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Abstract: This paper presents an intelligent approach for the detection of Melanoma—a deadly skin
cancer. The first step in this direction includes the extraction of the textural features of the skin lesion
along with the color features. The extracted features are used to train the Multilayer Feed-Forward
Artificial Neural Networks. We evaluate the trained networks for the classification of test samples.
This work entails three sets of experiments including 50%, 70% and 90% of the data used for training,
while the remaining 50%, 30%, and 10% constitute the test sets. Haralick’s statistical parameters are
computed for the extraction of textural features from the lesion. Such parameters are based on the
Gray Level Co-occurrence Matrices (GLCM) with an offset of 2, 4, 8, 12, 16, 20, 24 and 28, each with an
angle of 0, 45, 90 and 135 degrees, respectively. In order to distill color features, we have calculated the
mean, median and standard deviation of the three color planes of the region of interest. These features
are fed to an Artificial Neural Network (ANN) for the detection of skin cancer. The combination
of Haralick’s parameters and color features have proven better than considering the features alone.
Experimentation based on another set of features such as Asymmetry, Border irregularity, Color and
Diameter (ABCD) features usually observed by dermatologists has also been demonstrated. The ‘D’
feature is however modified and named Oblongness. This feature captures the ratio between the
length and the width. Furthermore, the use of modified standard deviation coupled with ABCD
features improves the detection of Melanoma by an accuracy of 93.7%

Keywords: skin cancer detection; Melanoma; GLCM; color features; ANN

1. Introduction

Skin cancer is the most common form of cancer types. It is generally divided into two categories:
melanoma (5%) and nonmelanoma (95%). However, melanoma is the most serious skin cancer because
of its strong ability to metastasize. This skin cancer is primarily linked to overexposure to ultraviolet
light. Therefore, early detection offers better chances of cure, hence the value of this melanoma
detection study.

1.1. Motivation

Skin cancer is the most spread cancer in US [1,2]. According to American Cancer Society (Cancer
Facts and Figures 2018), estimation of 91,270 new cases will be diagnosed and 9320 deaths will occur
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in 2018. A five-year survival rate for early detection and treatment of melanoma is 99%. Excision of
malignant (cancerous) tissue can heal a melanoma patient at an early stage of the disease. Benign
(non-cancerous) tumors often develop in melanocytes. These benign tumors appear in the form of
moles (nevi) and has much resemblance with melanoma. Doctors face difficulty in differentiating
benign tumors from melanoma. They use the ABCD rule; and their experience for the detection of
melanoma. Friedman et al. was the first one to use “ABCD” features for early detection of melanoma [3].
The mnemonic stands for Asymmetry, Border irregularity, Color and Diameter. A Melanoma lesion is
asymmetric, has an irregular border, has color variation containing different shades and combinations
of black, brown and tan and its diameter is greater than 6mm.

Detection algorithms for melanoma diagnosis can improve by 5–30% as compared to naked
eye [4,5]. Thus, there is need for automatic image based melanoma detection system to help physicians
in diagnosing the disease at its early stages.

1.2. Contributions

In our research, we have done a comprehensive analysis on performance of skin cancer detection
with ANN using Low-Level Intuitive Features (LLIF) and High-Level Intuitive Features (HLIF), which
is summarized as follows:

• GLCM parameters that include contrast, energy, homogeneity and correlation are extracted from
both dermIS and dermQuest dataset. Analysis is done using data split of 50%:50%, 70%:30% and
90%:10% for training:test data. Experiment is repeated ten times to evaluate the accuracy using 10
random seeds.

• Analysis of varying GLCM offsets (2, 4, 8, 12, 16, 20, 24, 28) to measure the performance of ANN
for skin cancer detection.

• Color features are extracted from each color plane (red, green and blue) and are considered as
statistical features. These include mean, median and standard deviation. Color features are
applied to ANN as input with the best random seed selected through varying seed analysis.

• Consequently, GLCM and color features are used as consolidated features to evaluate the
performance with varying data split for training:test data.

• ABCD (Asymmetry, Border Irregularity, Color, Diameter) features are used as input to ANN
for performance analysis. The color factor is computed using statistical features (mean, median,
standard deviation) from each color plane.

• Diameter features from ABCD is taken as Oblongness factor which is mostly ignored in literature.
The diameter changes with changes in the distance of lesion and image acquisition system.

• Comparison of LLIF and HLIF using ANN for skin cancer detection has been shown.
• The optimal parameter settings of GLCM offset, ANN training and test data split and the effect of

varying random seed have been concluded from the analysis.
• A modified standard deviation, a novel way of computing standard deviation from an image,

described in Section 4.1, results in a single value of standard deviation, which proves to be better
than conventional standard deviation. The accuracy found using the modified standard deviation
is 93.7%.

The research paper is organized as follows. Past work done in the field of skin cancer detection is
presented in Section 2. All phases of skin cancer detection are included in Section 3. Section 4 describes
the implementation details of this research work. Section 5 describes the evaluation and experimental
results. Section 6 summarizes the work done in this paper and the pros and cons of using the different
features of skin cancer. Section 7 concludes the paper giving directions for the future research.
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2. Literature Survey

