6 (kg) 12.9%

Izw2
(kg ·m2) 1.4% Ixl6

(kg ·m2) 0.17%
mw3 (kg) 3.4% Iyl6

(kg ·m2) 0.02%
Izw3

(kg ·m2) 5.0% fc1 15.9%
mw4 (kg) 3.7% fv1 11.7%

Izw4
(kg ·m2) 3.8% fc2 21.4%

mw5 (kg) 6.6% fv2 13.9%
Izw5

(kg ·m2) 6.6% fc3 9.0%
mw6 (kg) 0.79% fv3 16.4%

Izw6
(kg ·m2) 1.7% fc4 17.8%

ml1 (kg) 4.1% fv4 15.2%
Ixl1

(kg ·m2) 0.04% fc5 15.1%
Iyl1

(kg ·m2) 0.11% fv5 21.8%
ml2 (kg) 5.2% fc6 23.4%

Ixl2
(kg ·m2) 0.05% fv6 13.0%

Iyl2
(kg ·m2) 0.12% lp 2.82%

ml3 (kg) 20.9% li 0.44%
Ixl3

(kg ·m2) 0.09% ld 3.7%
Iyl3

(kg ·m2) 0.17%

Therefore by using the proposed visual closed-loop output-error identification method,
the identified dynamic model can approximate the real plant with acceptable accuracy.

5. Conclusions and Further Works

In this paper, a visual closed-loop output-error identification method based on an optical CMM
sensor for parallel robots is proposed. An outer loop visual servoing controller is employed in both the
real plant and the simulation model to stabilize the two systems. The benefits of the proposed method
are summarized as follows: elimination of the need for the joint and torque measurements, the exact
knowledge of the built-in joint controller of the industrial robots, and the time-consuming forward
kinematics calculation. The correctness and accuracy of the built dynamic model are validated by the
Matlab/SimMechanics simulation. The experimental test results show that the identified dynamic
model can capture the dynamics of the real parallel robot with satisfactory accuracy. The proposed
method can be easily applied to other types of industrial parallel robots with unknown PID built-in
controller or its variant, such as 6 DOF Stewart platforms, 6 UPS and 6 RUS parallel robots etc.
The complexity of those dynamic models is similar to that of the 6-RSS parallel robot. Since the
analytical solution of the forward kinematics of those 6 DOF parallel robots does not exist, the proposed
visual identification method does not need the forward kinematic model and hence has a lot of
advantages. The proposed identification method can also be applied to parallel robots with less
DOF than 6 DOF. Taking the advantages of the visual sensor, the dynamic model can be identified
for the visual servoing purpose. In the future, the advanced model-based visual servoing control
method will be further studied to improve the tracking performance of parallel robots based on the
identification results.
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Appendix A

The derivative of the wrench Jacobian, J̇ai , is given as follows:

J̇ai =

[
J̇aui

ŝ J̇adi

]
, (A1)

where

J̇adi
= − ṁ

m2 [ lT
i (ai × li)

T ] +
1
m

[
(ω2i × li)

T ([ai]X [ω2]Xli)
T − ([li]X [ω]Xai)

T
]

, (A2)

and
m = (wi × li) · ŝ
ṁ = ([wi]X [ω2]Xli − [li]X [ω1]Xwi) · ŝ
J̇aui = ([ŝ]X [ω1]Xcwi )Jadi

+ ([ŝ]Xcwi ) J̇adi

(A3)

In addition, the link Jacobian J̇bi
is obtained by:

J̇bi
=

[
J̇bui

J̇bdi

]
(A4)

in which
J̇bdi

=
1
‖li‖2 {[ω2 × li]X [wi]X ŝJadi

+[
[ω2 × li]X [li]X [ω× ai]X − [ω2 × li]X [ai]X

]
+ [li]X [ω1 ×wi]X ŝJadi

+ [li]X [wi]X ŝ J̇adi
},

(A5)

and
J̇bui

= −[ω1 ×wi]X ŝJadi
− [wi]X ŝ J̇adi

− [ω2 × li]X Jbdi
− [cli ]X J̇bdi

(A6)
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