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Abstract: This study aims to utilize heart rate variability (HRV) signals obtained with a wearable
sensor for driver drowsiness detection. To this end, we investigated respiration characteristics derived
from HRV signals based on the known fact that respiratory activity can be estimated from the high
frequency (HF) band of HRV signals. For drowsiness detection, many earlier works commonly used
dominant respiration (DR) characteristics. However, in some situations where emphasized power
in a power spectrum of HRV occurs at multi sub-frequency, the DR measures may possibly fail to
capture overall respiration characteristics. To handle this problem, we propose two spectral indices,
the weighted mean (WM) and the weighted standard deviation (WSD) of the HF band in the power
spectrum. These indices are used to properly capture the overall shape of the respiratory activity
shown through the HF band of the HRV power spectrum as an alternative to the DR measures.
For experiments, we collected HRV data with an electrocardiogram device worn on the body under
a virtual driving environment. The proposed indices somewhat clearly showed the tendency that
respiratory frequency decreases and respiration regularity increases in drowsy states of all subjects,
while existing DR measures hardly showed this. In addition, when the proposed indices are used
alone or together with conventional HRV-related measures as input features for classification models,
they showed the best performance in distinguishing drowsiness from wakefulness.

Keywords: driver drowsiness detection; wearable ECG device; respiration characteristics

1. Introduction

A driver’s drowsiness is one of the main causes of traffic accidents. According to recent studies [1],
up to 30% of deadly car crashes are known to be associated with sleepy driving or driver’s fatigue. Thus,
the problem of detecting driver’s fatigue or drowsy conditions is very important for the prevention of
car accidents in real life. Until now, there have been many studies that automatically detect drowsiness
of driver based on various bio-signals. The heartbeat signal is one of the most common signals for
this purpose and has the advantage that it is relatively easy to measure non-invasively in a driving
situation with a wearable device.

According to Reference [2], the state of sleep (particularly, NREM sleep) shows the reduction in
physiological activity where both breathing and the heart rate slow down. Moreover, breathing becomes
deeper and more regular with deep sleep [3]. Particularly, in driving situations, it was shown that
respiratory frequency tends to decrease, while respiratory regularity tends to increase, in the drowsy
state [4,5]. Thus, respiration information has been often used to assess drivers’ drowsiness [6–12].
Respiration characteristics of a specific time range have been often estimated from the power spectrum
of the respiration signal in the time range. For example, in the study of Vincente et al [5], two measures
of dominant respiration power (DRP) and DRP percentage (DRP%) were extracted from the power
spectrum of respiration to capture respiratory regularity. Here, the DRP was calculated by first
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estimating dominant respiration frequency (DRF) from the power spectrum of respiration and then
integrating power around DRF. DRP% was obtained by taking the ratio of DRP to the total power of the
spectrum. The larger values of DRP and DRP% indicate that the respiration power is more concentrated
at the narrow region around a specific frequency. Thus, such measures can be understood as reflecting
the degree of the regularity of respiration. Similarly, Takahashi et al [11] measured the respiration curve
from strain gage bandaged at the abdominal region, and estimated peak power frequency (i.e., DRF)
and median power frequency (MDF) from the respiration power spectrum. They showed the DRF,
MDF, and the difference between DRF and MDF are related to sleepiness level. Here the difference
between DRF and MDF reflects the degree of respiration regularity like DRP%.

On the other hand, some attempts have been made to investigate respiration characteristics from
other measurements of respiration signals. For instance, Lee et al [7] extracted the second peak in the
autocorrelation function of the respiration signal over time and considered it as reflecting the regularity
of respiration. The higher value of the peak indicates that the respiration signal is more strongly
correlated to the lagged version of the signal, implying higher regularity of respiration. Long et al. [13]
measured the respiration signal from respiratory inductance plethysmography (RIP) and used the
sample entropy method to estimate the regularity of the respiration signal. They confirmed that the
estimated regularity can be effective to discriminate wake and light sleep.