Skin cancer can be detected by using High Level Intuitive Features (HLIF) and Low Level
Intuitive Features (LLIF). HLIF are the features that mathematically model human observation for
specific characteristics or attributes of a lesion and are generally used for classification e.g., ABCD
rule produces the HLIF and is used by physicians. LLIF are not intended to formulate natural human
observation to a specific attribute for classification problem. Robert Amelard et al. [6] used HLIF for
the classification of skin lesion using standard camera images. Nishu Rani et al. [7] extracted features
from skin lesion using 2D wavelet transform [8]. The features consisting of mean, standard deviation,
mean absolute deviation, L1 norm and L2 norm were applied to a back propagation neural network
for classification. Abdul Jaleel et al. [9] produced Gray Level Co-occurrence Matrix (GLCM) of the
image for a lesion to calculate the textural features of contrast, correlation, energy and homogeneity
along with other three features including mean, skewness and kurtosis. Djeddi et al. [10] propose
multifractal characterization of skin cancer using ultrasound imaging. Results show that the extracted
features make a promising quantitative indicator to distinguish between different tissues. Indeed,
the combination of the wavelet tool and the concept of fractals [11–13] to obtain robust features is
justified by the fractal nature of melanoma texture. However, smaller datasets incorporating less
than 50 images have been used in literature [14]. Aswin et al. [15] used GLCM and color features
of red, green and blue chromaticity. Mhaske et al. [16] used a two-dimensional wavelet to extract
features for classification of skin cancer using a neural network, k-means clustering and Support Vector
Machine (SVM). The accuracy of artificial neural network was 60–75%. Color features play a crucial
role in diagnosing skin cancer disease. Alfed et al. [17] used combined textural and color features
for skin cancer diagnosis. Ritesh et al. [18] used seven different color texture features and k-means
clustering for lesion segmentation. Nezhadian et al. [19] used color and texture features for skin cancer
detection using an SVM classifier. Kavitha et al. [20] has used global and local texture features that
includes GLCM parameters i.e., energy, entropy, homogeneity, correlation, contrast, dissimilarity and
maximum probability, and SURF features, respectively, for classification of melanoma detection using
SVM and KNN. The total number of images taken were 250, which includes 150 for training and 100
for testing. Accuracy of melanoma detection for GLCM parameters is 79.3% and 78.2% using SVM and
KNN, respectively, while for SURF features it is 87.3% and 85.2% using SVM and KNN, respectively.
Kavitha et al. [21] have used GLCM and color histograms as color features extracted from RGB, HSV
and OPP color space. The classification is done using SVM with the best results found using combined
GLCM and color histograms in RGB color space. The accuracy is 93.1% but with a reduced set of
training and testing sets of 100 and 50 images, respectively. E. Almansour et al. [22] combines texture
and color features for melanoma detection using SVM. Texture feature includes local binary patterns
(LBP) and gray level co-occurrence matrix (GLCM) with entropy, contrast, homogeneity and energy.
Color features include mean, standard deviation, variation and skewness of individual channels of six
color spaces. Accuracy of 90.32% is found using lesser number of images of 69 from DermIS dataset
with a large number of input features. F. Adjed et al. [23] have used fusion of structural and textural
features for detection of melanoma using SVM. Structural features include wavelet and curvelet
transforms and while textural features include variants of local binary pattern operator. Classification
is done on 200 images from PH database with accuracy of 86.07%.

Kolkur et al. [24] classified multiclass human skin disease using machine learning algorithms
(ANN, k-Nearest Neighbor (KNN), SVM, Decision Tree, Random Forest) and ANN give best results
among all other selected classification algorithms. Chen et al. [25] extended color histogram analysis
to find percent melanoma color features and novel color clustering ratio for the classification of
melanoma and non-melanoma skin lesion. Lau [26] used multilayer back propagation neural network
and auto-associative neural network as classifiers and different types of wavelets for feature extraction.
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Furthermore, Li and Shen [27] used a deep neural learning framework including Lesion Indexing
Network (LIN) and the Lesion Feature Network (LFN) for lesion segmentation, feature extraction and
classification. Kawahara and Hamarneh [28] used fully convolutional neural networks to detect clinical
dermoscopic features. Esteva et al. [29] used deep convolutional neural networks for classification of
keratinocyte carcinomas versus benign seborrheic keratoses and malignant melanomas versus benign
nevi using only pixels and disease labels as inputs. Yu et al. [30] used a very deep Convolutional
Neural Network (CNN) for melanoma recognition and a fully convolutional residual network (FCRN)
to segment skin lesion.

Amelard et al. [31] applied a multi-stage illumination correction algorithm on dermIS and
dermQuest datasets comprised of 206 images and analyzed the low-level and high-level features. They
have taken nine high-level intuitive features and 52 Cavalcanti and Scharcanski’s low-level features.
The accuracy achieved is 81.26% for melanoma detection.

Codella et al. [32] combine deep learning and machine learning approaches to segment as well
as analyze the detected area and the surrounding tissues of melanoma detection. Another work by
Haenssle et al. [33] used Google’s Inception v4 CNN architecture for lesion classification. A mean
sensitivity and specificity of 86.6% and 71.3%, respectively, for dermatologist level-I. Furthermore,
it included clinical information in level-II sensitivity which improved the specificity to 88.9% and
75.7%. Gal et al. [34] Bayesian convolutional neural networks into active learning techniques for
high-dimensional data. Lopez et al. [35] used VGGNet Convolution Neural Network in a transfer
learning paradigm on the ISIC dataset and achieved 78.66% sensitivity. Bi et al. [36] used deep residual
networks (ResNets) for melanoma detection and classification and achieved state-of-the-art results.

Biopsy is still the gold standard for skin cancer evaluation in the clinic but various anatomical
imaging techniques [13,37,38] have been used, including ultrasonography, infrared thermography,
computed tomography (CT), positron emission tomography (PET), and a combination of both (PET-CT)
for the staging and surveillance of melanoma. Non-invasive approaches have been widely used for the
detection of skin lesion. Dubois et al. [39] have used line-field confocal optical coherence tomography
(LC-OCT) for high resolution and non-invasive imaging of human skin, which significantly improves
accuracy for diagnosis of skin tumors resulting in a reduced number of biopsies. Xiong et al. [40] used
optical coherence tomography (OCT), imaging tool for non-invasive diagnosis of skin diseases i.e., basal
cell carcinoma (BCC), squamous cell carcinoma (SCC), actinic keratosis, and malignant melanoma. The
authors in [41] have used a real-time magneto-motive optical Doppler tomography (MM-ODT),
imaging method for detection of superparamagnetic iron oxide (SPIO) magnetic nanoparticles
implanted into melanoma tissue melanoma tissues and used multi-threaded programming techniques
for real-time imaging and optimized the signal path.

In our research, we have used GLCM features that include contrast, correlation, energy and
homogeneity with different offsets of 2, 4, 8, 12, 16, 20, 24, 28 and orientations with 0, 45, 90, 135
degrees along with statistical color features that include mean, median and standard deviation of each
color plane. We also used the modified ABCD features. The classification is done using these features
as inputs to artificial neural networks.

3. Methodology

Skin cancer detection involves different stages that include pre-processing, segmentation, feature
extraction and classification.

The basic work flow of automatic skin cancer detection is shown in Figure 1.
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Figure 1. The basic work flow of automatic skin cancer detection.

Details of the phases are as follows.

3.1. Preprocessing

Preprocessing involves illumination correction of the images found in the data-set. Purpose
of illumination correction is to standardize lighting exposure across the entire image. Accuracy of
features depend upon pixel values, which in turn depends upon the illumination correction. In general,
pre-processing can not be restricted to the lighting problem or illumination correction alone but seen
in a realistic way. Indeed, image pre-processing is an essential step of detection in order to remove
noises and enhance the quality of the original image [42–44]. Figure 2a,b show the original image and
the one after pre-processing respectively, as discussed in [3].

Using the multistage illumination modeling algorithm, the first stage is to estimate the
illumination map of the image using Monte Carlo and then the parametric modeling strategy is
incorporated into the second stage to estimate the final illumination map.

(a) (b) (c)

Figure 2. (a) Original image; (b) image after pre-processing; (c) segmentation of skin lesion.

3.2. Segmentation

Segmentation characterizes the image pixels into semantic groups. In case of skin cancer
detection, segmentation extracts the lesion border that separates it from the surrounding non-cancerous
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tissues. The result of segmentation is a binary mask at the location of lesion. Figure 2c shows the
segmentation of skin lesion. A variety of segmentation strategies have been used for skin lesion
detection. Lynn et al. [45] used the mean shift segmentation method to separate skin lesion from
background image pixels. Adjed et al. [46] used generalization of the Chen and Vese model for
segmentation of skin lesion. Nammalwar et al. [47] used combined color and texture features
for segmentation of skin cancer images. Sumithra et al. [48] used a region growing method with
initialization of seed points for segmentation. In our project, we have used an already manually
segmented dataset of images acquired from the University of Waterloo.

3.3. Feature Extraction

Feature extraction involves specific predefined calculations on the preprocessed and segmented
image. In this process, feature vectors of important characteristics of an image are generated.
The features are then used to separate malignant from benign cases. Rashi et al. [49] used GLCM
parameters as the skin cancer detection features and the SVM classifier for classification. They also
used GLCM parameters, with the back propagation neural network as the classifier. For skin cancer,
GLCM parameters and color features of the image bear important information and were explored for
this project.

3.3.1. Gray Level Co-occurrence Matrix (GLCM) and Haralick’s Statistical Texture Descriptors

The Gray Level Co-occurrence Matrix (GLCM) can be used to evaluate the texture of an image.
The relationship between the pixels having different gray levels is represented by GLCM. For this
purpose, a separate matrix is generated for each set of pixel offset and orientation. Haralick proposed
second order statistical texture descriptors that can be determined from the GLCM.

In our research, we used four GLCM parameters i.e., energy, homogeneity, correlation and contrast.
These parameters are found by using MATLAB function graycomatrix (R2017a, MathWorks, Natick,
Massachusetts, USA). A GLCM contains the information about frequency of gray level repetition
for a certain offset distance between two pixels and a certain orientation with respect to each other.
The default number of gray levels used by the function is eight. GLCM is demonstrated graphically
with Figure 3a. The figure contains an image referenced I, with dimensions 4× 5. As the total number of
gray levels in the image is 8, a GLCM matrix with dimension 8× 8 is used to represent the relationship
of gray levels between the pixels. Each coordinate pair of GLCM matrix represents gray levels of the
two pixels separated by a certain offset and positioned at a certain angle. Thus, in a cell of GLCM, the
row number represents the gray level of the first pixel and the column number represents the gray
level of the second pixel in the pair. The content of a GLCM cell shows how frequently the pixel pairs
corresponding to that cell appear in the image. In this figure, Image I contains a single pair of gray
level (1,1) so the corresponding spatial coordinate of GLCM (at row 1 and column 1) contains a 1.
There are two instances of the pair with pixel values 1 and 2, so the cells in row 1 and column 2 contain
2. A similar relationship holds for all the elements of the GLCM matrix and the gray level pairs of
the image.