It has been known that breathing activity can be approximately estimated from HRV signal,
in particular, from the high frequency (HF) band (i.e., 0.15–0.4Hz) of HRV signal [14]. Thus, the HF
band of HRV power spectrum can be regarded as the substitute for respiration power spectrum.
Some researchers examined the HRV-derived dominant respiration activity and showed its usefulness
in drowsiness detection. For example, Tateno et al [15] estimated the breathing numbers from heart
rate signals obtained by pulse wave sensor and showed that the estimated numbers are very close to
actual breathing numbers. From these results, they confirmed that the use of respiratory signal derived
from the heart rate signal is more useful to detect drowsiness than the use of the heart rate signal itself.
Also, Bourghelle et al [16] estimated breath-breath intervals (BBIs) from twenty-lead ECG signal and
demonstrated that the BBI mean and difference between BBI max and BBI min can be helpful to detect
driver drowsiness. Similarly, Vincente et al [5] showed that the measure of DRP% derived from 2-min
two-lead ECG signal can improve the performance of drivers’ drowsiness detection.

In spite of their usefulness, however, the measures of dominant respiration activity (like DRF or
DRP%) may not be enough to capture breathing activity in the drowsy state. For example, in some
situations where emphasized power in a power spectrum of HRV occurs at multi sub-frequency
like Figure 1, DRF or DRP% may possibly fail to provide overall respiration characteristics. In this
figure, both cases of (a) and (b) have almost the same DRP%, although they have different respiration
characteristics. In addition, there are other situations, like Figure 2, where it is difficult to define a single
peak point in the power spectrum. Therefore, it seems worthwhile to investigate new HRV-derived
measurements that can well capture the differentiated activities of breathing between drowsy and
wake states.

In this paper, we aim to investigate new measures for the HRV-derived respiration power spectrum
that well reflects the characteristics of respiration related to driver’s drowsiness. For this purpose,
we suggest two new spectral measures that can capture the overall shape of respiratory activity shown
through the HF band of the HRV power spectrum, not requiring to find dominant respiration frequency.
To evaluate the usability of the proposed measures, we employed them as input features to classification
model for driver drowsiness detection and evaluated which of existing dominant respiratory measures
and two proposed measures are more effective in assessing driver’s drowsiness. This study has been
done based on the assumption that the information of respiratory characteristics can be extracted from
HRV signals obtained with wearable devices, even in driving situations.
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Figure 1. Motivating example 1 in which both cases of (A) and (B) have almost the same values of 
dominant respiration frequencies (DRFs) (≈ 0.36 Hz) and dominant respiration power (DRP)% (when 
DRP is calculated in the range of 0.02 Hz around DRF), although (B) appears to be in a more regular 
breathing state than (A). (A) HRV-derived respiration with emphasized power at multi frequency. 
(B) HRV-derived respiration with emphasized power at single frequency. 

 
Figure 2. Motivating example 2 in which it is difficult to find a single DRF, because there are two peak 
points at 0.24 Hz and 0.33 Hz with almost the same power. 

2. Materials and Methods 

2.1. Data Collection and Preprocessing 

A virtual driving environment was set by using the FANATEC virtual driving hardware set and 
the Euro Truck Simulator 2 program as shown in Figure 3. The hardware set consists of a steering 
wheel, a pedal and a chair, which provides a very similar environment to actual driving. Originally, 
we collected 37 recordings of 6 subjects with a strap type of wearable ECG device under the 
environment. Out of 37, however, those with more than 1% of poorly measured RR-interval values 
(RRIs) were excluded from this study. Thus, we finally used 20 recordings of 6 subjects for 
experiments. Here all subjects gave their informed consent for inclusion before they participated in 
the study. The study was conducted in accordance with the Declaration of Helsinki. The subjects 
were composed of 5 males and 1 female having no sleep-related illness between the ages of 25 and 
35. The data collection was made carefully under some constraints that participants should not have 
caffeine drink at least 4 h before measurement. They were also asked to drive over 1 h without breaks 
on the same virtual route, provided by the simulator program, more than 80% of which is a straight 
course or a gentle curve course. In addition, each subject was guided to do his (or her) best to keep 
the lane steady along the path, while keeping as close to 80–90 km/h speed as possible and 
minimizing unnecessary movements for driving. Under such environments, HRV data (i.e., RRIs) 
were collected via a PolarH7 device which is a comfortable wearable electrocardiogram (ECG) 
instrument. The average running time of each recording was approximately 67 min. For the labeling 
purpose of drowsiness, we additionally recorded two videos of the driver’s upper body and 
simulator screen, respectively, at the rate of 15 fps. 