The convention used for the pixel distance with respect to the reference pixel is that it increases
towards the right as the number of columns increases and downwards as the number of rows increases.
If the offset is 1 and angle is 0 degrees, then the pixel is at position (0,1) relative to the reference pixel,
as they are in the same row but adjacent columns. For images containing heterogeneous texture, GLCM
with different offsets and orientations are required and analyzed, to cater for the statistics with different
offsets and orientations. In general, the offset pairs have the following meaning and are shown in
Figure 3b. 0◦ : [0D], 45◦ : [−DD], 90◦ : [−D0], 135◦ : [−D − D], where D is the distance between
the two pixels. In our research, we have used four, second order statistical descriptors i.e., contrast,
correlation, homogeneity and energy with a certain offset and four different angles to classify between
melanoma and non-melanoma. MATLAB function graycoprops is used for this purpose. Haralick [50]
proposed many GLCM parameters, but we used the ones discussed above for skin cancer detection,
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as they have shown very good results in the past [9,51]. A part of the samples is used for training
while the remaining is for testing the trained ANN.
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0 0 1 0 1 0 0 0

0 0 0 0 1 0 0 0
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Figure 3. (a) Gray Level Co-occurrence Matrix (GLCM) showing the number of occurrences of sets
of gray levels of two adjacent pixels in an image; (b) GLCM offset directions represented by pairs of
pixels lying at 0◦, 45◦, 90◦ and 135◦.

The four statistical parameters that were discussed above are explained below.

Contrast measures the spatial frequency of an image. It is the difference in the moment of GLCM.
Contrast is the difference between the highest and the lowest values of a contiguous set of pixels.
It actually measures the amount of local variations present in the image:

Contrast =
N−1

∑
i,j=0
|i− j|2 p(i, j). (1)

Energy is the sum of squared elements in the GLCM matrix. It is also called Uniformity or Angular
second moment:

Energy =
N

∑
i=1

N

∑
j=1

p(i, j)2. (2)

Homogeneity is a measure of how close is the distribution of elements in GLCM to its diagonal. It
is also called Inverse Difference Moment. If all the elements are the same, homogeneity attains a
maximum value:

Homogeneity =
N−1

∑
i,j=0

p(i, j)
1 + (i− j)2 . (3)

Correlation is a measure of how correlated a pixel is to its neighboring pixels over the whole image. It
is a measure of gray tone linear dependencies in the image:

Correlation =
[∑ ∑(ij)p(i, j)]− µxµy

,
σxσy (4)

where µx, µy, σx and σy are the means and standard deviations of px and py.

Equations (1)–(4) show four GLCM features, namely contrast, energy, homogeneity and
correlation, respectively, where p(i, j) is the normalized entry in row i and column j of the GLCM; and
i is the intensity of one pixel while j is that of the next pixel making the pair for GLCM [52].

3.3.2. Color Features

For skin cancer detection, color features bear useful information and were used for this project.
A color image is divided into three color planes i.e., red, green and blue. Statistical features of mean,



Electronics 2019, 8, 672 8 of 20

median and standard deviation were extracted for each color plane. These features can be expressed
as follows:

Mean is the average value and is computed as the sum of all the observed outcomes from the sample,
divided by the total number of events:

x̄ =
1
n

n

∑
i=1

xi, (5)

where x is the observed outcome and n is the total number of events.
Median is the middle value of the list after all the outcomes from the samples are sorted.
Standard Deviation is the measure of how far the data values lie from the mean:

s =

√
1

n− 1

n

∑
i=1

(x− x̄)2. (6)

Equations (5) and (6) show how to compute mean and standard deviation of an image. In this project,
we have extracted these three statistical features from individual color planes.

3.3.3. ABCD Features

These are the features that dermatologists commonly use. The significance of these features is
that, based on them, a dermatologist decides whether an observed skin lesion is a melanoma or not.
The ABCD rule followed by the doctors has been mathematically modeled and implemented in this
project. The details of these features are as follows:

Asymmetry is an important feature for detection of skin cancer. It is represented in terms of Asymmetry
Index. In order to find this feature, it is necessary to find the true axis of symmetry around which
the image of lesion area is folded. This was done by first finding the center of rotation of the image.
The center of image is taken as the point placed in the middle row and middle column of a rectangular
region that encompasses the image. The image is then folded at different axes, each passing through the
center. A total of 18 axes at increments of 10◦, for a total of 180◦, were tried. The true axis of symmetry
is the one at which the two halves, when folded, result in maximum overlap. The asymmetry index is
defined in Equation (7):

AI =
∆A
A
× 100, (7)

where A is the total area of the lesion and ∆A is the difference in area of the two halves of the folded
region i.e., non-overlapping region.
Border Irregularity: Another important feature for the identification of melanoma or non-melanoma
is the shape of the lesion. A regular border is usually benign while an irregular border indicates
melanoma. Equation (8) shows border irregularity by using Compactness Index as follows:

CI =
PL

2

4πAL
, (8)

where PL is perimeter of the segmented lesion region and AL is its total area.
Color: It is the most important feature in melanoma and can be identified by using the statistical
features i.e., mean, median and standard deviation of each plane (red, green and blue).
Diameter: The main feature that has been often ignored is the diameter. Diameter changes with
distance between the capturing device and the lesion. For fair comparison, the distance between
camera and the lesion should remain the same for all images in a data-set. In our research, instead
of using diameter, we have introduced a new feature i.e., Oblongness, which is the ratio of length
and width. Here, length is the same as the usual diameter feature and is taken along the true axis of
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symmetry; and width is taken along the axis perpendicular to it, passing through the center of true axis
of symmetry. Thus, regardless of distance and orientation of the capturing device, the ratio remains
the same.

3.4. Classification

The last stage of automatic skin cancer detection is classification. Classification involves assigning
label to the image, based on the feature vector. Skin cancer detection involves supervised learning in
which labels of the extracted feature vector are already known. The classification problem consists of
two steps: training and testing. In training, the feature vector is applied as an input to the classifier and
the corresponding labels form the target outputs. The classification scheme then learns the mapping
for separating the two classes from each other. In the testing step, new image features are applied to
the trained network which then estimates the image class.

Artificial Neural Networks (ANN) have been used for decades to solve real world problems,
especially in the domain of image processing. Here, ANN classifies a skin lesion into melanoma or
non-melanoma. We used the feedforward multilayer neural network. The architecture of ANN is
comprised of 12 input nodes and a single hidden layer with 15 neurons. Such setup is feasible for our
application. Furthermore, we have tested it for a varying number of hidden layers and the number
of neurons per layer. However, we achieved the best performance for a single hidden layer with 15
neurons and an input of 12 nodes.

In order to train the network, the back propagation BP algorithm was used. In a multilayer neural
network, there is one input layer and at least one hidden layer and one output layer. The hidden and
the output layers take part in adjusting the weights that depend on the classification error. The signal
flows in the forward direction and the error is back propagated to update the weights. This results in
the reduction of error calculated through the difference between the actual and target output. Initial
weights of the neural network are considered at random. This technique in which the network is trained
by reducing the difference between the actual and target outputs is also called supervised learning.

The output is generated by applying the input to the initial weights and the activation function.
The actual output so produced is compared to the target output and the weights updated in order to
reduce the difference. This process continues until there is zero error or the number of epochs reach
a preset value. After training, the network is tested with new data for classification accuracy. A ‘0’
at the neural network output indicates a non-cancerous or non-melanoma case, while a ‘1’ indicates
cancerous or melanoma cases. Figure 4 shows a typical ANN.

Input 

Layer

Hidden 

Layer

Output 

Layer

Melanoma or 

Non Melanoma

Haralick’s

+ Color 

Features }
OR

ABCD 

features }

Weights

Weights

Figure 4. A typical ANN with Input, Hidden and Output layers and the different input features used
in this project.
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3.5. Selection of the Number of Hidden Nodes

Although we are not aware of a well-established theory regarding the number of hidden neurons
in the hidden layer, there are empirical rules (rule-of-thumb) that have been proposed in the literature.
Having too few neurons in the hidden layer leads to under-fitting, whereas having too many neurons
will lead to over-fitting where the network will essentially memorize the input samples and does not
generalize well to the new test data. In general, the number of hidden layer neurons should be (a
function of) between the size of the input and output layers and are usually selected through cross
validation to ensure the network is not over-fitting to the training data.

In general, an exhaustive search is used to find an optimal ANN architecture for better
performance. However, the mathematical relationship for computing hidden neurons with respect to
the number of input node, input samples, number layers and output nodes have been investigated in
the literature that can provide a good set of initial parameters to evaluate an ANN performance.

As such, Santin et al. [53] design, train and test 4000 neural networks with different architectures
for the problem of estimating riparian buffer width. They have used nine different neural network
architectures with an input-hidden-output configuration of 4− 2− 1 to 4− 10− 1. An individual
architecture produces five different neural networks initialized with different weights and biases.
Furthermore, 100 different training sets are produced in order to generate 100 × 9 × 5 = 4500
different neural network configurations. The basic architecture is 4− 2− 1 to 4− 10− 1. However,
the configuration of ANN architecture used in our research is 12− 15− 2, which almost resembles
one of the architectures used by Santin et al. i.e., 4 − 7 − 1 in [53] with the input to a hidden
neurons relationship.

Sheela et al. [54] provide a review on various methods to fix the number of neurons in relation to
the number of inputs and outputs. Devi et al. have used an optimum number of hidden neurons by the
trial and error technique [55]. Xinzhe [56] have proposed and used a formula Nh = (Nin +

√
Np)/L

to test 40 cases, where Nh is number of hidden nodes. Nin is number of input nodes, Np is number
of input samples and L is the number of hidden layer. In our case, Nin = 12, Np = 206 and L = 1
produce the number of hidden nodes, Nh = 26. Nonetheless, we have used 15 hidden nodes which
are lesser than the one computed through formula investigated by [56]. The method described by
Trenn [56] is Nh = n + no − 1/2, where Nh is the number of hidden nodes, n is the number of inputs
and no is the number of outputs. According to this method, the number of hidden nodes compute to
be Nh = 13.5 or if rounded Nh = 14, which is almost the same as we investigated in our research with
original Nh = 15.

3.6. Input Samples to Number of Hidden Nodes

In our case, a mathematical relationship to compute the number of hidden nodes with respect
to the number of input and output nodes is Nh = Nin + Nout + 1, where Nh is the number of hidden
nodes and Nout is the number of output nodes. Nin = 12 and Nout = 2, which results in 15. Similarly,
a mathematical relationship to compute number of hidden nodes with respect to the number of input
nodes and the number of input samples is Nh =

√
Np + 1, where Np is number of input samples and

is equal to 206, which computes out to be 15.35 and if rounded becomes 15 nodes.