Figure 1. Motivating example 1 in which both cases of (A) and (B) have almost the same values of
dominant respiration frequencies (DRFs) (≈0.36 Hz) and dominant respiration power (DRP)% (when
DRP is calculated in the range of 0.02 Hz around DRF), although (B) appears to be in a more regular
breathing state than (A). (A) HRV-derived respiration with emphasized power at multi frequency.
(B) HRV-derived respiration with emphasized power at single frequency.
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Figure 2. Motivating example 2 in which it is difficult to find a single DRF, because there are two peak
points at 0.24 Hz and 0.33 Hz with almost the same power.

2. Materials and Methods

2.1. Data Collection and Preprocessing

A virtual driving environment was set by using the FANATEC virtual driving hardware set and
the Euro Truck Simulator 2 program as shown in Figure 3. The hardware set consists of a steering
wheel, a pedal and a chair, which provides a very similar environment to actual driving. Originally,
we collected 37 recordings of 6 subjects with a strap type of wearable ECG device under the environment.
Out of 37, however, those with more than 1% of poorly measured RR-interval values (RRIs) were
excluded from this study. Thus, we finally used 20 recordings of 6 subjects for experiments. Here all
subjects gave their informed consent for inclusion before they participated in the study. The study was
conducted in accordance with the Declaration of Helsinki. The subjects were composed of 5 males
and 1 female having no sleep-related illness between the ages of 25 and 35. The data collection was
made carefully under some constraints that participants should not have caffeine drink at least 4 h
before measurement. They were also asked to drive over 1 h without breaks on the same virtual route,
provided by the simulator program, more than 80% of which is a straight course or a gentle curve
course. In addition, each subject was guided to do his (or her) best to keep the lane steady along the
path, while keeping as close to 80–90 km/h speed as possible and minimizing unnecessary movements
for driving. Under such environments, HRV data (i.e., RRIs) were collected via a PolarH7 device
which is a comfortable wearable electrocardiogram (ECG) instrument. The average running time of
each recording was approximately 67 min. For the labeling purpose of drowsiness, we additionally
recorded two videos of the driver’s upper body and simulator screen, respectively, at the rate of 15 fps.
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Keeping less than 70km/h speed more than 10 seconds without special 

reasons. 
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based 

Failure to focus on driving. 
(e.g., Showing sleepy eyes clearly, nodding, or repeated yawning) 

Leaning back head on the chair with closed eyes. 

2.3. Calculating Dominant Respiration Measures 

Figure 3. (A) The virtual driving environment; (B) a wearable chest-strap electrocardiogram (ECG)
device for heart rate variability (HRV) data collection.

For noise filtering, such RRIs having the values greater or less than 20% of the mean of the
neighboring 10 RRIs were considered as poorly measured values and removed out. This process was
repeated until there is no RRI to be removed. Those recordings with more than 1% of RRIs filtered
out were excluded from this study. Then we performed cubic interpolation with the remained RRI
sequence and obtained new RRI data having a constant time interval at the sampling rate of 0.5 seconds.

2.2. Labeling Driver’s Drowsiness

For drowsiness labeling of the HRV data, we defined the drowsy event as the state in which a
subject cannot drive properly due to drowsiness, or the state in which a subject is judged to fall into
sleep very soon. On the other hand, the ‘wake’ state means that a subject is in the state of showing no
or only a little drowsy phenomenon while keeping stable driving.

The labeling of each recording was done based on the presumption that if no rests are taken after
the first occurrence of a drowsy event, the drowsiness of a subject will maintain until the end of a
recording. Thus, the first occurrence of a drowsy event in a recording was found based on the criteria
given in Table 1. To define the criteria of drowsiness, as in Reference [17], we considered two main
aspects: Whether a car runs steadily (monitored by simulator screen video), and whether a driver is
sufficiently focusing on driving (monitored by driver upper body video). Once a drowsy event is
found, each 1-min RRI before the first drowsy event was labeled as ‘wake’, while every 1-min RRI
after the first drowsy event was labeled as ‘drowsy’. If one drowsy event or more is found in a 1-min
epoch, all subsequent epochs including the epoch were labeled as ‘drowsy’. The epoch size was set to
be 1 min. As a result, for all recording data with 1342 min long, 384 epochs were labeled as ‘wake’ and
958 epochs were labeled as ‘drowsy’.