4. Implementation Details

Automatic skin cancer detection is divided into different modules. The modules are generated in
MATLAB. These include image acquisition, computing region of interest (ROI) and feature extraction.
In the image acquisition stage, two popular data-sets of DermIS and Dermquest were used for
dermoscopic images and manually segmented lesions. These data-sets contain cases for both melanoma
and non-melanoma. Total number of samples in these data-sets is 206, out of which 119 samples belong
to melanoma and 87 samples to non-melanoma type. From a segmented lesion, the region of interest
(ROI) is determined by finding the minimum and maximum row and column indices of the segmented
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image. Once ROI is extracted, it is used for further processing. From the ROI image, a GLCM is
produced. From the GLCM, four Haralick’s statistical parameters of contrast, correlation, energy and
homogeneity are extracted, for offsets of 2, 4, 8, 12, 16, 20, 24 and 28; and four different angles i.e., 0◦,
45◦, 90◦ and 135◦. The parameters are fed as input to the neural network. The neural network is trained
and tested with different random seeds and configured with 15 hidden nodes, as shown in Table 1.
Training data are taken randomly using different random seeds, and 50%, 70% and 90% of the data
set. The results contain the accuracy rate and the confusion matrix. All features except color features
are extracted using gray scale images, while color features necessarily require individual color planes.
Therefore, we have used gray scale ROI for computation of all features including GLCM, Asymmetry,
Border irregularity, diameter and ROI of three color planes for statistical measures of individual colors.
Similarly, color features are extracted and applied to the neural network. For extraction of the color
features, the ROI is divided into red, green and blue planes. Mean, median and standard deviation are
calculated for each plane. Thus, a total of nine color parameters are determined. These features alone
and, in combination with GLCM features, are used to find the performance of the neural network in
skin cancer detection.

Table 1. ANN Performance with an offset of 2 and GLCM parameters. ANN with input nodes = 16,
hidden nodes = 15 and output nodes = 2. Result 1 (Training Data = 50%, Validation & Verification Data
= 25%), Result 2 (Training Data = 70%, Validation & Verification Data = 15%), Result 3 (Training Data =
90%, Validation & Verification Data = 5%). ANN—Artificial Neural Networks; GLCM—Gray Level
Co-occurrence Matrix.

Random Seeds Result 1 Result 2 Result 3

8.15× 105 71.40% 69.90% 65.00%
9.06× 105 67.50% 66.00% 68.90%
1.27× 105 67.50% 67.50% 42.20%
9.13× 105 68.90% 65.50% 65.00%
6.32× 105 66.50% 58.30% 66.50%
9.75× 104 65.00% 66.00% 60.70%
2.79× 105 68.40% 50.00% 58.30%
5.47× 105 69.40% 65.00% 71.40%
9.58× 105 57.80% 65.50% 42.20%
9.65× 105 67.00% 62.10% 63.10%

Average 66.94% 63.58% 60.33%

By comparing the average performance values, the best results are obtained with 50%, 25% and
25% for training, validation and test data splits, respectively.

The performance of ANN for cancer detection is evaluated with GLCM parameters determined for
different offsets of 2, 4, 8, 12, 16, 20, 24 and 28. The results from Table 2 show that the best performance
is obtained with offset = 24. The performance of ANN with ABCD features was also evaluated. We
provided an input of twelve features to the ANN including one feature for asymmetry, one pertaining
to the border irregularity, nine color features and one for diameter that captures the Oblongness.
The ANN is comprised of 15 hidden nodes. The data used were in a split of 70% training set and 30%
of test set.

4.1. Modified Standard Deviation

In this research paper, we have proposed a new dimension of finding standard deviation of
an image named as modified standard deviation. In this case, the standard deviation is taken row
wise and then a column comprising of the resultant standard deviation from each row undergoes
the process of computing standard deviation, which results in a single feature value of the standard
deviation as delineated in Algorithm 1. As compared to conventional standard deviation, the modified
standard deviation results in a different value—much suitable for melanoma classification.
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Table 2. Results of different offsets used with constant random seed = 8.15 × 105 and by taking 50%
training and 25% validation and 25% verification.

Offset Performance

2 71.4%
4 65.0%
8 68.0%
12 69.9%
16 70.4%
20 70.9%
24 76.2%
28 73.8%

Algorithm 1 Compute Modified Standard Deviation
Input: Image of dimension: MxN
Output: Final value of the modified standard deviation, σ
Step 1: Compute standard deviation vector {σ1, σ2, ...., σN} along each row vector {R1, R2, ..., RN} from
the ROI of an image
Step 2: Compute final value of standard deviation σFinal along the column vector of standard deviation
{σ1, σ2, ...., σN}

The procedure of finding modified standard deviation is shown in Figure 5. Here, standard
deviation of ROI of skin lesion is computed row wise. The result of the row wise standard deviation
is again a column vector with each element corresponding to the result of standard deviation for
each row. The final value of modified standard deviation is computed along the resultant standard
deviation vector. We compute the standard deviation of the column vector again to compute the
final feature value. The final result is a single value of the standard deviation, which is attained from
the applied ROI on skin lesion image as shown in Figure 5. This proposed way of computing and
extracting standard deviation of image results in a different value as compared to the conventional
standard deviation comprised of a matrix. Replacing conventional standard deviation features by
the modified version of standard deviation outperforms and improves overall results in the ANN
classification by 4.23%

Figure 5. The procedure for modified standard deviation.
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5. Evaluation and Results

5.1. Impact of Varying Seed Values on Accuracy

Table 1 shows that the ANN performance by considering 50% as training data, 25% as validation
and 25% as verification data. The ANN constitutes from 15 hidden nodes and different random
seeds are fed to it. The offset taken in this case is 2 with all the four directions. Sixteen GLCM
parameters (four for each one of contrast, energy, homogeneity, and correlation) are used as input
to the neural network. Similarly, ANN performance is evaluated by taking 70% as the training data,
15% as validation data and 15% as verification data and by taking 90% as training data, 5% validation
and 5% verification data. The best results are shown in bold letters. The average performance is
also shown.

In Table 1, it can also be seen that insufficient and uneven availability of dataset may result in
varying accuracy. Number of images used for classification can adversely affect the accuracy. Recent
work shows varying success rate with varying number of images as shown by Rashi Goel et al. [49]
for multiclass skin cancer disease. The random seeds select different combination of samples in the
dataset for training, test and validation, which shows that dataset used in training have an impact
on computing the final accuracy of the classifier. Alternatively, the best result shows the best set of
training samples. The true representative of data and large dataset can result in further improvement
in the accuracy of classifier.