Table 1. The criteria to define drowsy events.

Type Drowsy Events

Vehicle-based

Getting off the main road completely
Causing big collision (e.g., a car is overturned or crashes).

Failure to maintain lanes in a stable way more than 5 seconds.
Keeping less than 70km/h speed more than 10 seconds without special reasons.

Driver
behavior-based

Failure to focus on driving.
(e.g., Showing sleepy eyes clearly, nodding, or repeated yawning)

Leaning back head on the chair with closed eyes.
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2.3. Calculating Dominant Respiration Measures

To find dominant respiration characteristics, we first set the time-points every 0.5 s in a recording.
The power spectrum for each time-point was then obtained with 12 s neighboring RRI data centered
on the time-point by using fast Fourier transform (FFT) and bandpass filtering. The range of finite
impulse response (FIR) bandpass filter was set between 0.15 Hz and 0.5 Hz. Finally, we considered
FFT power spectrum filtered by the bandpass filter as the HRV-derived respiration power spectrum.

From the power spectrum, we need to identify potential DRFs. First, we set the window size of
0.05 Hz with shift by 0.005Hz and calculated the ratio of integrated power in the window to total power
in full range for each window. If the ratio values are less than 0.35, we set them to zero, because the
dominant respiration frequency should have a power ratio of at least 0.35 according to Bailón et al. [14].
Then, to find a DRF in a specific time range, we built power spectrums for each time-point defined
in the given time range, and for each window of frequency in the power spectrums, calculated the
average of the integrated power ratios over the time-points in a given time range. Out of the averaged
power ratios for each window of frequency, we selected the frequency window with the highest ratios
as the DRF and used its power ratio as the DRP% for the given time range.

In this study, we set the length of time range as 120 s or 40 s. The length of 40 s was chosen for
comparison with the Bailón’s work, and the length of 120 s was chosen because it showed empirically
good results. Hereinafter, we denote ‘DRF’ and ‘DRP%’ for dominant respiration frequency and power
ratio based on 120 s signal length, respectively. We denote ‘DRF40’, ‘DRP40%’ based on 40 s signal
length. For experiments, we set time-points every 0.5 s in a recording and calculated DRF, DRP%,
DRF40, and DRP40% for each time-point.

2.4. Calculating the Proposed Measures

To well distinguish the regularity of breathing between wake and drowsy states, we proposed the
two spectral measures, the weighted mean (WM) and the weighted standard deviation (WSD), of the
HF band in an HRV-derived power spectrum. These measures can be obtained by using the power
values of all sub-frequencies in the spectrum as weights. Specifically, for a given time range of RRI
data, the power spectrum is obtained, just as in calculating dominant respiration measures, except
with 120 s RRI data or 40 s RRI data. With these spectrums, the proposed measures of WM and WSD
are then calculated by using the following Equation (1).

WM =
∑0.4Hz

f=0.15Hz Wff∑0.4 hz
f=0.15hz Wf

WSD =

√∑0.4Hz
f=0.15Hz Wf(f−WM)2∑0.4Hz

f=0.15Hz Wf

(1)

where f ∈ {0.15hz, 0.16hz, 0.17hz, . . . , 0.40hz} and Wf is a power value at the given frequency f of the
HRV-derived respiration power spectrum.

For convenience, hereinafter, we denote WM and WSD for 120 s data, while denoting WM40 and
WSD40 for 40 s data. Since WM reflects the average frequency of respiration weighted by power values
and WSD reflects the degree of respiration irregularity, by combining them together, they are expected
to somewhat capture overall characteristics of HRV-derived respiration power spectrum. Particularly,
the large value of WSD implies that there exists a high degree of respiration irregularity.

2.5. Calculating Existing HRV Measures

Many earlier studies have often used some HRV related measures for drowsiness detection.
Thus, we calculated and used several commonly used HRV measures for comparison, which include
low frequency (LF) power, low frequency (HF) power, LFHF power ratio, and very LF (VLF) power,
in predicting drowsy states of the driver. Here, to obtain integral power, we used the power spectrum
obtained with RRI data of 120 s.
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2.6. Feature Extraction for 1-Minute Epoch

Because labeling was done in 1-minute epochs, we also obtained the summarized measures for
each 1-minute epoch and used them to learn a prediction model for drowsiness detection. To define
the summarized measures for 1-minute epoch, we used four summation method, including minimum
(Min), maximum (Max), arithmetic mean (Mean) and standard deviation (STD). Since all the measures
in this study are calculated every 0.5 s in a recording, we can have 120 values for each 1-minute epoch,
and obtain four summarized values (Min, Max, Mean, STD) from them with each measure. Along with
them, we also employed their normalized values for experiments, which are obtained by subtracting
out the mean value of the first 3 min data of each recording from the original values of every epoch in
the recording. Eventually, for each measure, we generated 8 feature values (including Min, Max, Mean,
STD, Min_nor, Max_nor, Mean_nor, and STD_nor).

3. Results

3.1. Distinguishability of the Proposed Measures between Drowsy and Wake States

According to many studies related to drowsiness, it has been said that the frequency of breathing
tends to decrease while the regularity of breathing tends to increase. To verify these phenomena in
our dataset, we investigated the distinguishability of the proposed measures in classifying drowsy
and wake states. This was done by visualizing all the epoch data (labeled as drowsy or wake) in
terms of the two proposed measures, WM and WSD. Figure 4 shows the scatter plots of the proposed
features, WM maximum and WSD maximum, for the HRV-derived respiration epoch data of each
subject. From this figure, we can observe a reasonably good distinguishability about drowsiness that
shows the decreasing trend of breathing frequency and the increasing trend of breathing regularity in
drowsy states of each subject, although some data does not show, or makes unclear, such a tendency.
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Figure 4. Scatterplots of the proposed features for each subject in our dataset. Here, blue dots represent
wake epochs, and red dots represent drowsy epochs. The X-axis represents minus the weighted
standard deviation (WSD), and the Y-axis represents the weighted mean (WM). The colored circles are
the Gaussian distribution fitted for each label (i.e., drowsy or wake states).
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For comparison, we also examined the distinguishability of other common measures in the same
context. Figure 5 shows the scatterplots of the two most common measures, DRF maximum and DRP%

minimum, for the same data used in Figure 4. In this figure, unlike Figure 4, it is hard to find a good
distinction between drowsy and wake states in most of the subjects. These observations support the
idea that the proposed measures can work better on each subject than the existing common measures
in capturing the distinctive features of respiration related to drowsiness. Based on these results, it is
expected that the proposed measures may work better for unknown subjects in detecting drowsiness
in driving situations. Thus, we also examined the ability to distinguish drowsy states from wake states
in the pooling data of all subjects. Figure 6 shows the scatterplots of the proposed measures in (A) and
the existing common measures in (B) for the same data. Figure 7 shows their discrimination ability in
terms of the receiver operating characteristics (ROC) curve when each feature set is used for support
vector machine (SVM), random forest (RF), and k-nearest neighborhood (KNN) models, respectively,
in a manner of recording unit cross-validation. In these figures, as expected, we could also observe
better distinction with the proposed measures than the existing respiration measures.
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Figure 5. Scatterplots of existing features for each subject in our dataset. Here, blue dots represent
wake epochs, and red dots represent drowsy epochs. The X-axis represents DRF% and the Y-axis DRF.
The colored circles are the Gaussian distribution fitted for each label (i.e., drowsy or wake states).
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wake states).
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Figure 7. Receiver operating characteristics (ROC) graphs of different prediction models using two
different feature sets given in Figure 6. Here the sensitivity corresponds to the ability of predicting the
actual ‘drowsy’ epoch as ‘drowsy’. The specificity corresponds to the ability of predicting the actual
‘wake’ epoch as ‘wake’.