From Table 1, it is clear that, on average, choosing 50% training data gives better results and
within 50% percentage for selecting training dataset, random seed = 8.15 × 105 selects the best training
subset. Furthermore, offset taken here is an initial offset without digging into other options for better
offsets, and is used for evaluating the best distribution of dataset in the percentage for training, testing
and validation using a random seed generated in MATLAB.

5.2. Impact of Offset Selection on Accuracy

In Table 2, further analysis is done to choose an optimal offset that gives best results along with
best outcomes from Table 1. In Table 3, different feature set is used for analysis using the mean,
median and SD of each of red, green and blue planes, best results are found by using 50% and 70%
training data.

Table 3. Using color features Mean, Median and Standard Deviation of Red, Green and Blue planes
(Seed = 8.15 × 105 and No. of hidden nodes = 15).

Training Data Validation Data Verification Data Performance

50% 25% 25% 76.2%
70% 15% 15% 76.2%
90% 5% 5% 42.2%

5.3. Performance of GLCM, Statistical Features and ABCD Features

Table 4 shows the results of using another feature set which is a combination of GLCM and the
red, green and blue statistical or low-level intuitive features including mean, median and standard
deviation. Here, the total number of inputs is 25, out of which 16 features are extracted from GLCM
and 9 features are mean, median and standard deviation for each of the red, green and blue planes of
ROI. The best result found is 81.6% by using 70% training data, 15% validation and 15% verification
data. Table 5 shows the classification results of ANN with ABCD features which are HLIF. Here,
features are asymmetry, border irregularity, color features including mean, median, standard deviation
for red, green, blue planes and diameter which depicts oblongness. It can be seen that accuracy as high
as 89.8% is achieved with these features. Here, results are generated using 70% of training dataset.
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Table 4. ANN Performance using GLCM and Mean, Median and Standard deviation of (Red, Green
and Blue).

Training Data Validation Data Verification Data Performance

50% 25% 25% 80.1%
70% 15% 15% 81.6%
90% 5% 5% 58.3%

Table 5. ANN performance using ABCD features (Seed = 8.15 × 105 and hidden nodes = 15) compared
to conventional and modified standard deviation stdev.

Standard Deviation Version Training Data Validation Data Verification Data Accuracy

Conventional 2D stdev 70% 15% 15% 89.8%
Modified stdev 70% 15% 15% 93.7%

It is clear from our experiments that most of the results using 70% of the training set are better
than other data split and it is also most a common practice to split data into 70%:30% of training:test
set. The accuracy found by using (ABCD) HLIF are comparable to the methods found in the literature.
The confusion matrix is shown in Figure 6. At the end, we analyze the performance of ANN through
the fusion of GLCM and ABCD features with expectations of getting higher accuracy, but the results
are not promising. The accuracy found through fusion of ABCD and GLCM is 72.8%.
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Figure 6. Classification results of ABCD features with conventional standard deviation.

5.4. Impact of Modified Standard Deviation

Furthermore, results of ABCD are computed using modified standard deviation. In color features
of ABCD, conventional standard deviation of each color plane of ROI is replaced with modified
standard deviation and classification is done using ANN. Replacing conventional standard deviation
with modified standard deviation results in improvement in accuracy from 89.9% to 93.7%. Our
main goal is to provide melanoma detection scheme, with best features selection and classification
using ANN. Our proposed modified standard deviation has improved accuracy by 4.23%. Moreover,
sensitivity and specificity are 95.8% and 91%, respectively. The confusion matrix of using proposed
modified standard deviation is shown in Figure 7.
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Figure 7. Classification results of ABCD features using ANN with modified standard deviation.

In addition to that, the experiments are performed with an increased number of hidden layers
and neurons. We observe that the accuracy does not improve further as compared to using 15 hidden
neurons with 12 inputs of ABCD. The experiments with a varying number of hidden layers, number of
neurons and the corresponding accuracy is captured in Table 6.

Table 6. Performance analysis with varying number of neurons and hidden layers using modified
standard deviation. [15 15] denotes two hidden layers with 15 neurons each, while [15 15 15] denotes
three hidden layers with 15 neurons each.

# Hidden Layers Neurons per Layer Sensitivity Specificity Accuracy

1 15 95.8% 91% 93.7%
1 20 88.2% 62% 77.2%
1 25 89% 77% 84%
1 30 84% 78% 81.5%
2 [15 15] 81.5% 71.3% 77.2%
2 [20 20] 84% 60% 93.8%
2 [25 25] 76.4% 67% 72.3%
2 [30 30] 81.5% 64.4% 74.3%
3 [15 15 15] 89% 68% 80.1%
3 [20 20 20] 92.4% 82.7% 88.3%
3 [25 25 25] 82.3% 80.45% 81.5%
3 [30 30 30] 73.5% 89.1% 82.5%

5.5. Comparison with State-Of-The-Art

In our proposed method, some of the features are the same as compared to [57]. The performance
in the [57] is computed with the features mentioned along with GLCM parameters. In our paper, we
also combined ABCD features with GLCM parameters, but there is no further improvement in results
as compared to using ABCD features alone. However, accuracy achieved by coupling GLCM and
ABCD features with modified standard deviation is 91.7%.

The number of images used in [31] is 200 images, while in our paper we used 206 images.
The number of images used in both papers is the same, but the datasets are different. In the referenced
work, Interactive Atlas of Dermoscopy and a private dataset is used, while we have used the DermIS
and DermQuest dataset.



Electronics 2019, 8, 672 16 of 20

The classification is done using SVM after applying the correlation based feature selection (CFS)
algorithm, while we used ANN directly applied on the features extracted.

The performance is better in terms of sensitivity and comparable results in terms of specificity.
Sensitivity in the [31] is 90%, while in our proposed method the sensitivity found is 95.8%. Specificity
in previous work is 96%, while, in our proposed method, it is 91%. The accuracy is not mentioned in
the above-mentioned work; however, we achieve an accuracy of 93.7%.

The bottom line is that, in both of the papers, ABCD features are incorporated. In [31], a subset
of ABCD features is combined with GLCM parameters along with the CFS algorithm to select
features. In contrast, we used a complete set of ABCD features with GLCM parameters, although the
performance is not significant. Our proposed method is better in terms of the number of selected
features, i.e., no further feature selection processing on the extracted features and in terms of better
sensitivity and accuracy with approximately the same number of images.

6. Discussion

Skin cancer is one of the most common types of cancer. Melanoma is the deadliest type of skin
cancers. Automatic skin cancer detection is needed to help physicians for early detection. In this
research, automatic detection of skin cancer was done with a comparison analysis of high level and
low level intuitive features. Neural networks were used for classification. Results were generated for
GLCM parameters with different offsets in the range of 2–28 and the offset that gave the best result
was chosen. Color features were also used to check the performance of neural networks. Results were
comparable to those obtained with the GLCM parameters. A combination of GLCM parameters and
color features applied to ANN resulted in even better performance. Finally, ABCD features in which
color parameter has the same statistical measures of color planes and diameter was replaced with
oblongness resulted in the highest accuracy. Color features outperform in both cases when combined
with GLCM and ABCD.

Table 7 shows performance results of the proposed method compared to the methods adapted
by contemporary researchers. One of the big challenges in medical image analysis research is the
non-availability of large datasets. Table 7 shows that different datasets are used by different researchers
and even the amount of data used is different. Each accuracy shown is true with respect to its own
experimental setup and data used, but we cannot say it as true accuracy among different researchers.
True accuracy among different research studies should be conducted with same platform, equal amount
of data and the same dataset for finding performance of skin cancer detection.

Brinker et al. [58] also commented on performance comparison of skin cancer related research
due to use of non-public datasets and recommended to use publicly available benchmark datasets. The
second challenge is uneven dataset of class melanoma and non-melanoma cases that can affect accuracy.
The third challenge is the choice of dataset used for training as it is confirmed by our experiments
that, different random seeds come up with different accuracy with the same experimental setup. ANN
with an increasing number of hidden layers with different numbers of nodes can also affect accuracy.
Conversely, a higher number of hidden layers can increase the computation cost.

High-level intuitive features ABCD give better performance in terms of accuracy and with a
reduced number of features i.e., 12 inputs to ANN. The results are derived on publicly available
datasets of DermIS and DermQuest with 206 images. The dataset used in literature as stated in
Section 2 in [31] is identical to the one used in our research paper, i.e., DermIS and DermQuest with
the same number of images i.e., 206. In [31], they found 84.04%, 79.91% and 81.26% of sensitivity,
specificity and accuracy, respectively. As compared to the referenced paper, our method results in
95.8%, 91% and 93.7% sensitivity, specificity and accuracy, respectively. Our results are better i.e., 93.7%
accurate as compared to the [31].

Part of the reason for better performance is the use of ABCD features with less extracted features
fed to the most suitable neuron size of artificial neural networks. In [31], they have used a total of 59
features in their results and did not apply any features’ reduction steps. In contrast, our feature set is
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comprised of only 12 features, which is very compact as compared to 59. Therefore, the performance
achieved is not only better in terms of accuracy, but also in terms of a reduced number of features as
compared to the same dataset used in the literature.

Table 7. Performance comparison between the proposed method and those adapted by other
contemporary researchers. Spe: Specificity, Sen: Sensitivity, Acc: Accuracy.

Features Method Data Source Samples Spe Sen Acc Ref

2D wavelets ANN Skincancer.org — 60–75% [16]

melanoma
color feature

Color histogram
analysis

NY Univ.,
Dept. Dermatology

129 melanoma,
129 benign 88–89% [25]

wavelets 3 layer NN — — 89.90% [26]

wavelets Auto associative NN — — 80.80% [26]

Shape and
radiometric features KNN 5363 92% 87% [59]

Proposed method ANN
Derm IS and
DermQuest 206 91% 95.8% 93.7%

7. Conclusions and Future Directions

In order to decrease mortality rate through early detection of melanoma and providing an aid
to doctors, image features were extracted, analyzed and classified using ANN. The combination of
GLCM and color features gave better results as compared to using these features standalone. Another
set of features i.e., ABCD were also applied to ANN and its results were found to be the best of all the
tests performed with the other features, with an accuracy of 93.7%. Both the sets contain color features
showing its significance for the detection of skin cancer. In ABCD features, diameter is usually ignored
because different orientations of the capturing device result in different diameters. We introduced a
new feature, Oblongness in place of Diameter that considers the ratio of length and width, with the
length taken along the true axis of symmetry. In the future, we intend to work on skin cancer detection
using deep learning and evolutionary algorithms. Moreover, we would like to perform research work
on a publicly available large database of ISIC (International Skin Imaging Collaboration) for skin cancer
detection [60]. In order to compute the true accuracy and comparable results, researchers must be
provided with an identical platform, big data, and the same number of image samples with common
training and test datasets. In the future, we intend to develop an end-to-end PC-based detection
system that would be capable to analyze a lesion in real time, using a camera attached to the PC.
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