3.2. Prediction Performance for Driver Drowsiness Detection

To verify the usefulness of the proposed measures for drowsiness detection, we built three different
prediction models that employ RF regression, SVM regression, and KNN regression, respectively.
Each model was trained to predict the state of the driver in the given epoch based on its feature values of
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the epoch. The prediction result of each model is determined by considering its output value according
to the specified threshold. If the output value of a model is greater than the threshold, the final
prediction is made to be ‘drowsy’. Otherwise, the prediction is made to be ‘wake’. By adjusting the
threshold, we produced the ROC curves, as shown in Figure 8, to compare the prediction performance
of several different models employing different feature sets. For evaluation, we used the leave-one-out
cross-validation (LOOCV) method of recording unit. For prediction modeling, we set up to create
100 trees for RF and used Gaussian kernel function for SVM. For KNN, k was set to 5 and all the feature
values were z-transformed before modeling. Here, the performance was evaluated in terms of the area
under curve (AUC) of ROC.
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Figure 8. ROC graphs of different prediction models using five different feature sets. Here, the sensitivity
corresponds to the ability of predicting the actual ‘drowsy’ epoch as ‘drowsy’. The specificity
corresponds to the ability of predicting the actual ‘wake’ epoch as ‘wake’.

To compare the predictive performance using all features, we prepared three different feature sets,
called ‘Proposed’, ‘DominantResp’, and ‘HRV’, and learned several prediction models based on single
or combined feature sets. The feature set of ‘Proposed’ contains the features of our proposed measures
(i.e., WM, WSD, WM40, WSD40), the feature set of ‘DominantResp’ contains those of dominant
respiration measures (i.e., DRF, DRP%, DRF40, DRP40%), and the feature set of ‘HRV’ contains those
of conventional HRV related measures (except respiration), which are low-frequency power (LFP),
high-frequency power (HFP), very low-frequency power (VLFP), LF/HF power ratio (LFHF), and RRI.
In each feature set, we detected the subset of the features with the highest performance by applying the
greedy feed-forward feature selection method and used them for the final model learning. The feature
selection method is a repetitive procedure of adding features one by one which are the most helpful in
improving predictive performance until the performance is no longer improved. Here, the performance
was evaluated in terms of the AUC.

Table 2 shows the lists of the selected features in each feature set for different predictive models.
From this table, we could observe that the proposed measures are very useful for improving the
performance of drowsiness detection, regardless of model type. Also, it was interesting to see that
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this performance can be more improved by using some of the existing HRV measures along with
the proposed measures. On the other hand, these HRV measures were not helpful at all when used
in conjunction with the dominant breathing measures instead of the proposed measures. Of the
conventional ‘HRV’ measures, ‘LFHF’ (i.e., LF/(HF + LF) power ratio) and ‘LFP’ or ‘HFP’ were chosen
as good indicators of driver drowsiness in most cases.

Table 2. A list of selected features (using the greedy feed forward selection method) in each feature set
for prediction. In each feature set, the chosen features are given in the order of significance. (Notation
ended with ‘nor’ indicates that it is a normalized value).

Learning
Model Feature Set Name Selected Features in the Set for Best

Performance AUC

SVM

Proposed+HRV

LFHF(mean), WSD40(mean)nor, WSD(max),
WM(std)nor, LFP(mean)nor, WSD(min),

WSD40(min)nor, WSD40(mean), WSD40(max),
RR(max)nor, WSD40(min), WM(mean)nor

0.95

Proposed WSD(max), WSD(mean)nor, WM(std)nor,
WM(max)nor 0.93

DominantResp+HRV
DRF(min)nor, LFHF(max), DRF40(min)nor,

DRF(max), HFP(min)nor, LFP(min)nor, HFP(std),
DRP%(mean), LFHF(mean)

0.9

DominantResp

DRF(min)nor, DRF40(min)nor, DRP40%(std)nor,
DRP40%(std), DRP40%(mean)nor,

DRP40%(mean), DRP40%(max)nor, DRF40(max),
DRF40(max)nor, DRP%(min)nor

0.9

HRV
LFHF(mean), HFP(max)nor, HFP(mean),
HFP(std)nor, VLFP(max), LFP(mean)nor,

HFP(max)
0.85

RF

Proposed+HRV LFHF(mean), WSD40(mean)nor, WM(max)nor,
WM40(min)nor, VLFP(max)nor, WSD40(min)nor 0.89

Proposed WM(max)nor, WM40(min)nor, WSD40(mean)nor,
WSD40(min) 0.89

DominantResp+HRV LFHF(mean), HFP(std)nor, LFP(mean)nor,
DRP40%(mean) 0.83

DominantResp DRF(min)nor, DRF40(min)nor, DRP40%(std)nor,
DRP40%(std), DRP40%(max)nor, DRP40%(min) 0.84

HRV LFHF(max), HFP(std)nor, LFP(mean)nor,
LFHF(mean), LFHF(std) 0.82

KNN

Proposed+HRV
LFHF(mean), WSD40(mean)nor, WM(std)nor,

WSD(max), RR(max)nor, WSD(mean)nor,
LFHF(mean)nor, WM(std), LFP(min), WSD(min)

0.94

Proposed WM(max)nor, WM40(min)nor, WSD40(mean)nor,
WSD40(mean), WSD40(min)nor, WSD40(std) 0.91

DominantResp+HRV
LFHF(mean), DRF(max)nor, HFP(max)nor,

LFP(min)nor, HFP(std)nor, DRP%(min),
HFP(max)

0.87

DominantResp

DRF(min)nor, DRP40%(max)nor,
DRP40%(std)nor, DRP40%(std), DRP40%(min),

DRP40%(mean)nor, DRF40(min)nor,
DRP40%(max)

0.9

HRV
LFHF(mean), HFP(std)nor, LFP(mean)nor,
HFP(std), LFHF(mean)nor, VLFP(min)nor,

HFP(max)nor
0.84
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Figure 8 shows the performance of the prediction models for drowsiness detection using ROC
graphs. In this figure, it is observed that the feature set of ‘Proposed + HRV’ or that of ‘Proposed’
provides the best performance in all the three models. Particularly, the additional use of ‘HRV’ with
‘Proposed’ seems to have a good effect on improving drowsiness detection performance. On the other
hand, for the ‘DominantResp’ feature set, additional use of ‘HRV’ feature set with ‘DominantResp’
does not contribute to the predicted performance at all. Rather, the feature set of ‘DominantResp’
alone outperforms the ‘HRV’ or ‘DominantResp+HRV’ feature set. Overall, the results show that the
proposed measures can contribute significantly to improving drowsiness detection performance by
using it alone or in combination with traditional HRV measures.

4. Discussion

In this study, we suggested new spectral measures applicable to HRV-derived respiration power
spectrum and looked into their usefulness for drowsiness detection in driving situations. Unlike earlier
works, the proposed approach does not focus on dominant respiration characteristics. Rather, it focuses
on capturing the overall shape of the respiration power spectrum. Thus, this method can be more
widely employed than existing respiration measures, even in such cases that dominant respiration
characteristics are hard to find. Furthermore, the proposed measures showed better performance in
drowsiness detection than existing HRV or respiration measures and could be used in conjunction
with HRV measures to further improve predictive performance. These results demonstrate that the
proposed measures can be good indicators for drowsiness detection. This may be due to the fact that
the feature space of the proposed two spectral measures (i.e., WM and WSD) is more separable than
the feature space of existing respiration measures (i.e., DRF and DRP%) between drowsy and wake
states, as shown in Figures 4–6. As expected, it has been also observed that respiratory frequency
(captured by WM) tends to be lower and breathing regularity (captured by WSD) tends to be higher in
the drowsy state. On the other hand, this phenomenon was not well observed in the feature space of
dominant respiration measures (i.e., DRF and DRP%).

This approach can be quite useful in situations where HRV data is collected with wearable sensors
because the proposed measures are based on HRV-induced respiratory characteristics. Moreover, it is
more interesting that using two proposed measures of respiration together with conventional HRV
measures (like LF/HF power ratio), which are easily obtainable from HRV data, can help to further
improve predictive performance in detecting a driver’s drowsiness. In addition, this method shows a
good ability to capture common phenomenon of respiratory traits in multiple subjects. Accordingly,
in reality, it is expected that the steady accumulation of HRV data for a large number of subjects may lead
to building more reliable prediction models, providing further improvement in drowsiness detection.
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